hexsha
stringlengths
40
40
repo
stringlengths
5
121
path
stringlengths
4
227
license
list
language
stringclasses
1 value
identifier
stringlengths
1
107
return_type
stringlengths
2
237
original_string
stringlengths
75
13.4k
original_docstring
stringlengths
13
12.9k
docstring
stringlengths
13
2.57k
docstring_tokens
list
code
stringlengths
23
1.88k
code_tokens
list
short_docstring
stringlengths
1
1.32k
short_docstring_tokens
list
comment
list
parameters
list
docstring_params
dict
code_with_imports
stringlengths
23
1.88k
idxs
int64
0
611k
cluster
int64
0
1.02k
21a18029370f390c7d9369df97ac9b47babfeabe
hchang18/non-parametric-methods
kernel_density_estimator.py
[ "MIT" ]
Python
uniform_pdf
<not_specific>
def uniform_pdf(x_i, bandwidth): """Return uniform kernel density estimator.""" lowerb = (x_i - bandwidth) upperb = (x_i + bandwidth) def evaluate(x): """Evaluate x.""" if x <= lowerb: pdf = 0 elif x > upperb: pdf = 0 else: pdf = (1 / (2 * bandwidth)) return pdf return evaluate
Return uniform kernel density estimator.
Return uniform kernel density estimator.
[ "Return", "uniform", "kernel", "density", "estimator", "." ]
def uniform_pdf(x_i, bandwidth): lowerb = (x_i - bandwidth) upperb = (x_i + bandwidth) def evaluate(x): if x <= lowerb: pdf = 0 elif x > upperb: pdf = 0 else: pdf = (1 / (2 * bandwidth)) return pdf return evaluate
[ "def", "uniform_pdf", "(", "x_i", ",", "bandwidth", ")", ":", "lowerb", "=", "(", "x_i", "-", "bandwidth", ")", "upperb", "=", "(", "x_i", "+", "bandwidth", ")", "def", "evaluate", "(", "x", ")", ":", "\"\"\"Evaluate x.\"\"\"", "if", "x", "<=", "lowerb", ":", "pdf", "=", "0", "elif", "x", ">", "upperb", ":", "pdf", "=", "0", "else", ":", "pdf", "=", "(", "1", "/", "(", "2", "*", "bandwidth", ")", ")", "return", "pdf", "return", "evaluate" ]
Return uniform kernel density estimator.
[ "Return", "uniform", "kernel", "density", "estimator", "." ]
[ "\"\"\"Return uniform kernel density estimator.\"\"\"", "\"\"\"Evaluate x.\"\"\"" ]
[ { "param": "x_i", "type": null }, { "param": "bandwidth", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "x_i", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "bandwidth", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def uniform_pdf(x_i, bandwidth): lowerb = (x_i - bandwidth) upperb = (x_i + bandwidth) def evaluate(x): if x <= lowerb: pdf = 0 elif x > upperb: pdf = 0 else: pdf = (1 / (2 * bandwidth)) return pdf return evaluate
800
29
c17ab28adf7c7e96219c0fe3c65217c88b81e74e
alexpark07/pwntools
pwnlib/util/fiddling.py
[ "MIT" ]
Python
b64d
<not_specific>
def b64d(s): """b64d(s) -> str Base64 decodes a string Example: >>> b64d('dGVzdA==') 'test' """ return base64.b64decode(s)
b64d(s) -> str Base64 decodes a string Example: >>> b64d('dGVzdA==') 'test'
> str Base64 decodes a string
[ ">", "str", "Base64", "decodes", "a", "string" ]
def b64d(s): return base64.b64decode(s)
[ "def", "b64d", "(", "s", ")", ":", "return", "base64", ".", "b64decode", "(", "s", ")" ]
b64d(s) -> str Base64 decodes a string
[ "b64d", "(", "s", ")", "-", ">", "str", "Base64", "decodes", "a", "string" ]
[ "\"\"\"b64d(s) -> str\n\n Base64 decodes a string\n\n Example:\n\n >>> b64d('dGVzdA==')\n 'test'\n \"\"\"" ]
[ { "param": "s", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "s", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [ { "identifier": "examples", "docstring": null, "docstring_tokens": [ "None" ] } ] }
import base64 def b64d(s): return base64.b64decode(s)
801
1
ae7244a8243d35652b92e675045a1758e4330e65
Stanels42/cipher-cipher
cipher.py
[ "MIT" ]
Python
encript
<not_specific>
def encript(string, key): """Takes in a string and a key and will apply the ceaser cipher to the string based on the key. Then returning the result""" alp = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] new_str = '' for char in string.lower(): if char in alp: new_str += alp[(alp.index(char) + key) % len(alp)] else: new_str += char return new_str
Takes in a string and a key and will apply the ceaser cipher to the string based on the key. Then returning the result
Takes in a string and a key and will apply the ceaser cipher to the string based on the key. Then returning the result
[ "Takes", "in", "a", "string", "and", "a", "key", "and", "will", "apply", "the", "ceaser", "cipher", "to", "the", "string", "based", "on", "the", "key", ".", "Then", "returning", "the", "result" ]
def encript(string, key): alp = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] new_str = '' for char in string.lower(): if char in alp: new_str += alp[(alp.index(char) + key) % len(alp)] else: new_str += char return new_str
[ "def", "encript", "(", "string", ",", "key", ")", ":", "alp", "=", "[", "'a'", ",", "'b'", ",", "'c'", ",", "'d'", ",", "'e'", ",", "'f'", ",", "'g'", ",", "'h'", ",", "'i'", ",", "'j'", ",", "'k'", ",", "'l'", ",", "'m'", ",", "'n'", ",", "'o'", ",", "'p'", ",", "'q'", ",", "'r'", ",", "'s'", ",", "'t'", ",", "'u'", ",", "'v'", ",", "'w'", ",", "'x'", ",", "'y'", ",", "'z'", "]", "new_str", "=", "''", "for", "char", "in", "string", ".", "lower", "(", ")", ":", "if", "char", "in", "alp", ":", "new_str", "+=", "alp", "[", "(", "alp", ".", "index", "(", "char", ")", "+", "key", ")", "%", "len", "(", "alp", ")", "]", "else", ":", "new_str", "+=", "char", "return", "new_str" ]
Takes in a string and a key and will apply the ceaser cipher to the string based on the key.
[ "Takes", "in", "a", "string", "and", "a", "key", "and", "will", "apply", "the", "ceaser", "cipher", "to", "the", "string", "based", "on", "the", "key", "." ]
[ "\"\"\"Takes in a string and a key and will apply the ceaser cipher to the string based on the key. Then returning the result\"\"\"" ]
[ { "param": "string", "type": null }, { "param": "key", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "string", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "key", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def encript(string, key): alp = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] new_str = '' for char in string.lower(): if char in alp: new_str += alp[(alp.index(char) + key) % len(alp)] else: new_str += char return new_str
802
427
e5cdb26d33ed03adc43a5c6936d7c2bb45650c02
iridium-browser/iridium-browser
tools/clang/scripts/build.py
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
Python
GetCommitDescription
<not_specific>
def GetCommitDescription(commit): """Get the output of `git describe`. Needs to be called from inside the git repository dir.""" git_exe = 'git.bat' if sys.platform.startswith('win') else 'git' return subprocess.check_output( [git_exe, 'describe', '--long', '--abbrev=8', commit]).rstrip()
Get the output of `git describe`. Needs to be called from inside the git repository dir.
Get the output of `git describe`. Needs to be called from inside the git repository dir.
[ "Get", "the", "output", "of", "`", "git", "describe", "`", ".", "Needs", "to", "be", "called", "from", "inside", "the", "git", "repository", "dir", "." ]
def GetCommitDescription(commit): git_exe = 'git.bat' if sys.platform.startswith('win') else 'git' return subprocess.check_output( [git_exe, 'describe', '--long', '--abbrev=8', commit]).rstrip()
[ "def", "GetCommitDescription", "(", "commit", ")", ":", "git_exe", "=", "'git.bat'", "if", "sys", ".", "platform", ".", "startswith", "(", "'win'", ")", "else", "'git'", "return", "subprocess", ".", "check_output", "(", "[", "git_exe", ",", "'describe'", ",", "'--long'", ",", "'--abbrev=8'", ",", "commit", "]", ")", ".", "rstrip", "(", ")" ]
Get the output of `git describe`.
[ "Get", "the", "output", "of", "`", "git", "describe", "`", "." ]
[ "\"\"\"Get the output of `git describe`.\n\n Needs to be called from inside the git repository dir.\"\"\"" ]
[ { "param": "commit", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "commit", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import subprocess import sys def GetCommitDescription(commit): git_exe = 'git.bat' if sys.platform.startswith('win') else 'git' return subprocess.check_output( [git_exe, 'describe', '--long', '--abbrev=8', commit]).rstrip()
803
242
b7bce97ab6229ee857958ddb135236a1a56e4f71
chaseste/fin4dummy
application/internal/dates.py
[ "MIT" ]
Python
is_time_between
bool
def is_time_between(begin_time: time, end_time: time, check_time: time = None) -> bool: """Checks if the time is between the specified date range""" check_time = check_time or datetime.now().time() if begin_time < end_time: return check_time >= begin_time and check_time <= end_time else: return check_time >= begin_time or check_time <= end_time
Checks if the time is between the specified date range
Checks if the time is between the specified date range
[ "Checks", "if", "the", "time", "is", "between", "the", "specified", "date", "range" ]
def is_time_between(begin_time: time, end_time: time, check_time: time = None) -> bool: check_time = check_time or datetime.now().time() if begin_time < end_time: return check_time >= begin_time and check_time <= end_time else: return check_time >= begin_time or check_time <= end_time
[ "def", "is_time_between", "(", "begin_time", ":", "time", ",", "end_time", ":", "time", ",", "check_time", ":", "time", "=", "None", ")", "->", "bool", ":", "check_time", "=", "check_time", "or", "datetime", ".", "now", "(", ")", ".", "time", "(", ")", "if", "begin_time", "<", "end_time", ":", "return", "check_time", ">=", "begin_time", "and", "check_time", "<=", "end_time", "else", ":", "return", "check_time", ">=", "begin_time", "or", "check_time", "<=", "end_time" ]
Checks if the time is between the specified date range
[ "Checks", "if", "the", "time", "is", "between", "the", "specified", "date", "range" ]
[ "\"\"\"Checks if the time is between the specified date range\"\"\"" ]
[ { "param": "begin_time", "type": "time" }, { "param": "end_time", "type": "time" }, { "param": "check_time", "type": "time" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "begin_time", "type": "time", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "end_time", "type": "time", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "check_time", "type": "time", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import datetime def is_time_between(begin_time: time, end_time: time, check_time: time = None) -> bool: check_time = check_time or datetime.now().time() if begin_time < end_time: return check_time >= begin_time and check_time <= end_time else: return check_time >= begin_time or check_time <= end_time
804
823
dd2c9292a4d5c0e23ba78433347bb4fd678aa4bb
MatteoLacki/rta
rta/stats/stats.py
[ "BSD-2-Clause" ]
Python
sensitivity
<not_specific>
def sensitivity(cm): """True positives vs all positives. Args: cm (2x2 np.array): A confusion matrix. Returns: float: Sensitivity of the classifier. """ return cm[0,0]/(cm[0,0] + cm[0,1])
True positives vs all positives. Args: cm (2x2 np.array): A confusion matrix. Returns: float: Sensitivity of the classifier.
True positives vs all positives.
[ "True", "positives", "vs", "all", "positives", "." ]
def sensitivity(cm): return cm[0,0]/(cm[0,0] + cm[0,1])
[ "def", "sensitivity", "(", "cm", ")", ":", "return", "cm", "[", "0", ",", "0", "]", "/", "(", "cm", "[", "0", ",", "0", "]", "+", "cm", "[", "0", ",", "1", "]", ")" ]
True positives vs all positives.
[ "True", "positives", "vs", "all", "positives", "." ]
[ "\"\"\"True positives vs all positives.\n\n Args:\n cm (2x2 np.array): A confusion matrix.\n Returns:\n float: Sensitivity of the classifier.\n \"\"\"" ]
[ { "param": "cm", "type": null } ]
{ "returns": [ { "docstring": "Sensitivity of the classifier.", "docstring_tokens": [ "Sensitivity", "of", "the", "classifier", "." ], "type": "float" } ], "raises": [], "params": [ { "identifier": "cm", "type": null, "docstring": "A confusion matrix.", "docstring_tokens": [ "A", "confusion", "matrix", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def sensitivity(cm): return cm[0,0]/(cm[0,0] + cm[0,1])
805
288
3fbf4aedf26588c6bfad1e7a7ed744215b15089d
hrmstockdale/changelog-cli
tasks/release/__init__.py
[ "MIT" ]
Python
release_changelog
null
def release_changelog(context): """ Runs changelog command to update changelog """ context.run('changelog release --yes')
Runs changelog command to update changelog
Runs changelog command to update changelog
[ "Runs", "changelog", "command", "to", "update", "changelog" ]
def release_changelog(context): context.run('changelog release --yes')
[ "def", "release_changelog", "(", "context", ")", ":", "context", ".", "run", "(", "'changelog release --yes'", ")" ]
Runs changelog command to update changelog
[ "Runs", "changelog", "command", "to", "update", "changelog" ]
[ "\"\"\"\n Runs changelog command to update changelog\n \"\"\"" ]
[ { "param": "context", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "context", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def release_changelog(context): context.run('changelog release --yes')
806
889
41e1d27046897e082af258b6ca02c76e13093124
liuqk3/GSM
lib/models/config/config.py
[ "MIT" ]
Python
load_config
<not_specific>
def load_config(cfg_path): """Load the config from a json file""" if not os.path.exists(cfg_path): raise RuntimeError('file {} does not exists!'.format(cfg_path)) with open(cfg_path, 'r') as f: cfg = json.load(f) return cfg
Load the config from a json file
Load the config from a json file
[ "Load", "the", "config", "from", "a", "json", "file" ]
def load_config(cfg_path): if not os.path.exists(cfg_path): raise RuntimeError('file {} does not exists!'.format(cfg_path)) with open(cfg_path, 'r') as f: cfg = json.load(f) return cfg
[ "def", "load_config", "(", "cfg_path", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "cfg_path", ")", ":", "raise", "RuntimeError", "(", "'file {} does not exists!'", ".", "format", "(", "cfg_path", ")", ")", "with", "open", "(", "cfg_path", ",", "'r'", ")", "as", "f", ":", "cfg", "=", "json", ".", "load", "(", "f", ")", "return", "cfg" ]
Load the config from a json file
[ "Load", "the", "config", "from", "a", "json", "file" ]
[ "\"\"\"Load the config from a json file\"\"\"" ]
[ { "param": "cfg_path", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cfg_path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os import json def load_config(cfg_path): if not os.path.exists(cfg_path): raise RuntimeError('file {} does not exists!'.format(cfg_path)) with open(cfg_path, 'r') as f: cfg = json.load(f) return cfg
807
483
bcbb2b89e8b217cf2598a6d3791bb58f86220b94
chenjianlong/my-gist
fileutil.py
[ "Unlicense" ]
Python
rm_dir
null
def rm_dir(src, dst, ignore = None): """remove the dst dir's file that it exist in src dir with the same relative path""" src = src.rstrip(r'\/') dst = dst.rstrip(r'\/') for root, dirnames, filenames in os.walk(src): if ignore and (ignore in root): continue for filename in filenames: src_path = os.path.join(root, filename) dst_path = os.path.join(dst, src_path[len(src)+1:]) os.path.exists(dst_path) and os.remove(dst_path)
remove the dst dir's file that it exist in src dir with the same relative path
remove the dst dir's file that it exist in src dir with the same relative path
[ "remove", "the", "dst", "dir", "'", "s", "file", "that", "it", "exist", "in", "src", "dir", "with", "the", "same", "relative", "path" ]
def rm_dir(src, dst, ignore = None): src = src.rstrip(r'\/') dst = dst.rstrip(r'\/') for root, dirnames, filenames in os.walk(src): if ignore and (ignore in root): continue for filename in filenames: src_path = os.path.join(root, filename) dst_path = os.path.join(dst, src_path[len(src)+1:]) os.path.exists(dst_path) and os.remove(dst_path)
[ "def", "rm_dir", "(", "src", ",", "dst", ",", "ignore", "=", "None", ")", ":", "src", "=", "src", ".", "rstrip", "(", "r'\\/'", ")", "dst", "=", "dst", ".", "rstrip", "(", "r'\\/'", ")", "for", "root", ",", "dirnames", ",", "filenames", "in", "os", ".", "walk", "(", "src", ")", ":", "if", "ignore", "and", "(", "ignore", "in", "root", ")", ":", "continue", "for", "filename", "in", "filenames", ":", "src_path", "=", "os", ".", "path", ".", "join", "(", "root", ",", "filename", ")", "dst_path", "=", "os", ".", "path", ".", "join", "(", "dst", ",", "src_path", "[", "len", "(", "src", ")", "+", "1", ":", "]", ")", "os", ".", "path", ".", "exists", "(", "dst_path", ")", "and", "os", ".", "remove", "(", "dst_path", ")" ]
remove the dst dir's file that it exist in src dir with the same relative path
[ "remove", "the", "dst", "dir", "'", "s", "file", "that", "it", "exist", "in", "src", "dir", "with", "the", "same", "relative", "path" ]
[ "\"\"\"remove the dst dir's file that it exist in src dir with the same relative path\"\"\"" ]
[ { "param": "src", "type": null }, { "param": "dst", "type": null }, { "param": "ignore", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "src", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "dst", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "ignore", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def rm_dir(src, dst, ignore = None): src = src.rstrip(r'\/') dst = dst.rstrip(r'\/') for root, dirnames, filenames in os.walk(src): if ignore and (ignore in root): continue for filename in filenames: src_path = os.path.join(root, filename) dst_path = os.path.join(dst, src_path[len(src)+1:]) os.path.exists(dst_path) and os.remove(dst_path)
809
361
7369f3604f9318018cf45aa65b889b9e46eb04cf
pepastach/ochrona-cli
ochrona/parser/requirements.py
[ "MIT" ]
Python
clean_dependency
str
def clean_dependency(dependency: str) -> str: """ Removes any comments or hashes following the dependency. :param file_path: a dependency with optional pinned version :return: str a cleaned dependency string """ if " " in dependency or ";" in dependency or "#" in dependency: return dependency.split(" ")[0].replace(";", "") return dependency
Removes any comments or hashes following the dependency. :param file_path: a dependency with optional pinned version :return: str a cleaned dependency string
Removes any comments or hashes following the dependency.
[ "Removes", "any", "comments", "or", "hashes", "following", "the", "dependency", "." ]
def clean_dependency(dependency: str) -> str: if " " in dependency or ";" in dependency or "#" in dependency: return dependency.split(" ")[0].replace(";", "") return dependency
[ "def", "clean_dependency", "(", "dependency", ":", "str", ")", "->", "str", ":", "if", "\" \"", "in", "dependency", "or", "\";\"", "in", "dependency", "or", "\"#\"", "in", "dependency", ":", "return", "dependency", ".", "split", "(", "\" \"", ")", "[", "0", "]", ".", "replace", "(", "\";\"", ",", "\"\"", ")", "return", "dependency" ]
Removes any comments or hashes following the dependency.
[ "Removes", "any", "comments", "or", "hashes", "following", "the", "dependency", "." ]
[ "\"\"\"\n Removes any comments or hashes following the dependency.\n\n :param file_path: a dependency with optional pinned version\n :return: str a cleaned dependency string\n \"\"\"" ]
[ { "param": "dependency", "type": "str" } ]
{ "returns": [ { "docstring": "str a cleaned dependency string", "docstring_tokens": [ "str", "a", "cleaned", "dependency", "string" ], "type": null } ], "raises": [], "params": [ { "identifier": "dependency", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [ { "identifier": "file_path", "type": null, "docstring": "a dependency with optional pinned version", "docstring_tokens": [ "a", "dependency", "with", "optional", "pinned", "version" ], "default": null, "is_optional": null } ], "others": [] }
def clean_dependency(dependency: str) -> str: if " " in dependency or ";" in dependency or "#" in dependency: return dependency.split(" ")[0].replace(";", "") return dependency
810
2
050ab772e8c83d15e78a5735adae6cbb9b558118
jacobfgrant/simplemdm-webhook-functions
simplemdm_webhook_functions/slack_functions.py
[ "Apache-2.0" ]
Python
slack_webhook_message
<not_specific>
def slack_webhook_message(serial_number, webhook_event, event_time): """Create a formatted Slack message.""" event_time = re.sub(r'([\+|\-]{1}[0-9]{2})\:([0-9]{2})', r'\g<1>\g<2>', event_time) event_time = datetime.strptime(event_time, '%Y-%m-%dT%H:%M:%S.%f%z') event_time = event_time.strftime('%A, %B %d, %Y at %H:%M %Z') slack_message = { 'text': ( "SimpleMDM: Device `" + serial_number + "` " + webhook_event + " on " + event_time + "." ) } return slack_message
Create a formatted Slack message.
Create a formatted Slack message.
[ "Create", "a", "formatted", "Slack", "message", "." ]
def slack_webhook_message(serial_number, webhook_event, event_time): event_time = re.sub(r'([\+|\-]{1}[0-9]{2})\:([0-9]{2})', r'\g<1>\g<2>', event_time) event_time = datetime.strptime(event_time, '%Y-%m-%dT%H:%M:%S.%f%z') event_time = event_time.strftime('%A, %B %d, %Y at %H:%M %Z') slack_message = { 'text': ( "SimpleMDM: Device `" + serial_number + "` " + webhook_event + " on " + event_time + "." ) } return slack_message
[ "def", "slack_webhook_message", "(", "serial_number", ",", "webhook_event", ",", "event_time", ")", ":", "event_time", "=", "re", ".", "sub", "(", "r'([\\+|\\-]{1}[0-9]{2})\\:([0-9]{2})'", ",", "r'\\g<1>\\g<2>'", ",", "event_time", ")", "event_time", "=", "datetime", ".", "strptime", "(", "event_time", ",", "'%Y-%m-%dT%H:%M:%S.%f%z'", ")", "event_time", "=", "event_time", ".", "strftime", "(", "'%A, %B %d, %Y at %H:%M %Z'", ")", "slack_message", "=", "{", "'text'", ":", "(", "\"SimpleMDM: Device `\"", "+", "serial_number", "+", "\"` \"", "+", "webhook_event", "+", "\" on \"", "+", "event_time", "+", "\".\"", ")", "}", "return", "slack_message" ]
Create a formatted Slack message.
[ "Create", "a", "formatted", "Slack", "message", "." ]
[ "\"\"\"Create a formatted Slack message.\"\"\"" ]
[ { "param": "serial_number", "type": null }, { "param": "webhook_event", "type": null }, { "param": "event_time", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "serial_number", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "webhook_event", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "event_time", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import re import datetime def slack_webhook_message(serial_number, webhook_event, event_time): event_time = re.sub(r'([\+|\-]{1}[0-9]{2})\:([0-9]{2})', r'\g<1>\g<2>', event_time) event_time = datetime.strptime(event_time, '%Y-%m-%dT%H:%M:%S.%f%z') event_time = event_time.strftime('%A, %B %d, %Y at %H:%M %Z') slack_message = { 'text': ( "SimpleMDM: Device `" + serial_number + "` " + webhook_event + " on " + event_time + "." ) } return slack_message
811
753
070c108542829596ef282f019063fb3eb7fd7a2c
Lambda-School-Labs/cryptolytic-ds
cryptolytic/data/historical.py
[ "MIT" ]
Python
price_increase
<not_specific>
def price_increase(percent_diff, bottom5percent, top5percent): """Classify price changes into three types of categories""" if percent_diff > top5percent: return 1 elif percent_diff < bottom5percent: return -1 return 0
Classify price changes into three types of categories
Classify price changes into three types of categories
[ "Classify", "price", "changes", "into", "three", "types", "of", "categories" ]
def price_increase(percent_diff, bottom5percent, top5percent): if percent_diff > top5percent: return 1 elif percent_diff < bottom5percent: return -1 return 0
[ "def", "price_increase", "(", "percent_diff", ",", "bottom5percent", ",", "top5percent", ")", ":", "if", "percent_diff", ">", "top5percent", ":", "return", "1", "elif", "percent_diff", "<", "bottom5percent", ":", "return", "-", "1", "return", "0" ]
Classify price changes into three types of categories
[ "Classify", "price", "changes", "into", "three", "types", "of", "categories" ]
[ "\"\"\"Classify price changes into three types of categories\"\"\"" ]
[ { "param": "percent_diff", "type": null }, { "param": "bottom5percent", "type": null }, { "param": "top5percent", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "percent_diff", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "bottom5percent", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "top5percent", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def price_increase(percent_diff, bottom5percent, top5percent): if percent_diff > top5percent: return 1 elif percent_diff < bottom5percent: return -1 return 0
812
455
c7fff9be3a3bfa9b0d9da6bc0ddc8c68e0bc9f86
bopopescu/mysql-dbcompare
mysql-utilities-1.6.0/mysql/utilities/common/utilities.py
[ "Apache-2.0" ]
Python
find_executable
<not_specific>
def find_executable(util_name): """Search the system path for an executable matching the utility util_name[in] Name of utility Returns string - name of executable (util_name or util_name.exe) or original name if not found on the system path """ paths = os.getenv("PATH").split(os.pathsep) for path in paths: new_path = os.path.join(path, util_name + "*") if os.name == "nt": new_path = '"{0}"'.format(new_path) found_path = glob.glob(new_path) if found_path: return os.path.split(found_path[0])[1] return util_name
Search the system path for an executable matching the utility util_name[in] Name of utility Returns string - name of executable (util_name or util_name.exe) or original name if not found on the system path
Search the system path for an executable matching the utility util_name[in] Name of utility Returns string - name of executable (util_name or util_name.exe) or original name if not found on the system path
[ "Search", "the", "system", "path", "for", "an", "executable", "matching", "the", "utility", "util_name", "[", "in", "]", "Name", "of", "utility", "Returns", "string", "-", "name", "of", "executable", "(", "util_name", "or", "util_name", ".", "exe", ")", "or", "original", "name", "if", "not", "found", "on", "the", "system", "path" ]
def find_executable(util_name): paths = os.getenv("PATH").split(os.pathsep) for path in paths: new_path = os.path.join(path, util_name + "*") if os.name == "nt": new_path = '"{0}"'.format(new_path) found_path = glob.glob(new_path) if found_path: return os.path.split(found_path[0])[1] return util_name
[ "def", "find_executable", "(", "util_name", ")", ":", "paths", "=", "os", ".", "getenv", "(", "\"PATH\"", ")", ".", "split", "(", "os", ".", "pathsep", ")", "for", "path", "in", "paths", ":", "new_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "util_name", "+", "\"*\"", ")", "if", "os", ".", "name", "==", "\"nt\"", ":", "new_path", "=", "'\"{0}\"'", ".", "format", "(", "new_path", ")", "found_path", "=", "glob", ".", "glob", "(", "new_path", ")", "if", "found_path", ":", "return", "os", ".", "path", ".", "split", "(", "found_path", "[", "0", "]", ")", "[", "1", "]", "return", "util_name" ]
Search the system path for an executable matching the utility util_name[in] Name of utility
[ "Search", "the", "system", "path", "for", "an", "executable", "matching", "the", "utility", "util_name", "[", "in", "]", "Name", "of", "utility" ]
[ "\"\"\"Search the system path for an executable matching the utility\n\n util_name[in] Name of utility\n\n Returns string - name of executable (util_name or util_name.exe) or\n original name if not found on the system path\n \"\"\"" ]
[ { "param": "util_name", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "util_name", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os import glob def find_executable(util_name): paths = os.getenv("PATH").split(os.pathsep) for path in paths: new_path = os.path.join(path, util_name + "*") if os.name == "nt": new_path = '"{0}"'.format(new_path) found_path = glob.glob(new_path) if found_path: return os.path.split(found_path[0])[1] return util_name
813
1,001
5d2607e7c4b76fc1312c2ac9f5cd88311fff0f48
averyhiebert/slackhistory
slackhistory/historytools.py
[ "MIT" ]
Python
flatten_posts
<not_specific>
def flatten_posts(history): ''' Flatten all posts from all channels into a single list. Also add a field "channel" to each post. Does not modify the original.''' posts = [] for channel, post_list in history.items(): for post in post_list: new_post = copy.deepcopy(post) new_post["channel"] = channel posts.append(new_post) return posts
Flatten all posts from all channels into a single list. Also add a field "channel" to each post. Does not modify the original.
Flatten all posts from all channels into a single list. Also add a field "channel" to each post. Does not modify the original.
[ "Flatten", "all", "posts", "from", "all", "channels", "into", "a", "single", "list", ".", "Also", "add", "a", "field", "\"", "channel", "\"", "to", "each", "post", ".", "Does", "not", "modify", "the", "original", "." ]
def flatten_posts(history): posts = [] for channel, post_list in history.items(): for post in post_list: new_post = copy.deepcopy(post) new_post["channel"] = channel posts.append(new_post) return posts
[ "def", "flatten_posts", "(", "history", ")", ":", "posts", "=", "[", "]", "for", "channel", ",", "post_list", "in", "history", ".", "items", "(", ")", ":", "for", "post", "in", "post_list", ":", "new_post", "=", "copy", ".", "deepcopy", "(", "post", ")", "new_post", "[", "\"channel\"", "]", "=", "channel", "posts", ".", "append", "(", "new_post", ")", "return", "posts" ]
Flatten all posts from all channels into a single list.
[ "Flatten", "all", "posts", "from", "all", "channels", "into", "a", "single", "list", "." ]
[ "''' Flatten all posts from all channels into a single list.\n Also add a field \"channel\" to each post.\n \n Does not modify the original.'''" ]
[ { "param": "history", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "history", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import copy def flatten_posts(history): posts = [] for channel, post_list in history.items(): for post in post_list: new_post = copy.deepcopy(post) new_post["channel"] = channel posts.append(new_post) return posts
814
538
a7a4b5f4fdfd958cecff5c80bd722c1ef0ffc06f
moertle/underscorepy
_/skel.py
[ "MIT" ]
Python
add_data_files
<not_specific>
def add_data_files(*include_dirs): 'called from setup.py to include auxillary files for installation' data_files = [] for include_dir in include_dirs: for root, directories, filenames in os.walk(include_dir): include_files = [] for filename in filenames: include_files.append(os.path.join(root, filename)) if include_files: data_files.append((root, include_files)) return data_files
called from setup.py to include auxillary files for installation
called from setup.py to include auxillary files for installation
[ "called", "from", "setup", ".", "py", "to", "include", "auxillary", "files", "for", "installation" ]
def add_data_files(*include_dirs): data_files = [] for include_dir in include_dirs: for root, directories, filenames in os.walk(include_dir): include_files = [] for filename in filenames: include_files.append(os.path.join(root, filename)) if include_files: data_files.append((root, include_files)) return data_files
[ "def", "add_data_files", "(", "*", "include_dirs", ")", ":", "data_files", "=", "[", "]", "for", "include_dir", "in", "include_dirs", ":", "for", "root", ",", "directories", ",", "filenames", "in", "os", ".", "walk", "(", "include_dir", ")", ":", "include_files", "=", "[", "]", "for", "filename", "in", "filenames", ":", "include_files", ".", "append", "(", "os", ".", "path", ".", "join", "(", "root", ",", "filename", ")", ")", "if", "include_files", ":", "data_files", ".", "append", "(", "(", "root", ",", "include_files", ")", ")", "return", "data_files" ]
called from setup.py to include auxillary files for installation
[ "called", "from", "setup", ".", "py", "to", "include", "auxillary", "files", "for", "installation" ]
[ "'called from setup.py to include auxillary files for installation'" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import os def add_data_files(*include_dirs): data_files = [] for include_dir in include_dirs: for root, directories, filenames in os.walk(include_dir): include_files = [] for filename in filenames: include_files.append(os.path.join(root, filename)) if include_files: data_files.append((root, include_files)) return data_files
817
549
93a883d8cbeb738336dc98584b8d889d2e4be78e
Naugeh/mezzanine
mezzanine/core/templatetags/mezzanine_tags.py
[ "BSD-2-Clause" ]
Python
errors_for
<not_specific>
def errors_for(form): """ Renders an alert if the form has any errors. """ return {"form": form}
Renders an alert if the form has any errors.
Renders an alert if the form has any errors.
[ "Renders", "an", "alert", "if", "the", "form", "has", "any", "errors", "." ]
def errors_for(form): return {"form": form}
[ "def", "errors_for", "(", "form", ")", ":", "return", "{", "\"form\"", ":", "form", "}" ]
Renders an alert if the form has any errors.
[ "Renders", "an", "alert", "if", "the", "form", "has", "any", "errors", "." ]
[ "\"\"\"\n Renders an alert if the form has any errors.\n \"\"\"" ]
[ { "param": "form", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "form", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def errors_for(form): return {"form": form}
818
163
7837a02b4631ced061fe03bdc1442c76f9b60c8b
akmiller01/pyIATI
iati/tests/fixtures/versions.py
[ "MIT" ]
Python
split_decimal
<not_specific>
def split_decimal(version_decimal): """Split a Decimal version number into numeric representations of its components. Args: version_decimal (Decimal): A Decimal containing an IATI version number. Returns: list of int: A list containing numeric representations of the Integer and Decimal components. """ integer_component = int(version_decimal) decimal_component = int(version_decimal * 100) - 100 return [integer_component, decimal_component]
Split a Decimal version number into numeric representations of its components. Args: version_decimal (Decimal): A Decimal containing an IATI version number. Returns: list of int: A list containing numeric representations of the Integer and Decimal components.
Split a Decimal version number into numeric representations of its components.
[ "Split", "a", "Decimal", "version", "number", "into", "numeric", "representations", "of", "its", "components", "." ]
def split_decimal(version_decimal): integer_component = int(version_decimal) decimal_component = int(version_decimal * 100) - 100 return [integer_component, decimal_component]
[ "def", "split_decimal", "(", "version_decimal", ")", ":", "integer_component", "=", "int", "(", "version_decimal", ")", "decimal_component", "=", "int", "(", "version_decimal", "*", "100", ")", "-", "100", "return", "[", "integer_component", ",", "decimal_component", "]" ]
Split a Decimal version number into numeric representations of its components.
[ "Split", "a", "Decimal", "version", "number", "into", "numeric", "representations", "of", "its", "components", "." ]
[ "\"\"\"Split a Decimal version number into numeric representations of its components.\n\n Args:\n version_decimal (Decimal): A Decimal containing an IATI version number.\n\n Returns:\n list of int: A list containing numeric representations of the Integer and Decimal components.\n\n \"\"\"" ]
[ { "param": "version_decimal", "type": null } ]
{ "returns": [ { "docstring": "list of int: A list containing numeric representations of the Integer and Decimal components.", "docstring_tokens": [ "list", "of", "int", ":", "A", "list", "containing", "numeric", "representations", "of", "the", "Integer", "and", "Decimal", "components", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "version_decimal", "type": null, "docstring": "A Decimal containing an IATI version number.", "docstring_tokens": [ "A", "Decimal", "containing", "an", "IATI", "version", "number", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def split_decimal(version_decimal): integer_component = int(version_decimal) decimal_component = int(version_decimal * 100) - 100 return [integer_component, decimal_component]
819
15
3ced932201bbee3ebb9a0e1afdd8ebf329fd7aba
evansmurithi/kplc-interruptions
kplc_interruptions/interruptions/models.py
[ "MIT" ]
Python
interruption_upload_path
<not_specific>
def interruption_upload_path(instance, filename): """ Directory to upload interruption PDF files. """ return "interruptions/{interruption_id}/{filename}".format( interruption_id=instance.interruption.id, filename=filename)
Directory to upload interruption PDF files.
Directory to upload interruption PDF files.
[ "Directory", "to", "upload", "interruption", "PDF", "files", "." ]
def interruption_upload_path(instance, filename): return "interruptions/{interruption_id}/{filename}".format( interruption_id=instance.interruption.id, filename=filename)
[ "def", "interruption_upload_path", "(", "instance", ",", "filename", ")", ":", "return", "\"interruptions/{interruption_id}/{filename}\"", ".", "format", "(", "interruption_id", "=", "instance", ".", "interruption", ".", "id", ",", "filename", "=", "filename", ")" ]
Directory to upload interruption PDF files.
[ "Directory", "to", "upload", "interruption", "PDF", "files", "." ]
[ "\"\"\"\n Directory to upload interruption PDF files.\n \"\"\"" ]
[ { "param": "instance", "type": null }, { "param": "filename", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "instance", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "filename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def interruption_upload_path(instance, filename): return "interruptions/{interruption_id}/{filename}".format( interruption_id=instance.interruption.id, filename=filename)
820
605
75bbb3c3f25e6aa3d654ad31459d4369b8ba3831
OneTesseractInMultiverse/CateringService
jkfood/extensions/security/crypto/message_integrity.py
[ "MIT" ]
Python
compute_hash
<not_specific>
def compute_hash(password, salt): """ Computes the SHA256 has value of a given password and encodes the using hex encoding to produce a readable string. :param password: The password to be hashed :param salt: A set of entropy data to prevent rainbow table and dictionary attacks. :return: The resulting hash """ return hashlib.sha256(password.encode('utf-8')+salt.encode('utf-8'))\ .hexdigest()
Computes the SHA256 has value of a given password and encodes the using hex encoding to produce a readable string. :param password: The password to be hashed :param salt: A set of entropy data to prevent rainbow table and dictionary attacks. :return: The resulting hash
Computes the SHA256 has value of a given password and encodes the using hex encoding to produce a readable string.
[ "Computes", "the", "SHA256", "has", "value", "of", "a", "given", "password", "and", "encodes", "the", "using", "hex", "encoding", "to", "produce", "a", "readable", "string", "." ]
def compute_hash(password, salt): return hashlib.sha256(password.encode('utf-8')+salt.encode('utf-8'))\ .hexdigest()
[ "def", "compute_hash", "(", "password", ",", "salt", ")", ":", "return", "hashlib", ".", "sha256", "(", "password", ".", "encode", "(", "'utf-8'", ")", "+", "salt", ".", "encode", "(", "'utf-8'", ")", ")", ".", "hexdigest", "(", ")" ]
Computes the SHA256 has value of a given password and encodes the using hex encoding to produce a readable string.
[ "Computes", "the", "SHA256", "has", "value", "of", "a", "given", "password", "and", "encodes", "the", "using", "hex", "encoding", "to", "produce", "a", "readable", "string", "." ]
[ "\"\"\"\n Computes the SHA256 has value of a given password and encodes the\n using hex encoding to produce a readable string.\n\n :param password: The password to be hashed\n :param salt: A set of entropy data to prevent rainbow table and\n dictionary attacks.\n :return: The resulting hash\n \"\"\"" ]
[ { "param": "password", "type": null }, { "param": "salt", "type": null } ]
{ "returns": [ { "docstring": "The resulting hash", "docstring_tokens": [ "The", "resulting", "hash" ], "type": null } ], "raises": [], "params": [ { "identifier": "password", "type": null, "docstring": "The password to be hashed", "docstring_tokens": [ "The", "password", "to", "be", "hashed" ], "default": null, "is_optional": null }, { "identifier": "salt", "type": null, "docstring": "A set of entropy data to prevent rainbow table and\ndictionary attacks.", "docstring_tokens": [ "A", "set", "of", "entropy", "data", "to", "prevent", "rainbow", "table", "and", "dictionary", "attacks", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import hashlib def compute_hash(password, salt): return hashlib.sha256(password.encode('utf-8')+salt.encode('utf-8'))\ .hexdigest()
821
755
1d52ced4d86ff47f0c277045ddba60145f600ca0
Bielorusse/random_text
random_text.py
[ "MIT" ]
Python
add_uppercase
<not_specific>
def add_uppercase(input_words): """ Remove the uppercase of the beginning of sentences in a list of words. Input: -input_words list of strings Ouput: -output_words list of strings """ output_words = [input_words[0].capitalize()] for i in range(len(input_words[:-1])): if input_words[i].endswith("."): output_words.append(input_words[i+1].capitalize()) else: output_words.append(input_words[i+1]) output_words[-1] = "{}.".format(output_words[-1]) return output_words
Remove the uppercase of the beginning of sentences in a list of words. Input: -input_words list of strings Ouput: -output_words list of strings
Remove the uppercase of the beginning of sentences in a list of words. Input: input_words list of strings Ouput: output_words list of strings
[ "Remove", "the", "uppercase", "of", "the", "beginning", "of", "sentences", "in", "a", "list", "of", "words", ".", "Input", ":", "input_words", "list", "of", "strings", "Ouput", ":", "output_words", "list", "of", "strings" ]
def add_uppercase(input_words): output_words = [input_words[0].capitalize()] for i in range(len(input_words[:-1])): if input_words[i].endswith("."): output_words.append(input_words[i+1].capitalize()) else: output_words.append(input_words[i+1]) output_words[-1] = "{}.".format(output_words[-1]) return output_words
[ "def", "add_uppercase", "(", "input_words", ")", ":", "output_words", "=", "[", "input_words", "[", "0", "]", ".", "capitalize", "(", ")", "]", "for", "i", "in", "range", "(", "len", "(", "input_words", "[", ":", "-", "1", "]", ")", ")", ":", "if", "input_words", "[", "i", "]", ".", "endswith", "(", "\".\"", ")", ":", "output_words", ".", "append", "(", "input_words", "[", "i", "+", "1", "]", ".", "capitalize", "(", ")", ")", "else", ":", "output_words", ".", "append", "(", "input_words", "[", "i", "+", "1", "]", ")", "output_words", "[", "-", "1", "]", "=", "\"{}.\"", ".", "format", "(", "output_words", "[", "-", "1", "]", ")", "return", "output_words" ]
Remove the uppercase of the beginning of sentences in a list of words.
[ "Remove", "the", "uppercase", "of", "the", "beginning", "of", "sentences", "in", "a", "list", "of", "words", "." ]
[ "\"\"\"\n Remove the uppercase of the beginning of sentences in a list of words.\n\n Input:\n -input_words list of strings\n Ouput:\n -output_words list of strings\n \"\"\"" ]
[ { "param": "input_words", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "input_words", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def add_uppercase(input_words): output_words = [input_words[0].capitalize()] for i in range(len(input_words[:-1])): if input_words[i].endswith("."): output_words.append(input_words[i+1].capitalize()) else: output_words.append(input_words[i+1]) output_words[-1] = "{}.".format(output_words[-1]) return output_words
822
1,004
ff152bb2fe3fc9b31e5223249af5722e3819fe8c
hkotaro1215/invest
src/natcap/invest/pygeoprocessing_0_3_3/testing/assertions.py
[ "BSD-3-Clause" ]
Python
assert_text_equal
null
def assert_text_equal(text_1_uri, text_2_uri): """Assert that two text files are equal. This comparison is done line-by-line. Args: text_1_uri (string): a python string uri to a text file. Considered the file to be tested. text_2_uri (string): a python string uri to a text file. Considered the regression file. Raises: AssertionError: Raised when a line differs in the two files. Returns: None """ def lines(filepath): """Return a generator of lines in the opened file.""" with open(filepath, 'rb') as opened_file: for line in opened_file: yield line for index, (a_line, b_line) in enumerate(itertools.izip( lines(text_1_uri), lines(text_2_uri))): if a_line != b_line: raise AssertionError('Line %s in %s does not match regression ' 'file %s. Output "%s" Regression "%s"' % ( index, text_1_uri, text_2_uri, a_line, b_line))
Assert that two text files are equal. This comparison is done line-by-line. Args: text_1_uri (string): a python string uri to a text file. Considered the file to be tested. text_2_uri (string): a python string uri to a text file. Considered the regression file. Raises: AssertionError: Raised when a line differs in the two files. Returns: None
Assert that two text files are equal. This comparison is done line-by-line.
[ "Assert", "that", "two", "text", "files", "are", "equal", ".", "This", "comparison", "is", "done", "line", "-", "by", "-", "line", "." ]
def assert_text_equal(text_1_uri, text_2_uri): def lines(filepath): with open(filepath, 'rb') as opened_file: for line in opened_file: yield line for index, (a_line, b_line) in enumerate(itertools.izip( lines(text_1_uri), lines(text_2_uri))): if a_line != b_line: raise AssertionError('Line %s in %s does not match regression ' 'file %s. Output "%s" Regression "%s"' % ( index, text_1_uri, text_2_uri, a_line, b_line))
[ "def", "assert_text_equal", "(", "text_1_uri", ",", "text_2_uri", ")", ":", "def", "lines", "(", "filepath", ")", ":", "\"\"\"Return a generator of lines in the opened file.\"\"\"", "with", "open", "(", "filepath", ",", "'rb'", ")", "as", "opened_file", ":", "for", "line", "in", "opened_file", ":", "yield", "line", "for", "index", ",", "(", "a_line", ",", "b_line", ")", "in", "enumerate", "(", "itertools", ".", "izip", "(", "lines", "(", "text_1_uri", ")", ",", "lines", "(", "text_2_uri", ")", ")", ")", ":", "if", "a_line", "!=", "b_line", ":", "raise", "AssertionError", "(", "'Line %s in %s does not match regression '", "'file %s. Output \"%s\" Regression \"%s\"'", "%", "(", "index", ",", "text_1_uri", ",", "text_2_uri", ",", "a_line", ",", "b_line", ")", ")" ]
Assert that two text files are equal.
[ "Assert", "that", "two", "text", "files", "are", "equal", "." ]
[ "\"\"\"Assert that two text files are equal.\n\n This comparison is done line-by-line.\n\n Args:\n text_1_uri (string): a python string uri to a text file.\n Considered the file to be tested.\n text_2_uri (string): a python string uri to a text file.\n Considered the regression file.\n\n Raises:\n AssertionError: Raised when a line differs in the two files.\n\n Returns:\n None\n \"\"\"", "\"\"\"Return a generator of lines in the opened file.\"\"\"" ]
[ { "param": "text_1_uri", "type": null }, { "param": "text_2_uri", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [ { "docstring": "Raised when a line differs in the two files.", "docstring_tokens": [ "Raised", "when", "a", "line", "differs", "in", "the", "two", "files", "." ], "type": "AssertionError" } ], "params": [ { "identifier": "text_1_uri", "type": null, "docstring": "a python string uri to a text file.\nConsidered the file to be tested.", "docstring_tokens": [ "a", "python", "string", "uri", "to", "a", "text", "file", ".", "Considered", "the", "file", "to", "be", "tested", "." ], "default": null, "is_optional": false }, { "identifier": "text_2_uri", "type": null, "docstring": "a python string uri to a text file.\nConsidered the regression file.", "docstring_tokens": [ "a", "python", "string", "uri", "to", "a", "text", "file", ".", "Considered", "the", "regression", "file", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
import itertools def assert_text_equal(text_1_uri, text_2_uri): def lines(filepath): with open(filepath, 'rb') as opened_file: for line in opened_file: yield line for index, (a_line, b_line) in enumerate(itertools.izip( lines(text_1_uri), lines(text_2_uri))): if a_line != b_line: raise AssertionError('Line %s in %s does not match regression ' 'file %s. Output "%s" Regression "%s"' % ( index, text_1_uri, text_2_uri, a_line, b_line))
824
366
a7f5535325c8a7249d451132ec4a530c6f93a4de
thesadru/genshin.py
genshin/__main__.py
[ "MIT" ]
Python
asynchronous
typing.Callable[..., typing.Any]
def asynchronous(func: typing.Callable[..., typing.Awaitable[typing.Any]]) -> typing.Callable[..., typing.Any]: """Make an asynchronous function runnable by click.""" @functools.wraps(func) def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: return asyncio.run(func(*args, **kwargs)) # type: ignore # unsure what is wrong here return wrapper
Make an asynchronous function runnable by click.
Make an asynchronous function runnable by click.
[ "Make", "an", "asynchronous", "function", "runnable", "by", "click", "." ]
def asynchronous(func: typing.Callable[..., typing.Awaitable[typing.Any]]) -> typing.Callable[..., typing.Any]: @functools.wraps(func) def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: return asyncio.run(func(*args, **kwargs)) return wrapper
[ "def", "asynchronous", "(", "func", ":", "typing", ".", "Callable", "[", "...", ",", "typing", ".", "Awaitable", "[", "typing", ".", "Any", "]", "]", ")", "->", "typing", ".", "Callable", "[", "...", ",", "typing", ".", "Any", "]", ":", "@", "functools", ".", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ":", "typing", ".", "Any", ",", "**", "kwargs", ":", "typing", ".", "Any", ")", "->", "typing", ".", "Any", ":", "return", "asyncio", ".", "run", "(", "func", "(", "*", "args", ",", "**", "kwargs", ")", ")", "return", "wrapper" ]
Make an asynchronous function runnable by click.
[ "Make", "an", "asynchronous", "function", "runnable", "by", "click", "." ]
[ "\"\"\"Make an asynchronous function runnable by click.\"\"\"", "# type: ignore # unsure what is wrong here" ]
[ { "param": "func", "type": "typing.Callable[..., typing.Awaitable[typing.Any]]" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "func", "type": "typing.Callable[..., typing.Awaitable[typing.Any]]", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import asyncio import functools import typing def asynchronous(func: typing.Callable[..., typing.Awaitable[typing.Any]]) -> typing.Callable[..., typing.Any]: @functools.wraps(func) def wrapper(*args: typing.Any, **kwargs: typing.Any) -> typing.Any: return asyncio.run(func(*args, **kwargs)) return wrapper
825
630
e20cbec6b4f191c481151a3c705459c2326b507c
yonch/wireless
lablog/python/Distribute.py
[ "MIT" ]
Python
distribute
null
def distribute(pending, numProcessors, minAmount): ''' Distributes the experiments that have less results than the required amount @param pending: list of tuples: (key, numToDistribute) @param numProcessors: number of processors to distribute to @param minAmount: Distributor will not distribute less than this amount per processor, unless the total amount of tasks is smaller than minAmount. @return: iterator that returns a single node's list of tuples (eID, num) ''' totalPending = sum(x[1] for x in pending) minAmount = max(1, minAmount) numProcessors = max(1, min(numProcessors, totalPending / minAmount)) while totalPending > 0: curAmount = totalPending / numProcessors remaining = curAmount res = [] while remaining > 0: firstId, firstMissing = pending[0] if firstMissing <= remaining: # We return all the experiment in this result res.append((firstId, firstMissing)) remaining -= firstMissing pending = pending[1:] else: # We fragment this experiment res.append((firstId, remaining)) pending = [(firstId, firstMissing - remaining)] + pending[1:] remaining = 0 numProcessors -= 1 totalPending -= curAmount yield res
Distributes the experiments that have less results than the required amount @param pending: list of tuples: (key, numToDistribute) @param numProcessors: number of processors to distribute to @param minAmount: Distributor will not distribute less than this amount per processor, unless the total amount of tasks is smaller than minAmount. @return: iterator that returns a single node's list of tuples (eID, num)
Distributes the experiments that have less results than the required amount
[ "Distributes", "the", "experiments", "that", "have", "less", "results", "than", "the", "required", "amount" ]
def distribute(pending, numProcessors, minAmount): totalPending = sum(x[1] for x in pending) minAmount = max(1, minAmount) numProcessors = max(1, min(numProcessors, totalPending / minAmount)) while totalPending > 0: curAmount = totalPending / numProcessors remaining = curAmount res = [] while remaining > 0: firstId, firstMissing = pending[0] if firstMissing <= remaining: res.append((firstId, firstMissing)) remaining -= firstMissing pending = pending[1:] else: res.append((firstId, remaining)) pending = [(firstId, firstMissing - remaining)] + pending[1:] remaining = 0 numProcessors -= 1 totalPending -= curAmount yield res
[ "def", "distribute", "(", "pending", ",", "numProcessors", ",", "minAmount", ")", ":", "totalPending", "=", "sum", "(", "x", "[", "1", "]", "for", "x", "in", "pending", ")", "minAmount", "=", "max", "(", "1", ",", "minAmount", ")", "numProcessors", "=", "max", "(", "1", ",", "min", "(", "numProcessors", ",", "totalPending", "/", "minAmount", ")", ")", "while", "totalPending", ">", "0", ":", "curAmount", "=", "totalPending", "/", "numProcessors", "remaining", "=", "curAmount", "res", "=", "[", "]", "while", "remaining", ">", "0", ":", "firstId", ",", "firstMissing", "=", "pending", "[", "0", "]", "if", "firstMissing", "<=", "remaining", ":", "res", ".", "append", "(", "(", "firstId", ",", "firstMissing", ")", ")", "remaining", "-=", "firstMissing", "pending", "=", "pending", "[", "1", ":", "]", "else", ":", "res", ".", "append", "(", "(", "firstId", ",", "remaining", ")", ")", "pending", "=", "[", "(", "firstId", ",", "firstMissing", "-", "remaining", ")", "]", "+", "pending", "[", "1", ":", "]", "remaining", "=", "0", "numProcessors", "-=", "1", "totalPending", "-=", "curAmount", "yield", "res" ]
Distributes the experiments that have less results than the required amount
[ "Distributes", "the", "experiments", "that", "have", "less", "results", "than", "the", "required", "amount" ]
[ "'''\n Distributes the experiments that have less results than the required amount\n @param pending: list of tuples: (key, numToDistribute)\n @param numProcessors: number of processors to distribute to\n @param minAmount: Distributor will not distribute less than this\n amount per processor, unless the total amount of tasks is smaller\n than minAmount.\n @return: iterator that returns a single node's list of tuples (eID, num)\n\n '''", "# We return all the experiment in this result", "# We fragment this experiment" ]
[ { "param": "pending", "type": null }, { "param": "numProcessors", "type": null }, { "param": "minAmount", "type": null } ]
{ "returns": [ { "docstring": "iterator that returns a single node's list of tuples (eID, num)", "docstring_tokens": [ "iterator", "that", "returns", "a", "single", "node", "'", "s", "list", "of", "tuples", "(", "eID", "num", ")" ], "type": null } ], "raises": [], "params": [ { "identifier": "pending", "type": null, "docstring": "list of tuples: (key, numToDistribute)", "docstring_tokens": [ "list", "of", "tuples", ":", "(", "key", "numToDistribute", ")" ], "default": null, "is_optional": false }, { "identifier": "numProcessors", "type": null, "docstring": "number of processors to distribute to", "docstring_tokens": [ "number", "of", "processors", "to", "distribute", "to" ], "default": null, "is_optional": false }, { "identifier": "minAmount", "type": null, "docstring": "Distributor will not distribute less than this\namount per processor, unless the total amount of tasks is smaller\nthan minAmount.", "docstring_tokens": [ "Distributor", "will", "not", "distribute", "less", "than", "this", "amount", "per", "processor", "unless", "the", "total", "amount", "of", "tasks", "is", "smaller", "than", "minAmount", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def distribute(pending, numProcessors, minAmount): totalPending = sum(x[1] for x in pending) minAmount = max(1, minAmount) numProcessors = max(1, min(numProcessors, totalPending / minAmount)) while totalPending > 0: curAmount = totalPending / numProcessors remaining = curAmount res = [] while remaining > 0: firstId, firstMissing = pending[0] if firstMissing <= remaining: res.append((firstId, firstMissing)) remaining -= firstMissing pending = pending[1:] else: res.append((firstId, remaining)) pending = [(firstId, firstMissing - remaining)] + pending[1:] remaining = 0 numProcessors -= 1 totalPending -= curAmount yield res
826
1,005
c0e47e0e429c06592a779a071792f7a2621698c1
mavisguan/django
django/utils/cache.py
[ "BSD-3-Clause", "0BSD" ]
Python
_if_modified_since_passes
<not_specific>
def _if_modified_since_passes(last_modified, if_modified_since): """ Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232. """ return not last_modified or last_modified > if_modified_since
Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232.
Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232.
[ "Test", "the", "If", "-", "Modified", "-", "Since", "comparison", "as", "defined", "in", "section", "3", ".", "3", "of", "RFC", "7232", "." ]
def _if_modified_since_passes(last_modified, if_modified_since): return not last_modified or last_modified > if_modified_since
[ "def", "_if_modified_since_passes", "(", "last_modified", ",", "if_modified_since", ")", ":", "return", "not", "last_modified", "or", "last_modified", ">", "if_modified_since" ]
Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232.
[ "Test", "the", "If", "-", "Modified", "-", "Since", "comparison", "as", "defined", "in", "section", "3", ".", "3", "of", "RFC", "7232", "." ]
[ "\"\"\"\n Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232.\n \"\"\"" ]
[ { "param": "last_modified", "type": null }, { "param": "if_modified_since", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "last_modified", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "if_modified_since", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _if_modified_since_passes(last_modified, if_modified_since): return not last_modified or last_modified > if_modified_since
827
471
690698aa98570699dc551465279f1e858659a594
dirk-tornow-adesso/dotfiles
sublime/Packages/Anaconda/anaconda_lib/jedi/parser/tree.py
[ "MIT" ]
Python
search_ancestor
<not_specific>
def search_ancestor(node, *node_types): """ Recursively looks at the parents of a node and checks if the type names match. :param node: The node that is looked at. :param node_types: A tuple or a string of type names that are searched for. """ while True: node = node.parent if node is None or node.type in node_types: return node
Recursively looks at the parents of a node and checks if the type names match. :param node: The node that is looked at. :param node_types: A tuple or a string of type names that are searched for.
Recursively looks at the parents of a node and checks if the type names match.
[ "Recursively", "looks", "at", "the", "parents", "of", "a", "node", "and", "checks", "if", "the", "type", "names", "match", "." ]
def search_ancestor(node, *node_types): while True: node = node.parent if node is None or node.type in node_types: return node
[ "def", "search_ancestor", "(", "node", ",", "*", "node_types", ")", ":", "while", "True", ":", "node", "=", "node", ".", "parent", "if", "node", "is", "None", "or", "node", ".", "type", "in", "node_types", ":", "return", "node" ]
Recursively looks at the parents of a node and checks if the type names match.
[ "Recursively", "looks", "at", "the", "parents", "of", "a", "node", "and", "checks", "if", "the", "type", "names", "match", "." ]
[ "\"\"\"\n Recursively looks at the parents of a node and checks if the type names\n match.\n\n :param node: The node that is looked at.\n :param node_types: A tuple or a string of type names that are\n searched for.\n \"\"\"" ]
[ { "param": "node", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "node", "type": null, "docstring": "The node that is looked at.", "docstring_tokens": [ "The", "node", "that", "is", "looked", "at", "." ], "default": null, "is_optional": null } ], "outlier_params": [ { "identifier": "node_types", "type": null, "docstring": "A tuple or a string of type names that are\nsearched for.", "docstring_tokens": [ "A", "tuple", "or", "a", "string", "of", "type", "names", "that", "are", "searched", "for", "." ], "default": null, "is_optional": null } ], "others": [] }
def search_ancestor(node, *node_types): while True: node = node.parent if node is None or node.type in node_types: return node
828
128
8d97fd94137ecc590a70a9c47cf9484f07e6038c
TakaHoribe/launch
launch/launch/actions/group_action.py
[ "Apache-2.0" ]
Python
parse
<not_specific>
def parse(cls, entity: Entity, parser: Parser): """Return `GroupAction` action and kwargs for constructing it.""" _, kwargs = super().parse(entity, parser) scoped = entity.get_attr('scoped', data_type=bool, optional=True) if scoped is not None: kwargs['scoped'] = scoped kwargs['actions'] = [parser.parse_action(e) for e in entity.children] return cls, kwargs
Return `GroupAction` action and kwargs for constructing it.
Return `GroupAction` action and kwargs for constructing it.
[ "Return", "`", "GroupAction", "`", "action", "and", "kwargs", "for", "constructing", "it", "." ]
def parse(cls, entity: Entity, parser: Parser): _, kwargs = super().parse(entity, parser) scoped = entity.get_attr('scoped', data_type=bool, optional=True) if scoped is not None: kwargs['scoped'] = scoped kwargs['actions'] = [parser.parse_action(e) for e in entity.children] return cls, kwargs
[ "def", "parse", "(", "cls", ",", "entity", ":", "Entity", ",", "parser", ":", "Parser", ")", ":", "_", ",", "kwargs", "=", "super", "(", ")", ".", "parse", "(", "entity", ",", "parser", ")", "scoped", "=", "entity", ".", "get_attr", "(", "'scoped'", ",", "data_type", "=", "bool", ",", "optional", "=", "True", ")", "if", "scoped", "is", "not", "None", ":", "kwargs", "[", "'scoped'", "]", "=", "scoped", "kwargs", "[", "'actions'", "]", "=", "[", "parser", ".", "parse_action", "(", "e", ")", "for", "e", "in", "entity", ".", "children", "]", "return", "cls", ",", "kwargs" ]
Return `GroupAction` action and kwargs for constructing it.
[ "Return", "`", "GroupAction", "`", "action", "and", "kwargs", "for", "constructing", "it", "." ]
[ "\"\"\"Return `GroupAction` action and kwargs for constructing it.\"\"\"" ]
[ { "param": "cls", "type": null }, { "param": "entity", "type": "Entity" }, { "param": "parser", "type": "Parser" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "entity", "type": "Entity", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "parser", "type": "Parser", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def parse(cls, entity: Entity, parser: Parser): _, kwargs = super().parse(entity, parser) scoped = entity.get_attr('scoped', data_type=bool, optional=True) if scoped is not None: kwargs['scoped'] = scoped kwargs['actions'] = [parser.parse_action(e) for e in entity.children] return cls, kwargs
829
864
d8c1a8db43da6f5547ffd18d6c7532634c8398c5
sjg20/ec
zephyr/zmake/zmake/output_packers.py
[ "BSD-3-Clause" ]
Python
_write_dts_file
null
def _write_dts_file(dts_file, config_header, output_bin, ro_filename, rw_filename): """Generate the .dts file used for binman. Args: dts_file: The dts file to write to. config_header: The full path to the generated autoconf.h header. output_bin: The full path to the binary that binman should output. ro_filename: The RO image file name. rw_filename: The RW image file name. Returns: The path to the .dts file that was generated. """ dts_file.write(""" /dts-v1/; #include "{config_header}" / {{ #address-cells = <1>; #size-cells = <1>; binman {{ filename = "{output_bin}"; pad-byte = <0x1d>; section@0 {{ read-only; offset = <CONFIG_CROS_EC_RO_MEM_OFF>; size = <CONFIG_CROS_EC_RO_SIZE>; blob {{ filename = "{ro_filename}"; }}; }}; section@1 {{ offset = <CONFIG_CROS_EC_RW_MEM_OFF>; size = <CONFIG_CROS_EC_RW_SIZE>; blob {{ filename = "{rw_filename}"; }}; }}; }}; }};""".format( output_bin=output_bin, config_header=config_header, ro_filename=ro_filename, rw_filename=rw_filename ))
Generate the .dts file used for binman. Args: dts_file: The dts file to write to. config_header: The full path to the generated autoconf.h header. output_bin: The full path to the binary that binman should output. ro_filename: The RO image file name. rw_filename: The RW image file name. Returns: The path to the .dts file that was generated.
Generate the .dts file used for binman.
[ "Generate", "the", ".", "dts", "file", "used", "for", "binman", "." ]
def _write_dts_file(dts_file, config_header, output_bin, ro_filename, rw_filename): dts_file.write(""" /dts-v1/; #include "{config_header}" / {{ #address-cells = <1>; #size-cells = <1>; binman {{ filename = "{output_bin}"; pad-byte = <0x1d>; section@0 {{ read-only; offset = <CONFIG_CROS_EC_RO_MEM_OFF>; size = <CONFIG_CROS_EC_RO_SIZE>; blob {{ filename = "{ro_filename}"; }}; }}; section@1 {{ offset = <CONFIG_CROS_EC_RW_MEM_OFF>; size = <CONFIG_CROS_EC_RW_SIZE>; blob {{ filename = "{rw_filename}"; }}; }}; }}; }};""".format( output_bin=output_bin, config_header=config_header, ro_filename=ro_filename, rw_filename=rw_filename ))
[ "def", "_write_dts_file", "(", "dts_file", ",", "config_header", ",", "output_bin", ",", "ro_filename", ",", "rw_filename", ")", ":", "dts_file", ".", "write", "(", "\"\"\"\n /dts-v1/;\n #include \"{config_header}\"\n / {{\n #address-cells = <1>;\n #size-cells = <1>;\n binman {{\n filename = \"{output_bin}\";\n pad-byte = <0x1d>;\n section@0 {{\n read-only;\n offset = <CONFIG_CROS_EC_RO_MEM_OFF>;\n size = <CONFIG_CROS_EC_RO_SIZE>;\n blob {{\n filename = \"{ro_filename}\";\n }};\n }};\n section@1 {{\n offset = <CONFIG_CROS_EC_RW_MEM_OFF>;\n size = <CONFIG_CROS_EC_RW_SIZE>;\n blob {{\n filename = \"{rw_filename}\";\n }};\n }};\n }};\n }};\"\"\"", ".", "format", "(", "output_bin", "=", "output_bin", ",", "config_header", "=", "config_header", ",", "ro_filename", "=", "ro_filename", ",", "rw_filename", "=", "rw_filename", ")", ")" ]
Generate the .dts file used for binman.
[ "Generate", "the", ".", "dts", "file", "used", "for", "binman", "." ]
[ "\"\"\"Generate the .dts file used for binman.\n\n Args:\n dts_file: The dts file to write to.\n config_header: The full path to the generated autoconf.h header.\n output_bin: The full path to the binary that binman should output.\n ro_filename: The RO image file name.\n rw_filename: The RW image file name.\n\n Returns:\n The path to the .dts file that was generated.\n \"\"\"" ]
[ { "param": "dts_file", "type": null }, { "param": "config_header", "type": null }, { "param": "output_bin", "type": null }, { "param": "ro_filename", "type": null }, { "param": "rw_filename", "type": null } ]
{ "returns": [ { "docstring": "The path to the .dts file that was generated.", "docstring_tokens": [ "The", "path", "to", "the", ".", "dts", "file", "that", "was", "generated", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "dts_file", "type": null, "docstring": "The dts file to write to.", "docstring_tokens": [ "The", "dts", "file", "to", "write", "to", "." ], "default": null, "is_optional": null }, { "identifier": "config_header", "type": null, "docstring": "The full path to the generated autoconf.h header.", "docstring_tokens": [ "The", "full", "path", "to", "the", "generated", "autoconf", ".", "h", "header", "." ], "default": null, "is_optional": null }, { "identifier": "output_bin", "type": null, "docstring": "The full path to the binary that binman should output.", "docstring_tokens": [ "The", "full", "path", "to", "the", "binary", "that", "binman", "should", "output", "." ], "default": null, "is_optional": null }, { "identifier": "ro_filename", "type": null, "docstring": "The RO image file name.", "docstring_tokens": [ "The", "RO", "image", "file", "name", "." ], "default": null, "is_optional": null }, { "identifier": "rw_filename", "type": null, "docstring": "The RW image file name.", "docstring_tokens": [ "The", "RW", "image", "file", "name", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _write_dts_file(dts_file, config_header, output_bin, ro_filename, rw_filename): dts_file.write(""" /dts-v1/; #include "{config_header}" / {{ #address-cells = <1>; #size-cells = <1>; binman {{ filename = "{output_bin}"; pad-byte = <0x1d>; section@0 {{ read-only; offset = <CONFIG_CROS_EC_RO_MEM_OFF>; size = <CONFIG_CROS_EC_RO_SIZE>; blob {{ filename = "{ro_filename}"; }}; }}; section@1 {{ offset = <CONFIG_CROS_EC_RW_MEM_OFF>; size = <CONFIG_CROS_EC_RW_SIZE>; blob {{ filename = "{rw_filename}"; }}; }}; }}; }};""".format( output_bin=output_bin, config_header=config_header, ro_filename=ro_filename, rw_filename=rw_filename ))
831
109
cfc14956fb440d3081b6769f360bf646ce46d53e
laszlokiraly/LearningAlgorithms
ch05/sorting.py
[ "MIT" ]
Python
selection_sort_counting
<not_specific>
def selection_sort_counting(A): """Instrumented Selection Sort to return #swaps, #compares.""" N = len(A) num_swap = num_compare = 0 for i in range(N-1): min_index = i for j in range(i+1, N): num_compare += 1 if A[j] < A[min_index]: min_index = j num_swap += 1 A[i],A[min_index] = A[min_index],A[i] return (num_swap, num_compare)
Instrumented Selection Sort to return #swaps, #compares.
Instrumented Selection Sort to return #swaps, #compares.
[ "Instrumented", "Selection", "Sort", "to", "return", "#swaps", "#compares", "." ]
def selection_sort_counting(A): N = len(A) num_swap = num_compare = 0 for i in range(N-1): min_index = i for j in range(i+1, N): num_compare += 1 if A[j] < A[min_index]: min_index = j num_swap += 1 A[i],A[min_index] = A[min_index],A[i] return (num_swap, num_compare)
[ "def", "selection_sort_counting", "(", "A", ")", ":", "N", "=", "len", "(", "A", ")", "num_swap", "=", "num_compare", "=", "0", "for", "i", "in", "range", "(", "N", "-", "1", ")", ":", "min_index", "=", "i", "for", "j", "in", "range", "(", "i", "+", "1", ",", "N", ")", ":", "num_compare", "+=", "1", "if", "A", "[", "j", "]", "<", "A", "[", "min_index", "]", ":", "min_index", "=", "j", "num_swap", "+=", "1", "A", "[", "i", "]", ",", "A", "[", "min_index", "]", "=", "A", "[", "min_index", "]", ",", "A", "[", "i", "]", "return", "(", "num_swap", ",", "num_compare", ")" ]
Instrumented Selection Sort to return #swaps, #compares.
[ "Instrumented", "Selection", "Sort", "to", "return", "#swaps", "#compares", "." ]
[ "\"\"\"Instrumented Selection Sort to return #swaps, #compares.\"\"\"" ]
[ { "param": "A", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "A", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def selection_sort_counting(A): N = len(A) num_swap = num_compare = 0 for i in range(N-1): min_index = i for j in range(i+1, N): num_compare += 1 if A[j] < A[min_index]: min_index = j num_swap += 1 A[i],A[min_index] = A[min_index],A[i] return (num_swap, num_compare)
832
726
3cd42742ca570b3a205e5ccabd366d77dda1fece
chapinb/aws_ip_tracker
query_mongo.py
[ "MIT" ]
Python
write_json
null
def write_json(open_file, rset, lines=False): """Controller to write results as json""" if lines: for entry in rset: open_file.write(json.dumps(entry)+'\n') else: open_file.write(json.dumps(rset))
Controller to write results as json
Controller to write results as json
[ "Controller", "to", "write", "results", "as", "json" ]
def write_json(open_file, rset, lines=False): if lines: for entry in rset: open_file.write(json.dumps(entry)+'\n') else: open_file.write(json.dumps(rset))
[ "def", "write_json", "(", "open_file", ",", "rset", ",", "lines", "=", "False", ")", ":", "if", "lines", ":", "for", "entry", "in", "rset", ":", "open_file", ".", "write", "(", "json", ".", "dumps", "(", "entry", ")", "+", "'\\n'", ")", "else", ":", "open_file", ".", "write", "(", "json", ".", "dumps", "(", "rset", ")", ")" ]
Controller to write results as json
[ "Controller", "to", "write", "results", "as", "json" ]
[ "\"\"\"Controller to write results as json\"\"\"" ]
[ { "param": "open_file", "type": null }, { "param": "rset", "type": null }, { "param": "lines", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "open_file", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "rset", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "lines", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import json def write_json(open_file, rset, lines=False): if lines: for entry in rset: open_file.write(json.dumps(entry)+'\n') else: open_file.write(json.dumps(rset))
833
11
6b1f599001846d7d313ffda42cc6a320078341da
4eyes4u/HRAnalytics
main_woe.py
[ "MIT" ]
Python
report_performance
dict
def report_performance(optimizer: BayesSearchCV, X: pd.DataFrame, y: pd.DataFrame, callbacks=None ) -> dict: r"""Verbose for optimizer. Will call callbacks in each iteration.""" optimizer.fit(X, y, callback=callbacks) return optimizer.best_params_
r"""Verbose for optimizer. Will call callbacks in each iteration.
r"""Verbose for optimizer. Will call callbacks in each iteration.
[ "r", "\"", "\"", "\"", "Verbose", "for", "optimizer", ".", "Will", "call", "callbacks", "in", "each", "iteration", "." ]
def report_performance(optimizer: BayesSearchCV, X: pd.DataFrame, y: pd.DataFrame, callbacks=None ) -> dict: optimizer.fit(X, y, callback=callbacks) return optimizer.best_params_
[ "def", "report_performance", "(", "optimizer", ":", "BayesSearchCV", ",", "X", ":", "pd", ".", "DataFrame", ",", "y", ":", "pd", ".", "DataFrame", ",", "callbacks", "=", "None", ")", "->", "dict", ":", "optimizer", ".", "fit", "(", "X", ",", "y", ",", "callback", "=", "callbacks", ")", "return", "optimizer", ".", "best_params_" ]
r"""Verbose for optimizer.
[ "r", "\"", "\"", "\"", "Verbose", "for", "optimizer", "." ]
[ "r\"\"\"Verbose for optimizer. Will call callbacks in each iteration.\"\"\"" ]
[ { "param": "optimizer", "type": "BayesSearchCV" }, { "param": "X", "type": "pd.DataFrame" }, { "param": "y", "type": "pd.DataFrame" }, { "param": "callbacks", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "optimizer", "type": "BayesSearchCV", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "X", "type": "pd.DataFrame", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "y", "type": "pd.DataFrame", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "callbacks", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def report_performance(optimizer: BayesSearchCV, X: pd.DataFrame, y: pd.DataFrame, callbacks=None ) -> dict: optimizer.fit(X, y, callback=callbacks) return optimizer.best_params_
835
357
51515392367946e2092fb743f1551bbe76f42319
YmirKhang/flytekit
tests/flytekit/unit/core/test_references.py
[ "Apache-2.0" ]
Python
ref_t1
str
def ref_t1(a: typing.List[str]) -> str: """ The empty function acts as a convenient skeleton to make it intuitive to call/reference this task from workflows. The interface of the task must match that of the remote task. Otherwise, remote compilation of the workflow will fail. """ ...
The empty function acts as a convenient skeleton to make it intuitive to call/reference this task from workflows. The interface of the task must match that of the remote task. Otherwise, remote compilation of the workflow will fail.
The empty function acts as a convenient skeleton to make it intuitive to call/reference this task from workflows. The interface of the task must match that of the remote task. Otherwise, remote compilation of the workflow will fail.
[ "The", "empty", "function", "acts", "as", "a", "convenient", "skeleton", "to", "make", "it", "intuitive", "to", "call", "/", "reference", "this", "task", "from", "workflows", ".", "The", "interface", "of", "the", "task", "must", "match", "that", "of", "the", "remote", "task", ".", "Otherwise", "remote", "compilation", "of", "the", "workflow", "will", "fail", "." ]
def ref_t1(a: typing.List[str]) -> str: ...
[ "def", "ref_t1", "(", "a", ":", "typing", ".", "List", "[", "str", "]", ")", "->", "str", ":", "..." ]
The empty function acts as a convenient skeleton to make it intuitive to call/reference this task from workflows.
[ "The", "empty", "function", "acts", "as", "a", "convenient", "skeleton", "to", "make", "it", "intuitive", "to", "call", "/", "reference", "this", "task", "from", "workflows", "." ]
[ "\"\"\"\n The empty function acts as a convenient skeleton to make it intuitive to call/reference this task from workflows.\n The interface of the task must match that of the remote task. Otherwise, remote compilation of the workflow will\n fail.\n \"\"\"" ]
[ { "param": "a", "type": "typing.List[str]" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "a", "type": "typing.List[str]", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def ref_t1(a: typing.List[str]) -> str: ...
836
244
37130074cbcf17044671662630397074e69dd062
nedbat/coveragepy
tests/test_testing.py
[ "Apache-2.0" ]
Python
_same_python_executable
<not_specific>
def _same_python_executable(e1, e2): """Determine if `e1` and `e2` refer to the same Python executable. Either path could include symbolic links. The two paths might not refer to the exact same file, but if they are in the same directory and their numeric suffixes aren't different, they are the same executable. """ e1 = os.path.abspath(os.path.realpath(e1)) e2 = os.path.abspath(os.path.realpath(e2)) if os.path.dirname(e1) != os.path.dirname(e2): return False # pragma: only failure e1 = os.path.basename(e1) e2 = os.path.basename(e2) if e1 == "python" or e2 == "python" or e1 == e2: # Python and Python2.3: OK # Python2.3 and Python: OK # Python and Python: OK # Python2.3 and Python2.3: OK return True return False # pragma: only failure
Determine if `e1` and `e2` refer to the same Python executable. Either path could include symbolic links. The two paths might not refer to the exact same file, but if they are in the same directory and their numeric suffixes aren't different, they are the same executable.
Determine if `e1` and `e2` refer to the same Python executable. Either path could include symbolic links. The two paths might not refer to the exact same file, but if they are in the same directory and their numeric suffixes aren't different, they are the same executable.
[ "Determine", "if", "`", "e1", "`", "and", "`", "e2", "`", "refer", "to", "the", "same", "Python", "executable", ".", "Either", "path", "could", "include", "symbolic", "links", ".", "The", "two", "paths", "might", "not", "refer", "to", "the", "exact", "same", "file", "but", "if", "they", "are", "in", "the", "same", "directory", "and", "their", "numeric", "suffixes", "aren", "'", "t", "different", "they", "are", "the", "same", "executable", "." ]
def _same_python_executable(e1, e2): e1 = os.path.abspath(os.path.realpath(e1)) e2 = os.path.abspath(os.path.realpath(e2)) if os.path.dirname(e1) != os.path.dirname(e2): return False e1 = os.path.basename(e1) e2 = os.path.basename(e2) if e1 == "python" or e2 == "python" or e1 == e2: return True return False
[ "def", "_same_python_executable", "(", "e1", ",", "e2", ")", ":", "e1", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "realpath", "(", "e1", ")", ")", "e2", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "realpath", "(", "e2", ")", ")", "if", "os", ".", "path", ".", "dirname", "(", "e1", ")", "!=", "os", ".", "path", ".", "dirname", "(", "e2", ")", ":", "return", "False", "e1", "=", "os", ".", "path", ".", "basename", "(", "e1", ")", "e2", "=", "os", ".", "path", ".", "basename", "(", "e2", ")", "if", "e1", "==", "\"python\"", "or", "e2", "==", "\"python\"", "or", "e1", "==", "e2", ":", "return", "True", "return", "False" ]
Determine if `e1` and `e2` refer to the same Python executable.
[ "Determine", "if", "`", "e1", "`", "and", "`", "e2", "`", "refer", "to", "the", "same", "Python", "executable", "." ]
[ "\"\"\"Determine if `e1` and `e2` refer to the same Python executable.\n\n Either path could include symbolic links. The two paths might not refer\n to the exact same file, but if they are in the same directory and their\n numeric suffixes aren't different, they are the same executable.\n\n \"\"\"", "# pragma: only failure", "# Python and Python2.3: OK", "# Python2.3 and Python: OK", "# Python and Python: OK", "# Python2.3 and Python2.3: OK", "# pragma: only failure" ]
[ { "param": "e1", "type": null }, { "param": "e2", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "e1", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "e2", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def _same_python_executable(e1, e2): e1 = os.path.abspath(os.path.realpath(e1)) e2 = os.path.abspath(os.path.realpath(e2)) if os.path.dirname(e1) != os.path.dirname(e2): return False e1 = os.path.basename(e1) e2 = os.path.basename(e2) if e1 == "python" or e2 == "python" or e1 == e2: return True return False
837
843
a0505d18aee08825510209f23decfde028aa1559
centre-for-humanities-computing/danish-foundation-models
src/applications/danews/quality_filter.py
[ "MIT" ]
Python
add_text_col
dict
def add_text_col(example: dict) -> dict: """constructs text column to news article""" example["text"] = "" if example["Heading"].strip(" "): example["text"] = example["Heading"] if example["SubHeading"].strip(" "): example["text"] += f'\n {example["SubHeading"]}' # if example["PublishDate"]: # example["text"] += f'\n {example["PublishDate"]}' # if example["Paragraph"].strip(" "): # example["text"] += f'\n\n {example["Paragraph"]}' if example["BodyText"].strip(" "): example["text"] += f'\n\n {example["BodyText"]}' return example
constructs text column to news article
constructs text column to news article
[ "constructs", "text", "column", "to", "news", "article" ]
def add_text_col(example: dict) -> dict: example["text"] = "" if example["Heading"].strip(" "): example["text"] = example["Heading"] if example["SubHeading"].strip(" "): example["text"] += f'\n {example["SubHeading"]}' if example["BodyText"].strip(" "): example["text"] += f'\n\n {example["BodyText"]}' return example
[ "def", "add_text_col", "(", "example", ":", "dict", ")", "->", "dict", ":", "example", "[", "\"text\"", "]", "=", "\"\"", "if", "example", "[", "\"Heading\"", "]", ".", "strip", "(", "\" \"", ")", ":", "example", "[", "\"text\"", "]", "=", "example", "[", "\"Heading\"", "]", "if", "example", "[", "\"SubHeading\"", "]", ".", "strip", "(", "\" \"", ")", ":", "example", "[", "\"text\"", "]", "+=", "f'\\n {example[\"SubHeading\"]}'", "if", "example", "[", "\"BodyText\"", "]", ".", "strip", "(", "\" \"", ")", ":", "example", "[", "\"text\"", "]", "+=", "f'\\n\\n {example[\"BodyText\"]}'", "return", "example" ]
constructs text column to news article
[ "constructs", "text", "column", "to", "news", "article" ]
[ "\"\"\"constructs text column to news article\"\"\"", "# if example[\"PublishDate\"]:", "# example[\"text\"] += f'\\n {example[\"PublishDate\"]}'", "# if example[\"Paragraph\"].strip(\" \"):", "# example[\"text\"] += f'\\n\\n {example[\"Paragraph\"]}'" ]
[ { "param": "example", "type": "dict" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "example", "type": "dict", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def add_text_col(example: dict) -> dict: example["text"] = "" if example["Heading"].strip(" "): example["text"] = example["Heading"] if example["SubHeading"].strip(" "): example["text"] += f'\n {example["SubHeading"]}' if example["BodyText"].strip(" "): example["text"] += f'\n\n {example["BodyText"]}' return example
838
762
d5cc029b750acd102a2afdc7fb0719be3e5d8cde
rgaensler/gcode
src/prechecks/graph_creation.py
[ "MIT" ]
Python
joint_limit_cost
float
def joint_limit_cost(joints: List[float], qlim: List[float], w: Optional[List[float]] = None) -> float: """ Measure to drive joints away from their limits. :param joints: Joint coordinates to be evaluated :param qlim: Joint limits in order [J1 min, J1 max, J2 min, J2 max, Jn min, Jn max] :param w: Weights for the individual joints. :return: Non-negative cost value for the given joint coordinates. Best is zero. [1] B. Siciliano, L. Sciavicco, L. Villani und G. Oriolo, Robotics : Modelling, Planning and Control, London: Springer, 2009. """ val = 0 if w is None: for jmin, jmax, j in zip(qlim[::2], qlim[1::2], joints): # Use distance from mid-point relative to total range val += ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 else: if len(w) != len(joints): raise ValueError('Need to supply as many weight factors as joint coordinates.') for jmin, jmax, j, jw in zip(qlim[::2], qlim[1::2], joints, w): val += jw * ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 # Normalize with regard to number of joints return val / (2 * len(joints))
Measure to drive joints away from their limits. :param joints: Joint coordinates to be evaluated :param qlim: Joint limits in order [J1 min, J1 max, J2 min, J2 max, Jn min, Jn max] :param w: Weights for the individual joints. :return: Non-negative cost value for the given joint coordinates. Best is zero. [1] B. Siciliano, L. Sciavicco, L. Villani und G. Oriolo, Robotics : Modelling, Planning and Control, London: Springer, 2009.
Measure to drive joints away from their limits.
[ "Measure", "to", "drive", "joints", "away", "from", "their", "limits", "." ]
def joint_limit_cost(joints: List[float], qlim: List[float], w: Optional[List[float]] = None) -> float: val = 0 if w is None: for jmin, jmax, j in zip(qlim[::2], qlim[1::2], joints): val += ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 else: if len(w) != len(joints): raise ValueError('Need to supply as many weight factors as joint coordinates.') for jmin, jmax, j, jw in zip(qlim[::2], qlim[1::2], joints, w): val += jw * ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 return val / (2 * len(joints))
[ "def", "joint_limit_cost", "(", "joints", ":", "List", "[", "float", "]", ",", "qlim", ":", "List", "[", "float", "]", ",", "w", ":", "Optional", "[", "List", "[", "float", "]", "]", "=", "None", ")", "->", "float", ":", "val", "=", "0", "if", "w", "is", "None", ":", "for", "jmin", ",", "jmax", ",", "j", "in", "zip", "(", "qlim", "[", ":", ":", "2", "]", ",", "qlim", "[", "1", ":", ":", "2", "]", ",", "joints", ")", ":", "val", "+=", "(", "(", "j", "-", "0.5", "*", "(", "jmin", "+", "jmax", ")", ")", "/", "(", "jmax", "-", "jmin", ")", ")", "**", "2", "else", ":", "if", "len", "(", "w", ")", "!=", "len", "(", "joints", ")", ":", "raise", "ValueError", "(", "'Need to supply as many weight factors as joint coordinates.'", ")", "for", "jmin", ",", "jmax", ",", "j", ",", "jw", "in", "zip", "(", "qlim", "[", ":", ":", "2", "]", ",", "qlim", "[", "1", ":", ":", "2", "]", ",", "joints", ",", "w", ")", ":", "val", "+=", "jw", "*", "(", "(", "j", "-", "0.5", "*", "(", "jmin", "+", "jmax", ")", ")", "/", "(", "jmax", "-", "jmin", ")", ")", "**", "2", "return", "val", "/", "(", "2", "*", "len", "(", "joints", ")", ")" ]
Measure to drive joints away from their limits.
[ "Measure", "to", "drive", "joints", "away", "from", "their", "limits", "." ]
[ "\"\"\"\n Measure to drive joints away from their limits.\n :param joints: Joint coordinates to be evaluated\n :param qlim: Joint limits in order [J1 min, J1 max, J2 min, J2 max, Jn min, Jn max]\n :param w: Weights for the individual joints.\n :return: Non-negative cost value for the given joint coordinates. Best is zero.\n\n [1] B. Siciliano, L. Sciavicco, L. Villani und G. Oriolo, Robotics : Modelling, Planning and Control, London:\n Springer, 2009.\n \"\"\"", "# Use distance from mid-point relative to total range", "# Normalize with regard to number of joints" ]
[ { "param": "joints", "type": "List[float]" }, { "param": "qlim", "type": "List[float]" }, { "param": "w", "type": "Optional[List[float]]" } ]
{ "returns": [ { "docstring": "Non-negative cost value for the given joint coordinates. Best is zero.\n[1] B. Siciliano, L. Sciavicco, L. Villani und G. Oriolo, Robotics : Modelling, Planning and Control, London:\nSpringer, 2009.", "docstring_tokens": [ "Non", "-", "negative", "cost", "value", "for", "the", "given", "joint", "coordinates", ".", "Best", "is", "zero", ".", "[", "1", "]", "B", ".", "Siciliano", "L", ".", "Sciavicco", "L", ".", "Villani", "und", "G", ".", "Oriolo", "Robotics", ":", "Modelling", "Planning", "and", "Control", "London", ":", "Springer", "2009", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "joints", "type": "List[float]", "docstring": "Joint coordinates to be evaluated", "docstring_tokens": [ "Joint", "coordinates", "to", "be", "evaluated" ], "default": null, "is_optional": null }, { "identifier": "qlim", "type": "List[float]", "docstring": "Joint limits in order [J1 min, J1 max, J2 min, J2 max, Jn min, Jn max]", "docstring_tokens": [ "Joint", "limits", "in", "order", "[", "J1", "min", "J1", "max", "J2", "min", "J2", "max", "Jn", "min", "Jn", "max", "]" ], "default": null, "is_optional": null }, { "identifier": "w", "type": "Optional[List[float]]", "docstring": "Weights for the individual joints.", "docstring_tokens": [ "Weights", "for", "the", "individual", "joints", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def joint_limit_cost(joints: List[float], qlim: List[float], w: Optional[List[float]] = None) -> float: val = 0 if w is None: for jmin, jmax, j in zip(qlim[::2], qlim[1::2], joints): val += ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 else: if len(w) != len(joints): raise ValueError('Need to supply as many weight factors as joint coordinates.') for jmin, jmax, j, jw in zip(qlim[::2], qlim[1::2], joints, w): val += jw * ((j - 0.5 * (jmin + jmax)) / (jmax - jmin)) ** 2 return val / (2 * len(joints))
839
32
54e2aac1985cf018d552c89199857c9861a3e14a
Yasir326/address-index-data
DataScience/Analytics/linking/addressLinkingNLPindex.py
[ "MIT" ]
Python
_extract_postcode
<not_specific>
def _extract_postcode(string): """ A static private method to extract a postcode from address string. Uses a rather loose regular expression, so may get some strings that are not completely valid postcodes. Should not be used to validate whether a postcode conforms to the UK postcode standards. The regular expression was taken from: http://stackoverflow.com/questions/164979/uk-postcode-regex-comprehensive :param string: string to be parsed :type string: str :return: postcode :rtype: str """ regx = r'(([gG][iI][rR] {0,}0[aA]{2})|((([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y]?[0-9][0-9]?)|(([a-pr-uwyzA-PR-UWYZ][0-9][a-hjkstuwA-HJKSTUW])|([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y][0-9][abehmnprv-yABEHMNPRV-Y]))) {0,}[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2}))' try: potential_postcode = re.findall(regx, string)[0][0] potential_postcode = potential_postcode.lower().strip() except IndexError: potential_postcode = None # above regex gives also those without space between, add if needed if potential_postcode is not None: if ' ' not in potential_postcode: inc = potential_postcode[-3:] out = potential_postcode.replace(inc, '') potential_postcode = out + ' ' + inc return potential_postcode
A static private method to extract a postcode from address string. Uses a rather loose regular expression, so may get some strings that are not completely valid postcodes. Should not be used to validate whether a postcode conforms to the UK postcode standards. The regular expression was taken from: http://stackoverflow.com/questions/164979/uk-postcode-regex-comprehensive :param string: string to be parsed :type string: str :return: postcode :rtype: str
A static private method to extract a postcode from address string. Uses a rather loose regular expression, so may get some strings that are not completely valid postcodes. Should not be used to validate whether a postcode conforms to the UK postcode standards.
[ "A", "static", "private", "method", "to", "extract", "a", "postcode", "from", "address", "string", ".", "Uses", "a", "rather", "loose", "regular", "expression", "so", "may", "get", "some", "strings", "that", "are", "not", "completely", "valid", "postcodes", ".", "Should", "not", "be", "used", "to", "validate", "whether", "a", "postcode", "conforms", "to", "the", "UK", "postcode", "standards", "." ]
def _extract_postcode(string): regx = r'(([gG][iI][rR] {0,}0[aA]{2})|((([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y]?[0-9][0-9]?)|(([a-pr-uwyzA-PR-UWYZ][0-9][a-hjkstuwA-HJKSTUW])|([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y][0-9][abehmnprv-yABEHMNPRV-Y]))) {0,}[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2}))' try: potential_postcode = re.findall(regx, string)[0][0] potential_postcode = potential_postcode.lower().strip() except IndexError: potential_postcode = None if potential_postcode is not None: if ' ' not in potential_postcode: inc = potential_postcode[-3:] out = potential_postcode.replace(inc, '') potential_postcode = out + ' ' + inc return potential_postcode
[ "def", "_extract_postcode", "(", "string", ")", ":", "regx", "=", "r'(([gG][iI][rR] {0,}0[aA]{2})|((([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y]?[0-9][0-9]?)|(([a-pr-uwyzA-PR-UWYZ][0-9][a-hjkstuwA-HJKSTUW])|([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y][0-9][abehmnprv-yABEHMNPRV-Y]))) {0,}[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2}))'", "try", ":", "potential_postcode", "=", "re", ".", "findall", "(", "regx", ",", "string", ")", "[", "0", "]", "[", "0", "]", "potential_postcode", "=", "potential_postcode", ".", "lower", "(", ")", ".", "strip", "(", ")", "except", "IndexError", ":", "potential_postcode", "=", "None", "if", "potential_postcode", "is", "not", "None", ":", "if", "' '", "not", "in", "potential_postcode", ":", "inc", "=", "potential_postcode", "[", "-", "3", ":", "]", "out", "=", "potential_postcode", ".", "replace", "(", "inc", ",", "''", ")", "potential_postcode", "=", "out", "+", "' '", "+", "inc", "return", "potential_postcode" ]
A static private method to extract a postcode from address string.
[ "A", "static", "private", "method", "to", "extract", "a", "postcode", "from", "address", "string", "." ]
[ "\"\"\"\n A static private method to extract a postcode from address string.\n\n Uses a rather loose regular expression, so may get some strings that are not completely valid postcodes.\n Should not be used to validate whether a postcode conforms to the UK postcode standards.\n\n The regular expression was taken from:\n http://stackoverflow.com/questions/164979/uk-postcode-regex-comprehensive\n\n :param string: string to be parsed\n :type string: str\n\n :return: postcode\n :rtype: str\n \"\"\"", "# above regex gives also those without space between, add if needed" ]
[ { "param": "string", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": "str" } ], "raises": [], "params": [ { "identifier": "string", "type": null, "docstring": "string to be parsed", "docstring_tokens": [ "string", "to", "be", "parsed" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import re def _extract_postcode(string): regx = r'(([gG][iI][rR] {0,}0[aA]{2})|((([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y]?[0-9][0-9]?)|(([a-pr-uwyzA-PR-UWYZ][0-9][a-hjkstuwA-HJKSTUW])|([a-pr-uwyzA-PR-UWYZ][a-hk-yA-HK-Y][0-9][abehmnprv-yABEHMNPRV-Y]))) {0,}[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2}))' try: potential_postcode = re.findall(regx, string)[0][0] potential_postcode = potential_postcode.lower().strip() except IndexError: potential_postcode = None if potential_postcode is not None: if ' ' not in potential_postcode: inc = potential_postcode[-3:] out = potential_postcode.replace(inc, '') potential_postcode = out + ' ' + inc return potential_postcode
840
352
3bc3d0a02940e2761459447f176107ce24c914be
YanCheng-go/geemap
geemap/common.py
[ "MIT" ]
Python
bbox_to_geojson
<not_specific>
def bbox_to_geojson(bounds): """Convert coordinates of a bounding box to a geojson. Args: bounds (list): A list of coordinates representing [left, bottom, right, top]. Returns: dict: A geojson feature. """ return { "geometry": { "type": "Polygon", "coordinates": [ [ [bounds[0], bounds[3]], [bounds[0], bounds[1]], [bounds[2], bounds[1]], [bounds[2], bounds[3]], [bounds[0], bounds[3]], ] ], }, "type": "Feature", }
Convert coordinates of a bounding box to a geojson. Args: bounds (list): A list of coordinates representing [left, bottom, right, top]. Returns: dict: A geojson feature.
Convert coordinates of a bounding box to a geojson.
[ "Convert", "coordinates", "of", "a", "bounding", "box", "to", "a", "geojson", "." ]
def bbox_to_geojson(bounds): return { "geometry": { "type": "Polygon", "coordinates": [ [ [bounds[0], bounds[3]], [bounds[0], bounds[1]], [bounds[2], bounds[1]], [bounds[2], bounds[3]], [bounds[0], bounds[3]], ] ], }, "type": "Feature", }
[ "def", "bbox_to_geojson", "(", "bounds", ")", ":", "return", "{", "\"geometry\"", ":", "{", "\"type\"", ":", "\"Polygon\"", ",", "\"coordinates\"", ":", "[", "[", "[", "bounds", "[", "0", "]", ",", "bounds", "[", "3", "]", "]", ",", "[", "bounds", "[", "0", "]", ",", "bounds", "[", "1", "]", "]", ",", "[", "bounds", "[", "2", "]", ",", "bounds", "[", "1", "]", "]", ",", "[", "bounds", "[", "2", "]", ",", "bounds", "[", "3", "]", "]", ",", "[", "bounds", "[", "0", "]", ",", "bounds", "[", "3", "]", "]", ",", "]", "]", ",", "}", ",", "\"type\"", ":", "\"Feature\"", ",", "}" ]
Convert coordinates of a bounding box to a geojson.
[ "Convert", "coordinates", "of", "a", "bounding", "box", "to", "a", "geojson", "." ]
[ "\"\"\"Convert coordinates of a bounding box to a geojson.\n\n Args:\n bounds (list): A list of coordinates representing [left, bottom, right, top].\n\n Returns:\n dict: A geojson feature.\n \"\"\"" ]
[ { "param": "bounds", "type": null } ]
{ "returns": [ { "docstring": "A geojson feature.", "docstring_tokens": [ "A", "geojson", "feature", "." ], "type": "dict" } ], "raises": [], "params": [ { "identifier": "bounds", "type": null, "docstring": "A list of coordinates representing [left, bottom, right, top].", "docstring_tokens": [ "A", "list", "of", "coordinates", "representing", "[", "left", "bottom", "right", "top", "]", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def bbox_to_geojson(bounds): return { "geometry": { "type": "Polygon", "coordinates": [ [ [bounds[0], bounds[3]], [bounds[0], bounds[1]], [bounds[2], bounds[1]], [bounds[2], bounds[3]], [bounds[0], bounds[3]], ] ], }, "type": "Feature", }
841
377
459e85deb9fba72ad4b8079a9651fd546ad39f2f
RavelBio/NucleoATAC
nucleoatac/cli.py
[ "MIT" ]
Python
add_run_parser
<not_specific>
def add_run_parser( subparsers): """Add argument parsers for the run utility """ parser = subparsers.add_parser("run", help = "Main nucleoatac utility-- runs through occupancy determination & calling nuc positions") group1 = parser.add_argument_group('Required', 'Necessary arguments') group1.add_argument('--bed', metavar='bed_file' , help = 'Regions for which \ to do stuff.', required=True) group1.add_argument('--bam', metavar='bam_file', help = 'Accepts sorted BAM file', required=True) group1.add_argument('--out', metavar='output_basename', help="give output basename", required=True) group1.add_argument('--fasta', metavar = 'genome_seq', help = 'Indexed fasta file', required=True) group4 = parser.add_argument_group("Bias calculation parameters","") group4.add_argument('--pwm', metavar = 'Tn5_PWM', help = "PWM descriptor file. Default is Human.PWM.txt included in package", default = "Human") group3 = parser.add_argument_group('General options', '') group3.add_argument('--cores', metavar = 'num_cores',default=1, help='Number of cores to use',type=int) group3.add_argument('--write_all', action="store_true", default = False, help="write all tracks") return
Add argument parsers for the run utility
Add argument parsers for the run utility
[ "Add", "argument", "parsers", "for", "the", "run", "utility" ]
def add_run_parser( subparsers): parser = subparsers.add_parser("run", help = "Main nucleoatac utility-- runs through occupancy determination & calling nuc positions") group1 = parser.add_argument_group('Required', 'Necessary arguments') group1.add_argument('--bed', metavar='bed_file' , help = 'Regions for which \ to do stuff.', required=True) group1.add_argument('--bam', metavar='bam_file', help = 'Accepts sorted BAM file', required=True) group1.add_argument('--out', metavar='output_basename', help="give output basename", required=True) group1.add_argument('--fasta', metavar = 'genome_seq', help = 'Indexed fasta file', required=True) group4 = parser.add_argument_group("Bias calculation parameters","") group4.add_argument('--pwm', metavar = 'Tn5_PWM', help = "PWM descriptor file. Default is Human.PWM.txt included in package", default = "Human") group3 = parser.add_argument_group('General options', '') group3.add_argument('--cores', metavar = 'num_cores',default=1, help='Number of cores to use',type=int) group3.add_argument('--write_all', action="store_true", default = False, help="write all tracks") return
[ "def", "add_run_parser", "(", "subparsers", ")", ":", "parser", "=", "subparsers", ".", "add_parser", "(", "\"run\"", ",", "help", "=", "\"Main nucleoatac utility-- runs through occupancy determination & calling nuc positions\"", ")", "group1", "=", "parser", ".", "add_argument_group", "(", "'Required'", ",", "'Necessary arguments'", ")", "group1", ".", "add_argument", "(", "'--bed'", ",", "metavar", "=", "'bed_file'", ",", "help", "=", "'Regions for which \\\n to do stuff.'", ",", "required", "=", "True", ")", "group1", ".", "add_argument", "(", "'--bam'", ",", "metavar", "=", "'bam_file'", ",", "help", "=", "'Accepts sorted BAM file'", ",", "required", "=", "True", ")", "group1", ".", "add_argument", "(", "'--out'", ",", "metavar", "=", "'output_basename'", ",", "help", "=", "\"give output basename\"", ",", "required", "=", "True", ")", "group1", ".", "add_argument", "(", "'--fasta'", ",", "metavar", "=", "'genome_seq'", ",", "help", "=", "'Indexed fasta file'", ",", "required", "=", "True", ")", "group4", "=", "parser", ".", "add_argument_group", "(", "\"Bias calculation parameters\"", ",", "\"\"", ")", "group4", ".", "add_argument", "(", "'--pwm'", ",", "metavar", "=", "'Tn5_PWM'", ",", "help", "=", "\"PWM descriptor file. Default is Human.PWM.txt included in package\"", ",", "default", "=", "\"Human\"", ")", "group3", "=", "parser", ".", "add_argument_group", "(", "'General options'", ",", "''", ")", "group3", ".", "add_argument", "(", "'--cores'", ",", "metavar", "=", "'num_cores'", ",", "default", "=", "1", ",", "help", "=", "'Number of cores to use'", ",", "type", "=", "int", ")", "group3", ".", "add_argument", "(", "'--write_all'", ",", "action", "=", "\"store_true\"", ",", "default", "=", "False", ",", "help", "=", "\"write all tracks\"", ")", "return" ]
Add argument parsers for the run utility
[ "Add", "argument", "parsers", "for", "the", "run", "utility" ]
[ "\"\"\"Add argument parsers for the run utility\n\n \"\"\"" ]
[ { "param": "subparsers", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "subparsers", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def add_run_parser( subparsers): parser = subparsers.add_parser("run", help = "Main nucleoatac utility-- runs through occupancy determination & calling nuc positions") group1 = parser.add_argument_group('Required', 'Necessary arguments') group1.add_argument('--bed', metavar='bed_file' , help = 'Regions for which \ to do stuff.', required=True) group1.add_argument('--bam', metavar='bam_file', help = 'Accepts sorted BAM file', required=True) group1.add_argument('--out', metavar='output_basename', help="give output basename", required=True) group1.add_argument('--fasta', metavar = 'genome_seq', help = 'Indexed fasta file', required=True) group4 = parser.add_argument_group("Bias calculation parameters","") group4.add_argument('--pwm', metavar = 'Tn5_PWM', help = "PWM descriptor file. Default is Human.PWM.txt included in package", default = "Human") group3 = parser.add_argument_group('General options', '') group3.add_argument('--cores', metavar = 'num_cores',default=1, help='Number of cores to use',type=int) group3.add_argument('--write_all', action="store_true", default = False, help="write all tracks") return
842
763
f583fa78b44781558f68a0ab2880ef51089e6499
cschloer/pudl
src/pudl/convert/merge_datapkgs.py
[ "MIT" ]
Python
check_etl_params
null
def check_etl_params(dps): """ Verify that datapackages to be merged have compatible ETL params. Given that all of the input data packages come from the same ETL run, which means they will have used the same input data, the only way they should potentially differ is in the ETL parameters which were used to generate them. This function pulls the data source specific ETL params which we store in each datapackage descriptor and checks that within a given data source (e.g. eia923, ferc1) all of the ETL parameters are identical (e.g. the years, states, and tables loaded). Args: dps (iterable): A list of datapackage.Package objects, representing the datapackages to be merged. Returns: None Raises: ValueError: If the PUDL ETL parameters associated with any given data source are not identical across all instances of that data source within the datapackages to be merged. Also if the ETL UUIDs for all of the datapackages to be merged are not identical. """ # These are all the possible datasets right now... note that this is # slightly different from the data *source* codes, because we have merged # the EIA 860 and EIA 923 souces into a single dataset called EIA... dataset_codes = ["eia", "epacems", "ferc1", "epaipm"] # For each of the unique source codes, verify that all ETL parameters # associated with it in any of the input data packages are identical: for dataset_code in dataset_codes: etl_params = [] for dp in dps: for dataset in dp.descriptor["etl-parameters-pudl"]: if dataset_code in dataset.keys(): etl_params.append(dataset[dataset_code]) for params in etl_params: if not params == etl_params[0]: raise ValueError( f"Mismatched PUDL ETL parameters for {dataset_code}.")
Verify that datapackages to be merged have compatible ETL params. Given that all of the input data packages come from the same ETL run, which means they will have used the same input data, the only way they should potentially differ is in the ETL parameters which were used to generate them. This function pulls the data source specific ETL params which we store in each datapackage descriptor and checks that within a given data source (e.g. eia923, ferc1) all of the ETL parameters are identical (e.g. the years, states, and tables loaded). Args: dps (iterable): A list of datapackage.Package objects, representing the datapackages to be merged. Returns: None Raises: ValueError: If the PUDL ETL parameters associated with any given data source are not identical across all instances of that data source within the datapackages to be merged. Also if the ETL UUIDs for all of the datapackages to be merged are not identical.
Verify that datapackages to be merged have compatible ETL params. Given that all of the input data packages come from the same ETL run, which means they will have used the same input data, the only way they should potentially differ is in the ETL parameters which were used to generate them. This function pulls the data source specific ETL params which we store in each datapackage descriptor and checks that within a given data source all of the ETL parameters are identical .
[ "Verify", "that", "datapackages", "to", "be", "merged", "have", "compatible", "ETL", "params", ".", "Given", "that", "all", "of", "the", "input", "data", "packages", "come", "from", "the", "same", "ETL", "run", "which", "means", "they", "will", "have", "used", "the", "same", "input", "data", "the", "only", "way", "they", "should", "potentially", "differ", "is", "in", "the", "ETL", "parameters", "which", "were", "used", "to", "generate", "them", ".", "This", "function", "pulls", "the", "data", "source", "specific", "ETL", "params", "which", "we", "store", "in", "each", "datapackage", "descriptor", "and", "checks", "that", "within", "a", "given", "data", "source", "all", "of", "the", "ETL", "parameters", "are", "identical", "." ]
def check_etl_params(dps): dataset_codes = ["eia", "epacems", "ferc1", "epaipm"] for dataset_code in dataset_codes: etl_params = [] for dp in dps: for dataset in dp.descriptor["etl-parameters-pudl"]: if dataset_code in dataset.keys(): etl_params.append(dataset[dataset_code]) for params in etl_params: if not params == etl_params[0]: raise ValueError( f"Mismatched PUDL ETL parameters for {dataset_code}.")
[ "def", "check_etl_params", "(", "dps", ")", ":", "dataset_codes", "=", "[", "\"eia\"", ",", "\"epacems\"", ",", "\"ferc1\"", ",", "\"epaipm\"", "]", "for", "dataset_code", "in", "dataset_codes", ":", "etl_params", "=", "[", "]", "for", "dp", "in", "dps", ":", "for", "dataset", "in", "dp", ".", "descriptor", "[", "\"etl-parameters-pudl\"", "]", ":", "if", "dataset_code", "in", "dataset", ".", "keys", "(", ")", ":", "etl_params", ".", "append", "(", "dataset", "[", "dataset_code", "]", ")", "for", "params", "in", "etl_params", ":", "if", "not", "params", "==", "etl_params", "[", "0", "]", ":", "raise", "ValueError", "(", "f\"Mismatched PUDL ETL parameters for {dataset_code}.\"", ")" ]
Verify that datapackages to be merged have compatible ETL params.
[ "Verify", "that", "datapackages", "to", "be", "merged", "have", "compatible", "ETL", "params", "." ]
[ "\"\"\"\n Verify that datapackages to be merged have compatible ETL params.\n\n Given that all of the input data packages come from the same ETL run, which\n means they will have used the same input data, the only way they should\n potentially differ is in the ETL parameters which were used to generate\n them. This function pulls the data source specific ETL params which we\n store in each datapackage descriptor and checks that within a given data\n source (e.g. eia923, ferc1) all of the ETL parameters are identical (e.g.\n the years, states, and tables loaded).\n\n Args:\n dps (iterable): A list of datapackage.Package objects, representing the\n datapackages to be merged.\n\n Returns:\n None\n\n Raises:\n ValueError: If the PUDL ETL parameters associated with any given data\n source are not identical across all instances of that data source\n within the datapackages to be merged. Also if the ETL UUIDs for all\n of the datapackages to be merged are not identical.\n\n \"\"\"", "# These are all the possible datasets right now... note that this is", "# slightly different from the data *source* codes, because we have merged", "# the EIA 860 and EIA 923 souces into a single dataset called EIA...", "# For each of the unique source codes, verify that all ETL parameters", "# associated with it in any of the input data packages are identical:" ]
[ { "param": "dps", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [ { "docstring": "If the PUDL ETL parameters associated with any given data\nsource are not identical across all instances of that data source\nwithin the datapackages to be merged. Also if the ETL UUIDs for all\nof the datapackages to be merged are not identical.", "docstring_tokens": [ "If", "the", "PUDL", "ETL", "parameters", "associated", "with", "any", "given", "data", "source", "are", "not", "identical", "across", "all", "instances", "of", "that", "data", "source", "within", "the", "datapackages", "to", "be", "merged", ".", "Also", "if", "the", "ETL", "UUIDs", "for", "all", "of", "the", "datapackages", "to", "be", "merged", "are", "not", "identical", "." ], "type": "ValueError" } ], "params": [ { "identifier": "dps", "type": null, "docstring": "A list of datapackage.Package objects, representing the\ndatapackages to be merged.", "docstring_tokens": [ "A", "list", "of", "datapackage", ".", "Package", "objects", "representing", "the", "datapackages", "to", "be", "merged", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def check_etl_params(dps): dataset_codes = ["eia", "epacems", "ferc1", "epaipm"] for dataset_code in dataset_codes: etl_params = [] for dp in dps: for dataset in dp.descriptor["etl-parameters-pudl"]: if dataset_code in dataset.keys(): etl_params.append(dataset[dataset_code]) for params in etl_params: if not params == etl_params[0]: raise ValueError( f"Mismatched PUDL ETL parameters for {dataset_code}.")
843
527
c8d0bbd97d7038a399f367036ee9da399ef7f546
iplo/Chain
ui/gl/generate_bindings.py
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
Python
LooksLikeExtensionFunction
<not_specific>
def LooksLikeExtensionFunction(function): """Heuristic to see if a function name is consistent with extension function naming.""" vendor = re.match(r'\w+?([A-Z][A-Z]+)$', function) return vendor is not None and not vendor.group(1) in ['GL', 'API', 'DC']
Heuristic to see if a function name is consistent with extension function naming.
Heuristic to see if a function name is consistent with extension function naming.
[ "Heuristic", "to", "see", "if", "a", "function", "name", "is", "consistent", "with", "extension", "function", "naming", "." ]
def LooksLikeExtensionFunction(function): vendor = re.match(r'\w+?([A-Z][A-Z]+)$', function) return vendor is not None and not vendor.group(1) in ['GL', 'API', 'DC']
[ "def", "LooksLikeExtensionFunction", "(", "function", ")", ":", "vendor", "=", "re", ".", "match", "(", "r'\\w+?([A-Z][A-Z]+)$'", ",", "function", ")", "return", "vendor", "is", "not", "None", "and", "not", "vendor", ".", "group", "(", "1", ")", "in", "[", "'GL'", ",", "'API'", ",", "'DC'", "]" ]
Heuristic to see if a function name is consistent with extension function naming.
[ "Heuristic", "to", "see", "if", "a", "function", "name", "is", "consistent", "with", "extension", "function", "naming", "." ]
[ "\"\"\"Heuristic to see if a function name is consistent with extension function\n naming.\"\"\"" ]
[ { "param": "function", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "function", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import re def LooksLikeExtensionFunction(function): vendor = re.match(r'\w+?([A-Z][A-Z]+)$', function) return vendor is not None and not vendor.group(1) in ['GL', 'API', 'DC']
844
349
cfa58e6253cb7e4d9fc5726078bb4bf19c998fb3
pusscat/refNes
MOS6502.py
[ "BSD-2-Clause" ]
Python
create_carry_condition
<not_specific>
def create_carry_condition(new_val, sub_op): """Return boolean value whether operation creates a carry condition""" if not sub_op: carry_cond = new_val > 0xFF else: carry_cond = new_val >= 0 return carry_cond
Return boolean value whether operation creates a carry condition
Return boolean value whether operation creates a carry condition
[ "Return", "boolean", "value", "whether", "operation", "creates", "a", "carry", "condition" ]
def create_carry_condition(new_val, sub_op): if not sub_op: carry_cond = new_val > 0xFF else: carry_cond = new_val >= 0 return carry_cond
[ "def", "create_carry_condition", "(", "new_val", ",", "sub_op", ")", ":", "if", "not", "sub_op", ":", "carry_cond", "=", "new_val", ">", "0xFF", "else", ":", "carry_cond", "=", "new_val", ">=", "0", "return", "carry_cond" ]
Return boolean value whether operation creates a carry condition
[ "Return", "boolean", "value", "whether", "operation", "creates", "a", "carry", "condition" ]
[ "\"\"\"Return boolean value whether operation creates a carry condition\"\"\"" ]
[ { "param": "new_val", "type": null }, { "param": "sub_op", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "new_val", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "sub_op", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def create_carry_condition(new_val, sub_op): if not sub_op: carry_cond = new_val > 0xFF else: carry_cond = new_val >= 0 return carry_cond
845
455
6be4de9498041fb332f5d01742cc59c21ec8e26b
Jacob-Spiegel/SmilesClickChem
smilesclickchem/operators/convert_files/gypsum_dl/gypsum_dl/Parallelizer.py
[ "Apache-2.0" ]
Python
count_processors
<not_specific>
def count_processors(num_inputs, num_procs): """ Checks processors available and returns a safe number of them to utilize. :param int num_inputs: The number of inputs. :param int num_procs: The number of desired processors. :returns: The number of processors to use. """ # first, if num_procs <= 0, determine the number of processors to # use programatically if num_procs <= 0: num_procs = multiprocessing.cpu_count() # reduce the number of processors if too many have been specified if num_inputs < num_procs: num_procs = num_inputs return num_procs
Checks processors available and returns a safe number of them to utilize. :param int num_inputs: The number of inputs. :param int num_procs: The number of desired processors. :returns: The number of processors to use.
Checks processors available and returns a safe number of them to utilize.
[ "Checks", "processors", "available", "and", "returns", "a", "safe", "number", "of", "them", "to", "utilize", "." ]
def count_processors(num_inputs, num_procs): if num_procs <= 0: num_procs = multiprocessing.cpu_count() if num_inputs < num_procs: num_procs = num_inputs return num_procs
[ "def", "count_processors", "(", "num_inputs", ",", "num_procs", ")", ":", "if", "num_procs", "<=", "0", ":", "num_procs", "=", "multiprocessing", ".", "cpu_count", "(", ")", "if", "num_inputs", "<", "num_procs", ":", "num_procs", "=", "num_inputs", "return", "num_procs" ]
Checks processors available and returns a safe number of them to utilize.
[ "Checks", "processors", "available", "and", "returns", "a", "safe", "number", "of", "them", "to", "utilize", "." ]
[ "\"\"\"\n Checks processors available and returns a safe number of them to\n utilize.\n\n :param int num_inputs: The number of inputs.\n :param int num_procs: The number of desired processors.\n\n :returns: The number of processors to use.\n \"\"\"", "# first, if num_procs <= 0, determine the number of processors to", "# use programatically", "# reduce the number of processors if too many have been specified" ]
[ { "param": "num_inputs", "type": null }, { "param": "num_procs", "type": null } ]
{ "returns": [ { "docstring": "The number of processors to use.", "docstring_tokens": [ "The", "number", "of", "processors", "to", "use", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "num_inputs", "type": null, "docstring": "The number of inputs.", "docstring_tokens": [ "The", "number", "of", "inputs", "." ], "default": null, "is_optional": false }, { "identifier": "num_procs", "type": null, "docstring": "The number of desired processors.", "docstring_tokens": [ "The", "number", "of", "desired", "processors", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
import multiprocessing def count_processors(num_inputs, num_procs): if num_procs <= 0: num_procs = multiprocessing.cpu_count() if num_inputs < num_procs: num_procs = num_inputs return num_procs
846
807
08305250b0131cc023e6769042ec149c5d80e35a
KateWang2016/image_dl
image_downloader/utils.py
[ "MIT" ]
Python
parse_args
<not_specific>
def parse_args(): """Get the arguments from command line""" parser = argparse.ArgumentParser( description="Download images from one or multiple urls" ) parser.add_argument("url", help="A url to download from") parser.add_argument("-d", "--dir", help="Directory to save images") parser.add_argument( "--formats", nargs="*", default=["jpg", "png", "gif", "svg", "jpeg", "webp"], help="Seperate multiple format strings with space", ) args = parser.parse_args() return args
Get the arguments from command line
Get the arguments from command line
[ "Get", "the", "arguments", "from", "command", "line" ]
def parse_args(): parser = argparse.ArgumentParser( description="Download images from one or multiple urls" ) parser.add_argument("url", help="A url to download from") parser.add_argument("-d", "--dir", help="Directory to save images") parser.add_argument( "--formats", nargs="*", default=["jpg", "png", "gif", "svg", "jpeg", "webp"], help="Seperate multiple format strings with space", ) args = parser.parse_args() return args
[ "def", "parse_args", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "\"Download images from one or multiple urls\"", ")", "parser", ".", "add_argument", "(", "\"url\"", ",", "help", "=", "\"A url to download from\"", ")", "parser", ".", "add_argument", "(", "\"-d\"", ",", "\"--dir\"", ",", "help", "=", "\"Directory to save images\"", ")", "parser", ".", "add_argument", "(", "\"--formats\"", ",", "nargs", "=", "\"*\"", ",", "default", "=", "[", "\"jpg\"", ",", "\"png\"", ",", "\"gif\"", ",", "\"svg\"", ",", "\"jpeg\"", ",", "\"webp\"", "]", ",", "help", "=", "\"Seperate multiple format strings with space\"", ",", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "return", "args" ]
Get the arguments from command line
[ "Get", "the", "arguments", "from", "command", "line" ]
[ "\"\"\"Get the arguments from command line\"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import argparse def parse_args(): parser = argparse.ArgumentParser( description="Download images from one or multiple urls" ) parser.add_argument("url", help="A url to download from") parser.add_argument("-d", "--dir", help="Directory to save images") parser.add_argument( "--formats", nargs="*", default=["jpg", "png", "gif", "svg", "jpeg", "webp"], help="Seperate multiple format strings with space", ) args = parser.parse_args() return args
847
882
bfc25c619cd95d1ca069cc355ea6e7c9dbdd0bc5
nicolasmota/pyIE
ie/pi.py
[ "MIT" ]
Python
start
<not_specific>
def start(st_reg_number): """Checks the number valiaty for the Piaui state""" divisor = 11 if len(st_reg_number) > 9: return False if len(st_reg_number) < 9: return False sum_total = 0 peso = 9 for i in range(len(st_reg_number)-1): sum_total = sum_total + int(st_reg_number[i]) * peso peso = peso - 1 rest_division = sum_total % divisor digit = divisor - rest_division if digit == 10 or digit == 11: digit = 0 return digit == int(st_reg_number[len(st_reg_number)-1])
Checks the number valiaty for the Piaui state
Checks the number valiaty for the Piaui state
[ "Checks", "the", "number", "valiaty", "for", "the", "Piaui", "state" ]
def start(st_reg_number): divisor = 11 if len(st_reg_number) > 9: return False if len(st_reg_number) < 9: return False sum_total = 0 peso = 9 for i in range(len(st_reg_number)-1): sum_total = sum_total + int(st_reg_number[i]) * peso peso = peso - 1 rest_division = sum_total % divisor digit = divisor - rest_division if digit == 10 or digit == 11: digit = 0 return digit == int(st_reg_number[len(st_reg_number)-1])
[ "def", "start", "(", "st_reg_number", ")", ":", "divisor", "=", "11", "if", "len", "(", "st_reg_number", ")", ">", "9", ":", "return", "False", "if", "len", "(", "st_reg_number", ")", "<", "9", ":", "return", "False", "sum_total", "=", "0", "peso", "=", "9", "for", "i", "in", "range", "(", "len", "(", "st_reg_number", ")", "-", "1", ")", ":", "sum_total", "=", "sum_total", "+", "int", "(", "st_reg_number", "[", "i", "]", ")", "*", "peso", "peso", "=", "peso", "-", "1", "rest_division", "=", "sum_total", "%", "divisor", "digit", "=", "divisor", "-", "rest_division", "if", "digit", "==", "10", "or", "digit", "==", "11", ":", "digit", "=", "0", "return", "digit", "==", "int", "(", "st_reg_number", "[", "len", "(", "st_reg_number", ")", "-", "1", "]", ")" ]
Checks the number valiaty for the Piaui state
[ "Checks", "the", "number", "valiaty", "for", "the", "Piaui", "state" ]
[ "\"\"\"Checks the number valiaty for the Piaui state\"\"\"" ]
[ { "param": "st_reg_number", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "st_reg_number", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def start(st_reg_number): divisor = 11 if len(st_reg_number) > 9: return False if len(st_reg_number) < 9: return False sum_total = 0 peso = 9 for i in range(len(st_reg_number)-1): sum_total = sum_total + int(st_reg_number[i]) * peso peso = peso - 1 rest_division = sum_total % divisor digit = divisor - rest_division if digit == 10 or digit == 11: digit = 0 return digit == int(st_reg_number[len(st_reg_number)-1])
848
174
5398f9cbb329ed186654568f3d5b876e669fa3fa
BAMresearch/ctsimu-toolbox
ctsimu/helpers.py
[ "Apache-2.0" ]
Python
divideAndError
<not_specific>
def divideAndError(muA, muB, errA, errB): """ Error propagation upon division; estimation of largest error. """ value = muA / muB err = errA/abs(muB) + errB*abs(muA/(muB**2)) return value, err
Error propagation upon division; estimation of largest error.
Error propagation upon division; estimation of largest error.
[ "Error", "propagation", "upon", "division", ";", "estimation", "of", "largest", "error", "." ]
def divideAndError(muA, muB, errA, errB): value = muA / muB err = errA/abs(muB) + errB*abs(muA/(muB**2)) return value, err
[ "def", "divideAndError", "(", "muA", ",", "muB", ",", "errA", ",", "errB", ")", ":", "value", "=", "muA", "/", "muB", "err", "=", "errA", "/", "abs", "(", "muB", ")", "+", "errB", "*", "abs", "(", "muA", "/", "(", "muB", "**", "2", ")", ")", "return", "value", ",", "err" ]
Error propagation upon division; estimation of largest error.
[ "Error", "propagation", "upon", "division", ";", "estimation", "of", "largest", "error", "." ]
[ "\"\"\" Error propagation upon division; estimation of largest error. \"\"\"" ]
[ { "param": "muA", "type": null }, { "param": "muB", "type": null }, { "param": "errA", "type": null }, { "param": "errB", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "muA", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "muB", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "errA", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "errB", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def divideAndError(muA, muB, errA, errB): value = muA / muB err = errA/abs(muB) + errB*abs(muA/(muB**2)) return value, err
849
845
1328c721d906ed5a2c51301f23c44a8db7ccd7ee
xinan-jiang/iree
integrations/tensorflow/bindings/python/pyiree/tf/support/module_utils.py
[ "Apache-2.0" ]
Python
create_from_class
null
def create_from_class(cls, module_class: Type[tf.Module], backend_info: "BackendInfo", exported_names: Sequence[str] = (), artifacts_dir: str = None): """Compile a tf.Module subclass to the target backend in backend_info. Args: module_class: The tf.Module subclass to compile. backend_info: BackendInfo with the details for compiling this module. exported_names: Optional sequence representing the exported names to keep. artifacts_dir: An optional string pointing to where compilation artifacts should be saved. No compilation artifacts will be saved if this is not provided. """ raise NotImplementedError()
Compile a tf.Module subclass to the target backend in backend_info. Args: module_class: The tf.Module subclass to compile. backend_info: BackendInfo with the details for compiling this module. exported_names: Optional sequence representing the exported names to keep. artifacts_dir: An optional string pointing to where compilation artifacts should be saved. No compilation artifacts will be saved if this is not provided.
Compile a tf.Module subclass to the target backend in backend_info.
[ "Compile", "a", "tf", ".", "Module", "subclass", "to", "the", "target", "backend", "in", "backend_info", "." ]
def create_from_class(cls, module_class: Type[tf.Module], backend_info: "BackendInfo", exported_names: Sequence[str] = (), artifacts_dir: str = None): raise NotImplementedError()
[ "def", "create_from_class", "(", "cls", ",", "module_class", ":", "Type", "[", "tf", ".", "Module", "]", ",", "backend_info", ":", "\"BackendInfo\"", ",", "exported_names", ":", "Sequence", "[", "str", "]", "=", "(", ")", ",", "artifacts_dir", ":", "str", "=", "None", ")", ":", "raise", "NotImplementedError", "(", ")" ]
Compile a tf.Module subclass to the target backend in backend_info.
[ "Compile", "a", "tf", ".", "Module", "subclass", "to", "the", "target", "backend", "in", "backend_info", "." ]
[ "\"\"\"Compile a tf.Module subclass to the target backend in backend_info.\n\n Args:\n module_class: The tf.Module subclass to compile.\n backend_info: BackendInfo with the details for compiling this module.\n exported_names: Optional sequence representing the exported names to keep.\n artifacts_dir: An optional string pointing to where compilation artifacts\n should be saved. No compilation artifacts will be saved if this is not\n provided.\n \"\"\"" ]
[ { "param": "cls", "type": null }, { "param": "module_class", "type": "Type[tf.Module]" }, { "param": "backend_info", "type": "\"BackendInfo\"" }, { "param": "exported_names", "type": "Sequence[str]" }, { "param": "artifacts_dir", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "module_class", "type": "Type[tf.Module]", "docstring": "The tf.Module subclass to compile.", "docstring_tokens": [ "The", "tf", ".", "Module", "subclass", "to", "compile", "." ], "default": null, "is_optional": null }, { "identifier": "backend_info", "type": "\"BackendInfo\"", "docstring": "BackendInfo with the details for compiling this module.", "docstring_tokens": [ "BackendInfo", "with", "the", "details", "for", "compiling", "this", "module", "." ], "default": null, "is_optional": null }, { "identifier": "exported_names", "type": "Sequence[str]", "docstring": "Optional sequence representing the exported names to keep.", "docstring_tokens": [ "Optional", "sequence", "representing", "the", "exported", "names", "to", "keep", "." ], "default": null, "is_optional": null }, { "identifier": "artifacts_dir", "type": "str", "docstring": "An optional string pointing to where compilation artifacts\nshould be saved. No compilation artifacts will be saved if this is not\nprovided.", "docstring_tokens": [ "An", "optional", "string", "pointing", "to", "where", "compilation", "artifacts", "should", "be", "saved", ".", "No", "compilation", "artifacts", "will", "be", "saved", "if", "this", "is", "not", "provided", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def create_from_class(cls, module_class: Type[tf.Module], backend_info: "BackendInfo", exported_names: Sequence[str] = (), artifacts_dir: str = None): raise NotImplementedError()
850
442
362afc4fc11735535a431d826125d46948baa159
cglesner/100-days-of-py
dotproduct.py
[ "MIT" ]
Python
orthogonal
<not_specific>
def orthogonal(a): """Return an arbitrary vector orthogonal to the input vector. :type a: tuple of floats. :return b: tuple of floats. """ if len(a) == 1: return None # Handle the vector generation one way if any elements # of the input vector are zero. if not all(a): return tuple(0 if a_i else 1 for a_i in a) # If none of the elements of a are zero, set the first n-1 # elements of b to 1. Set the n-th element of b as follows: return (1,) * len(a[:-1]) + (-1 * sum(a[:-1]) / a[-1],)
Return an arbitrary vector orthogonal to the input vector. :type a: tuple of floats. :return b: tuple of floats.
Return an arbitrary vector orthogonal to the input vector.
[ "Return", "an", "arbitrary", "vector", "orthogonal", "to", "the", "input", "vector", "." ]
def orthogonal(a): if len(a) == 1: return None if not all(a): return tuple(0 if a_i else 1 for a_i in a) return (1,) * len(a[:-1]) + (-1 * sum(a[:-1]) / a[-1],)
[ "def", "orthogonal", "(", "a", ")", ":", "if", "len", "(", "a", ")", "==", "1", ":", "return", "None", "if", "not", "all", "(", "a", ")", ":", "return", "tuple", "(", "0", "if", "a_i", "else", "1", "for", "a_i", "in", "a", ")", "return", "(", "1", ",", ")", "*", "len", "(", "a", "[", ":", "-", "1", "]", ")", "+", "(", "-", "1", "*", "sum", "(", "a", "[", ":", "-", "1", "]", ")", "/", "a", "[", "-", "1", "]", ",", ")" ]
Return an arbitrary vector orthogonal to the input vector.
[ "Return", "an", "arbitrary", "vector", "orthogonal", "to", "the", "input", "vector", "." ]
[ "\"\"\"Return an arbitrary vector orthogonal to the input vector.\n :type a: tuple of floats.\n :return b: tuple of floats.\n \"\"\"", "# Handle the vector generation one way if any elements", "# of the input vector are zero.", "# If none of the elements of a are zero, set the first n-1", "# elements of b to 1. Set the n-th element of b as follows:" ]
[ { "param": "a", "type": null } ]
{ "returns": [ { "docstring": "tuple of floats.", "docstring_tokens": [ "tuple", "of", "floats", "." ], "type": "b" } ], "raises": [], "params": [ { "identifier": "a", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def orthogonal(a): if len(a) == 1: return None if not all(a): return tuple(0 if a_i else 1 for a_i in a) return (1,) * len(a[:-1]) + (-1 * sum(a[:-1]) / a[-1],)
851
874
76630bd861765d3c6d2db15e39c4a0472d7c323e
IAWG-CSBC-PSON/hack2022-06-viz-comp
solution2/analytics/two_cluster_mapping.py
[ "MIT" ]
Python
jaccard_set
<not_specific>
def jaccard_set(list1, list2): """Define Jaccard Similarity function for two sets""" intersection = len(list(set(list1).intersection(list2))) union = (len(list1) + len(list2)) - intersection return float(intersection) / union
Define Jaccard Similarity function for two sets
Define Jaccard Similarity function for two sets
[ "Define", "Jaccard", "Similarity", "function", "for", "two", "sets" ]
def jaccard_set(list1, list2): intersection = len(list(set(list1).intersection(list2))) union = (len(list1) + len(list2)) - intersection return float(intersection) / union
[ "def", "jaccard_set", "(", "list1", ",", "list2", ")", ":", "intersection", "=", "len", "(", "list", "(", "set", "(", "list1", ")", ".", "intersection", "(", "list2", ")", ")", ")", "union", "=", "(", "len", "(", "list1", ")", "+", "len", "(", "list2", ")", ")", "-", "intersection", "return", "float", "(", "intersection", ")", "/", "union" ]
Define Jaccard Similarity function for two sets
[ "Define", "Jaccard", "Similarity", "function", "for", "two", "sets" ]
[ "\"\"\"Define Jaccard Similarity function for two sets\"\"\"" ]
[ { "param": "list1", "type": null }, { "param": "list2", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "list1", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "list2", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def jaccard_set(list1, list2): intersection = len(list(set(list1).intersection(list2))) union = (len(list1) + len(list2)) - intersection return float(intersection) / union
852
189
b10c7ced3ca4b7919db1bb856f3eb5afb2c0a958
m-salman-05/libfreenect
src/fwfetcher.py
[ "Apache-2.0" ]
Python
nice_open_dir
<not_specific>
def nice_open_dir(dirname): """Checks if the output directory with the given name already exists, and if so, asks for overwrite permission. This means that any file in that directory might be overwritten. @param dirname name of the output directory to open @return overwrite permission """ if os.path.isdir(dirname): print(dirname, "already exists, ok to overwrite files in it? (y/n)", end=' ') answer = input("") return len(answer) > 0 and answer[0] in ["Y", "y"] else: return True
Checks if the output directory with the given name already exists, and if so, asks for overwrite permission. This means that any file in that directory might be overwritten. @param dirname name of the output directory to open @return overwrite permission
Checks if the output directory with the given name already exists, and if so, asks for overwrite permission. This means that any file in that directory might be overwritten. @param dirname name of the output directory to open @return overwrite permission
[ "Checks", "if", "the", "output", "directory", "with", "the", "given", "name", "already", "exists", "and", "if", "so", "asks", "for", "overwrite", "permission", ".", "This", "means", "that", "any", "file", "in", "that", "directory", "might", "be", "overwritten", ".", "@param", "dirname", "name", "of", "the", "output", "directory", "to", "open", "@return", "overwrite", "permission" ]
def nice_open_dir(dirname): if os.path.isdir(dirname): print(dirname, "already exists, ok to overwrite files in it? (y/n)", end=' ') answer = input("") return len(answer) > 0 and answer[0] in ["Y", "y"] else: return True
[ "def", "nice_open_dir", "(", "dirname", ")", ":", "if", "os", ".", "path", ".", "isdir", "(", "dirname", ")", ":", "print", "(", "dirname", ",", "\"already exists, ok to overwrite files in it? (y/n)\"", ",", "end", "=", "' '", ")", "answer", "=", "input", "(", "\"\"", ")", "return", "len", "(", "answer", ")", ">", "0", "and", "answer", "[", "0", "]", "in", "[", "\"Y\"", ",", "\"y\"", "]", "else", ":", "return", "True" ]
Checks if the output directory with the given name already exists, and if so, asks for overwrite permission.
[ "Checks", "if", "the", "output", "directory", "with", "the", "given", "name", "already", "exists", "and", "if", "so", "asks", "for", "overwrite", "permission", "." ]
[ "\"\"\"Checks if the output directory with the given name already exists,\n and if so, asks for overwrite permission. This means that any file\n in that directory might be overwritten.\n\n @param dirname name of the output directory to open\n @return overwrite permission\n \"\"\"" ]
[ { "param": "dirname", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "dirname", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def nice_open_dir(dirname): if os.path.isdir(dirname): print(dirname, "already exists, ok to overwrite files in it? (y/n)", end=' ') answer = input("") return len(answer) > 0 and answer[0] in ["Y", "y"] else: return True
853
322
e5bcbcc03599788bc85fc2793adcdca821d3465a
VEuPathDB/websiteconf
make_yaml.py
[ "Apache-2.0" ]
Python
decomment
null
def decomment(csvfile): """ simple helper function to remove comments from a file """ for row in csvfile: raw = row.split('#')[0].strip() if raw: yield row
simple helper function to remove comments from a file
simple helper function to remove comments from a file
[ "simple", "helper", "function", "to", "remove", "comments", "from", "a", "file" ]
def decomment(csvfile): for row in csvfile: raw = row.split('#')[0].strip() if raw: yield row
[ "def", "decomment", "(", "csvfile", ")", ":", "for", "row", "in", "csvfile", ":", "raw", "=", "row", ".", "split", "(", "'#'", ")", "[", "0", "]", ".", "strip", "(", ")", "if", "raw", ":", "yield", "row" ]
simple helper function to remove comments from a file
[ "simple", "helper", "function", "to", "remove", "comments", "from", "a", "file" ]
[ "\"\"\" simple helper function to remove comments from a file \"\"\"" ]
[ { "param": "csvfile", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "csvfile", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def decomment(csvfile): for row in csvfile: raw = row.split('#')[0].strip() if raw: yield row
854
817
1b4d7f5093e49ae6452905cde0ec670b9abd72d4
QCoding/qsum
qsum/data/to_bytes_custom.py
[ "MIT" ]
Python
int_to_bytes
bytes
def int_to_bytes(obj: int) -> bytes: """Convert int's in to the most compact byte representation possible CURRENTLY UNUSED, while cleverly packing integers tightly it's actually ~5x slower then just calling repr Args: obj: integer to convert to bytes Returns: bytes representing integer """ return obj.to_bytes(1 if obj == 0 else math.floor((math.log2(abs(obj)) + 1) / 8 + 1), byteorder='big', signed=True)
Convert int's in to the most compact byte representation possible CURRENTLY UNUSED, while cleverly packing integers tightly it's actually ~5x slower then just calling repr Args: obj: integer to convert to bytes Returns: bytes representing integer
Convert int's in to the most compact byte representation possible CURRENTLY UNUSED, while cleverly packing integers tightly it's actually ~5x slower then just calling repr
[ "Convert", "int", "'", "s", "in", "to", "the", "most", "compact", "byte", "representation", "possible", "CURRENTLY", "UNUSED", "while", "cleverly", "packing", "integers", "tightly", "it", "'", "s", "actually", "~5x", "slower", "then", "just", "calling", "repr" ]
def int_to_bytes(obj: int) -> bytes: return obj.to_bytes(1 if obj == 0 else math.floor((math.log2(abs(obj)) + 1) / 8 + 1), byteorder='big', signed=True)
[ "def", "int_to_bytes", "(", "obj", ":", "int", ")", "->", "bytes", ":", "return", "obj", ".", "to_bytes", "(", "1", "if", "obj", "==", "0", "else", "math", ".", "floor", "(", "(", "math", ".", "log2", "(", "abs", "(", "obj", ")", ")", "+", "1", ")", "/", "8", "+", "1", ")", ",", "byteorder", "=", "'big'", ",", "signed", "=", "True", ")" ]
Convert int's in to the most compact byte representation possible CURRENTLY UNUSED, while cleverly packing integers tightly it's actually ~5x slower then just calling repr
[ "Convert", "int", "'", "s", "in", "to", "the", "most", "compact", "byte", "representation", "possible", "CURRENTLY", "UNUSED", "while", "cleverly", "packing", "integers", "tightly", "it", "'", "s", "actually", "~5x", "slower", "then", "just", "calling", "repr" ]
[ "\"\"\"Convert int's in to the most compact byte representation possible\n\n CURRENTLY UNUSED, while cleverly packing integers tightly it's actually ~5x slower then just calling repr\n\n Args:\n obj: integer to convert to bytes\n\n Returns:\n bytes representing integer\n \"\"\"" ]
[ { "param": "obj", "type": "int" } ]
{ "returns": [ { "docstring": "bytes representing integer", "docstring_tokens": [ "bytes", "representing", "integer" ], "type": null } ], "raises": [], "params": [ { "identifier": "obj", "type": "int", "docstring": "integer to convert to bytes", "docstring_tokens": [ "integer", "to", "convert", "to", "bytes" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import math def int_to_bytes(obj: int) -> bytes: return obj.to_bytes(1 if obj == 0 else math.floor((math.log2(abs(obj)) + 1) / 8 + 1), byteorder='big', signed=True)
855
848
31403d4219775b4091c8d57d053acdbdf23a329d
BD2KGenomics/toil
src/toil/cwl/cwltoil.py
[ "Apache-2.0" ]
Python
check_directory_dict_invariants
None
def check_directory_dict_invariants( contents: DirectoryContents ) -> None: """ Make sure a directory structure dict makes sense. Throws an error otherwise. Currently just checks to make sure no empty-string keys exist. """ for name, item in contents.items(): if name == '': raise RuntimeError('Found nameless entry in directory: ' + json.dumps(contents, indent=2)) if isinstance(item, dict): check_directory_dict_invariants(item)
Make sure a directory structure dict makes sense. Throws an error otherwise. Currently just checks to make sure no empty-string keys exist.
Make sure a directory structure dict makes sense. Throws an error otherwise. Currently just checks to make sure no empty-string keys exist.
[ "Make", "sure", "a", "directory", "structure", "dict", "makes", "sense", ".", "Throws", "an", "error", "otherwise", ".", "Currently", "just", "checks", "to", "make", "sure", "no", "empty", "-", "string", "keys", "exist", "." ]
def check_directory_dict_invariants( contents: DirectoryContents ) -> None: for name, item in contents.items(): if name == '': raise RuntimeError('Found nameless entry in directory: ' + json.dumps(contents, indent=2)) if isinstance(item, dict): check_directory_dict_invariants(item)
[ "def", "check_directory_dict_invariants", "(", "contents", ":", "DirectoryContents", ")", "->", "None", ":", "for", "name", ",", "item", "in", "contents", ".", "items", "(", ")", ":", "if", "name", "==", "''", ":", "raise", "RuntimeError", "(", "'Found nameless entry in directory: '", "+", "json", ".", "dumps", "(", "contents", ",", "indent", "=", "2", ")", ")", "if", "isinstance", "(", "item", ",", "dict", ")", ":", "check_directory_dict_invariants", "(", "item", ")" ]
Make sure a directory structure dict makes sense.
[ "Make", "sure", "a", "directory", "structure", "dict", "makes", "sense", "." ]
[ "\"\"\"\n Make sure a directory structure dict makes sense. Throws an error\n otherwise.\n\n Currently just checks to make sure no empty-string keys exist.\n \"\"\"" ]
[ { "param": "contents", "type": "DirectoryContents" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "contents", "type": "DirectoryContents", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import json def check_directory_dict_invariants( contents: DirectoryContents ) -> None: for name, item in contents.items(): if name == '': raise RuntimeError('Found nameless entry in directory: ' + json.dumps(contents, indent=2)) if isinstance(item, dict): check_directory_dict_invariants(item)
856
921
3c912eba80b9d33972dd45048f100ac1af5d5b69
winksaville/bike-simple-simulation
bike-sim.py
[ "Unlicense" ]
Python
mph
<not_specific>
def mph(mps): """ Meters per second to miles per hour """ mpsToMph = 3600.0 / (0.0254 * 12.0 * 5280.0) return mps * mpsToMph
Meters per second to miles per hour
Meters per second to miles per hour
[ "Meters", "per", "second", "to", "miles", "per", "hour" ]
def mph(mps): mpsToMph = 3600.0 / (0.0254 * 12.0 * 5280.0) return mps * mpsToMph
[ "def", "mph", "(", "mps", ")", ":", "mpsToMph", "=", "3600.0", "/", "(", "0.0254", "*", "12.0", "*", "5280.0", ")", "return", "mps", "*", "mpsToMph" ]
Meters per second to miles per hour
[ "Meters", "per", "second", "to", "miles", "per", "hour" ]
[ "\"\"\"\n Meters per second to miles per hour\n \"\"\"" ]
[ { "param": "mps", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "mps", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def mph(mps): mpsToMph = 3600.0 / (0.0254 * 12.0 * 5280.0) return mps * mpsToMph
857
373
44482bb29aa717f7c5d5964428cd5b561d11d073
abs-tudelft/vhsnunzip
tests/emu/operators.py
[ "MIT" ]
Python
writer
null
def writer(stream, fname): """Writes the serialized representation of each transfer to the given file.""" with open(fname, 'w') as fil: for transfer in stream: print(transfer.serialize(), file=fil) yield transfer
Writes the serialized representation of each transfer to the given file.
Writes the serialized representation of each transfer to the given file.
[ "Writes", "the", "serialized", "representation", "of", "each", "transfer", "to", "the", "given", "file", "." ]
def writer(stream, fname): with open(fname, 'w') as fil: for transfer in stream: print(transfer.serialize(), file=fil) yield transfer
[ "def", "writer", "(", "stream", ",", "fname", ")", ":", "with", "open", "(", "fname", ",", "'w'", ")", "as", "fil", ":", "for", "transfer", "in", "stream", ":", "print", "(", "transfer", ".", "serialize", "(", ")", ",", "file", "=", "fil", ")", "yield", "transfer" ]
Writes the serialized representation of each transfer to the given file.
[ "Writes", "the", "serialized", "representation", "of", "each", "transfer", "to", "the", "given", "file", "." ]
[ "\"\"\"Writes the serialized representation of each transfer to the given\n file.\"\"\"" ]
[ { "param": "stream", "type": null }, { "param": "fname", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "stream", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "fname", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def writer(stream, fname): with open(fname, 'w') as fil: for transfer in stream: print(transfer.serialize(), file=fil) yield transfer
858
11
50eca91c898560b9378fead3bc1389ce2eee4e73
heatherleaf/sparv-pipeline
sparv/modules/vw_topic_modelling/vw_topic_modelling.py
[ "MIT" ]
Python
triangulate
null
def triangulate(xs): """ All initial segments of xs, concatenated. >>> ''.join(triangulate('abc')) 'aababc' >>> ''.join(triangulate('1234')) '1121231234' >>> list(triangulate([])) [] """ for i, _ in enumerate(xs): for x in xs[:i + 1]: yield x
All initial segments of xs, concatenated. >>> ''.join(triangulate('abc')) 'aababc' >>> ''.join(triangulate('1234')) '1121231234' >>> list(triangulate([])) []
All initial segments of xs, concatenated.
[ "All", "initial", "segments", "of", "xs", "concatenated", "." ]
def triangulate(xs): for i, _ in enumerate(xs): for x in xs[:i + 1]: yield x
[ "def", "triangulate", "(", "xs", ")", ":", "for", "i", ",", "_", "in", "enumerate", "(", "xs", ")", ":", "for", "x", "in", "xs", "[", ":", "i", "+", "1", "]", ":", "yield", "x" ]
All initial segments of xs, concatenated.
[ "All", "initial", "segments", "of", "xs", "concatenated", "." ]
[ "\"\"\"\n All initial segments of xs, concatenated.\n\n >>> ''.join(triangulate('abc'))\n 'aababc'\n >>> ''.join(triangulate('1234'))\n '1121231234'\n >>> list(triangulate([]))\n []\n \"\"\"" ]
[ { "param": "xs", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "xs", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def triangulate(xs): for i, _ in enumerate(xs): for x in xs[:i + 1]: yield x
859
526
93e21eac2057e4a6d1d432d170f2219d2acb29df
beantowel/librosa
examples/hpss_beats.py
[ "ISC" ]
Python
process_arguments
<not_specific>
def process_arguments(args): '''Argparse function to get the program parameters''' parser = argparse.ArgumentParser(description='HPSS beat-tracking example') parser.add_argument('input_file', action='store', help='path to the input file (wav, mp3, etc)') parser.add_argument('output_file', action='store', help='path to the output file (csv of beat times)') return vars(parser.parse_args(args))
Argparse function to get the program parameters
Argparse function to get the program parameters
[ "Argparse", "function", "to", "get", "the", "program", "parameters" ]
def process_arguments(args): parser = argparse.ArgumentParser(description='HPSS beat-tracking example') parser.add_argument('input_file', action='store', help='path to the input file (wav, mp3, etc)') parser.add_argument('output_file', action='store', help='path to the output file (csv of beat times)') return vars(parser.parse_args(args))
[ "def", "process_arguments", "(", "args", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'HPSS beat-tracking example'", ")", "parser", ".", "add_argument", "(", "'input_file'", ",", "action", "=", "'store'", ",", "help", "=", "'path to the input file (wav, mp3, etc)'", ")", "parser", ".", "add_argument", "(", "'output_file'", ",", "action", "=", "'store'", ",", "help", "=", "'path to the output file (csv of beat times)'", ")", "return", "vars", "(", "parser", ".", "parse_args", "(", "args", ")", ")" ]
Argparse function to get the program parameters
[ "Argparse", "function", "to", "get", "the", "program", "parameters" ]
[ "'''Argparse function to get the program parameters'''" ]
[ { "param": "args", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "args", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import argparse def process_arguments(args): parser = argparse.ArgumentParser(description='HPSS beat-tracking example') parser.add_argument('input_file', action='store', help='path to the input file (wav, mp3, etc)') parser.add_argument('output_file', action='store', help='path to the output file (csv of beat times)') return vars(parser.parse_args(args))
860
435
ea88e1f54e7ff8af5f1191269fecc46695f02dce
InfrastructureHQ/AWS-CDK-Accelerators
salesforce-appflow/iac/policies/policies.py
[ "Apache-2.0" ]
Python
aws_secrets_manager_get_secret_policy_in_json
<not_specific>
def aws_secrets_manager_get_secret_policy_in_json(secret_arn): """ Define an IAM policy statement for getting secret value. :return: an IAM policy statement in json. """ return { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["secretsmanager:GetSecretValue"], "Resource": [secret_arn], } ], }
Define an IAM policy statement for getting secret value. :return: an IAM policy statement in json.
Define an IAM policy statement for getting secret value.
[ "Define", "an", "IAM", "policy", "statement", "for", "getting", "secret", "value", "." ]
def aws_secrets_manager_get_secret_policy_in_json(secret_arn): return { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["secretsmanager:GetSecretValue"], "Resource": [secret_arn], } ], }
[ "def", "aws_secrets_manager_get_secret_policy_in_json", "(", "secret_arn", ")", ":", "return", "{", "\"Version\"", ":", "\"2012-10-17\"", ",", "\"Statement\"", ":", "[", "{", "\"Effect\"", ":", "\"Allow\"", ",", "\"Action\"", ":", "[", "\"secretsmanager:GetSecretValue\"", "]", ",", "\"Resource\"", ":", "[", "secret_arn", "]", ",", "}", "]", ",", "}" ]
Define an IAM policy statement for getting secret value.
[ "Define", "an", "IAM", "policy", "statement", "for", "getting", "secret", "value", "." ]
[ "\"\"\"\n Define an IAM policy statement for getting secret value.\n :return: an IAM policy statement in json.\n \"\"\"" ]
[ { "param": "secret_arn", "type": null } ]
{ "returns": [ { "docstring": "an IAM policy statement in json.", "docstring_tokens": [ "an", "IAM", "policy", "statement", "in", "json", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "secret_arn", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def aws_secrets_manager_get_secret_policy_in_json(secret_arn): return { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["secretsmanager:GetSecretValue"], "Resource": [secret_arn], } ], }
861
85
866b4d9ee5b46f226d443445ae1eef8d2ff7dba7
jason-r-becker/dfspy
dfspy/train_projections.py
[ "MIT" ]
Python
fmt_pval
<not_specific>
def fmt_pval(pvals): """Return *-style significance list for pvalues.""" sig = [] for pval in pvals: if pval <= 0.001: sig.append('*') elif pval <= 0.01: sig.append('**') elif pval <= 0.05: sig.append('***') else: sig.append('') return sig
Return *-style significance list for pvalues.
Return *-style significance list for pvalues.
[ "Return", "*", "-", "style", "significance", "list", "for", "pvalues", "." ]
def fmt_pval(pvals): sig = [] for pval in pvals: if pval <= 0.001: sig.append('*') elif pval <= 0.01: sig.append('**') elif pval <= 0.05: sig.append('***') else: sig.append('') return sig
[ "def", "fmt_pval", "(", "pvals", ")", ":", "sig", "=", "[", "]", "for", "pval", "in", "pvals", ":", "if", "pval", "<=", "0.001", ":", "sig", ".", "append", "(", "'*'", ")", "elif", "pval", "<=", "0.01", ":", "sig", ".", "append", "(", "'**'", ")", "elif", "pval", "<=", "0.05", ":", "sig", ".", "append", "(", "'***'", ")", "else", ":", "sig", ".", "append", "(", "''", ")", "return", "sig" ]
Return *-style significance list for pvalues.
[ "Return", "*", "-", "style", "significance", "list", "for", "pvalues", "." ]
[ "\"\"\"Return *-style significance list for pvalues.\"\"\"" ]
[ { "param": "pvals", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "pvals", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def fmt_pval(pvals): sig = [] for pval in pvals: if pval <= 0.001: sig.append('*') elif pval <= 0.01: sig.append('**') elif pval <= 0.05: sig.append('***') else: sig.append('') return sig
863
114
0cfc996c1f7fa2e516172473d5f77b17e198ab95
radug0314/pytest_func_cov
pytest_func_cov/tracking.py
[ "MIT" ]
Python
import_module_from_file
<not_specific>
def import_module_from_file(module_name, file_path): """ Imports module from a given file path under a given module name. If the module exists the function returns the module object from sys.modules. Args: module_name (str): Full qualified name of the module. Example: mypackage.mymodule file_path (str): Path to module, assumed to be a ".py" file Returns: ModuleType """ if module_name in sys.modules: module = sys.modules[module_name] else: spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) sys.modules[module_name] = module spec.loader.exec_module(module) return module
Imports module from a given file path under a given module name. If the module exists the function returns the module object from sys.modules. Args: module_name (str): Full qualified name of the module. Example: mypackage.mymodule file_path (str): Path to module, assumed to be a ".py" file Returns: ModuleType
Imports module from a given file path under a given module name. If the module exists the function returns the module object from sys.modules.
[ "Imports", "module", "from", "a", "given", "file", "path", "under", "a", "given", "module", "name", ".", "If", "the", "module", "exists", "the", "function", "returns", "the", "module", "object", "from", "sys", ".", "modules", "." ]
def import_module_from_file(module_name, file_path): if module_name in sys.modules: module = sys.modules[module_name] else: spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) sys.modules[module_name] = module spec.loader.exec_module(module) return module
[ "def", "import_module_from_file", "(", "module_name", ",", "file_path", ")", ":", "if", "module_name", "in", "sys", ".", "modules", ":", "module", "=", "sys", ".", "modules", "[", "module_name", "]", "else", ":", "spec", "=", "importlib", ".", "util", ".", "spec_from_file_location", "(", "module_name", ",", "file_path", ")", "module", "=", "importlib", ".", "util", ".", "module_from_spec", "(", "spec", ")", "sys", ".", "modules", "[", "module_name", "]", "=", "module", "spec", ".", "loader", ".", "exec_module", "(", "module", ")", "return", "module" ]
Imports module from a given file path under a given module name.
[ "Imports", "module", "from", "a", "given", "file", "path", "under", "a", "given", "module", "name", "." ]
[ "\"\"\"\n Imports module from a given file path under a given module name. If the module\n exists the function returns the module object from sys.modules.\n\n Args:\n module_name (str): Full qualified name of the module.\n Example: mypackage.mymodule\n file_path (str): Path to module, assumed to be a \".py\" file\n\n Returns:\n ModuleType\n \"\"\"" ]
[ { "param": "module_name", "type": null }, { "param": "file_path", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [], "params": [ { "identifier": "module_name", "type": null, "docstring": "Full qualified name of the module.\nExample: mypackage.mymodule", "docstring_tokens": [ "Full", "qualified", "name", "of", "the", "module", ".", "Example", ":", "mypackage", ".", "mymodule" ], "default": null, "is_optional": false }, { "identifier": "file_path", "type": null, "docstring": "Path to module, assumed to be a \".py\" file", "docstring_tokens": [ "Path", "to", "module", "assumed", "to", "be", "a", "\"", ".", "py", "\"", "file" ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
import importlib import sys def import_module_from_file(module_name, file_path): if module_name in sys.modules: module = sys.modules[module_name] else: spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) sys.modules[module_name] = module spec.loader.exec_module(module) return module
864
740
5f2f16cda2237781d32f309ad923d4a58b1fbe5b
danielw2904/networkit
extrafiles/tooling/nktooling/__init__.py
[ "MIT" ]
Python
computeAndReportDiff
null
def computeAndReportDiff(originalFilename, formatedFilename): """Compute a colorful diff between the original file and the formatted one""" p = subprocess.Popen(["diff", "-a", "--color=always", originalFilename, formatedFilename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=-1) output, _ = p.communicate() print("-" * 20, "Begin of diff", "-" * 20) print("Input file: ", originalFilename) sys.stdout.buffer.write(output) print("-" * 21, "End of diff", "-" * 21)
Compute a colorful diff between the original file and the formatted one
Compute a colorful diff between the original file and the formatted one
[ "Compute", "a", "colorful", "diff", "between", "the", "original", "file", "and", "the", "formatted", "one" ]
def computeAndReportDiff(originalFilename, formatedFilename): p = subprocess.Popen(["diff", "-a", "--color=always", originalFilename, formatedFilename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=-1) output, _ = p.communicate() print("-" * 20, "Begin of diff", "-" * 20) print("Input file: ", originalFilename) sys.stdout.buffer.write(output) print("-" * 21, "End of diff", "-" * 21)
[ "def", "computeAndReportDiff", "(", "originalFilename", ",", "formatedFilename", ")", ":", "p", "=", "subprocess", ".", "Popen", "(", "[", "\"diff\"", ",", "\"-a\"", ",", "\"--color=always\"", ",", "originalFilename", ",", "formatedFilename", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ",", "bufsize", "=", "-", "1", ")", "output", ",", "_", "=", "p", ".", "communicate", "(", ")", "print", "(", "\"-\"", "*", "20", ",", "\"Begin of diff\"", ",", "\"-\"", "*", "20", ")", "print", "(", "\"Input file: \"", ",", "originalFilename", ")", "sys", ".", "stdout", ".", "buffer", ".", "write", "(", "output", ")", "print", "(", "\"-\"", "*", "21", ",", "\"End of diff\"", ",", "\"-\"", "*", "21", ")" ]
Compute a colorful diff between the original file and the formatted one
[ "Compute", "a", "colorful", "diff", "between", "the", "original", "file", "and", "the", "formatted", "one" ]
[ "\"\"\"Compute a colorful diff between the original file and the formatted one\"\"\"" ]
[ { "param": "originalFilename", "type": null }, { "param": "formatedFilename", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "originalFilename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "formatedFilename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import subprocess import sys def computeAndReportDiff(originalFilename, formatedFilename): p = subprocess.Popen(["diff", "-a", "--color=always", originalFilename, formatedFilename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=-1) output, _ = p.communicate() print("-" * 20, "Begin of diff", "-" * 20) print("Input file: ", originalFilename) sys.stdout.buffer.write(output) print("-" * 21, "End of diff", "-" * 21)
865
778
4314016bab1bb184cf790e1efcb61f64ccfdc429
zklaus/ESMValTool
diag_scripts/aux/catchment_analysis/catchment_analysis_tool_val.py
[ "Apache-2.0" ]
Python
writefile
<not_specific>
def writefile(data, output, title): """write data to file as to be read by function readfile""" import csv with open(output, 'w') as csvfile: w = csv.writer(csvfile) w.writerow([title]) w.writerow([' ']) for key in sorted(data.keys()): val = data[key]['data'] unit = data[key]['unit'] if not data[key].get('rel', False): w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17)]) else: rel = data[key]['rel'] w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17) + str(' (' + '%6.2f' % (rel) + ' %)')]) return
write data to file as to be read by function readfile
write data to file as to be read by function readfile
[ "write", "data", "to", "file", "as", "to", "be", "read", "by", "function", "readfile" ]
def writefile(data, output, title): import csv with open(output, 'w') as csvfile: w = csv.writer(csvfile) w.writerow([title]) w.writerow([' ']) for key in sorted(data.keys()): val = data[key]['data'] unit = data[key]['unit'] if not data[key].get('rel', False): w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17)]) else: rel = data[key]['rel'] w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17) + str(' (' + '%6.2f' % (rel) + ' %)')]) return
[ "def", "writefile", "(", "data", ",", "output", ",", "title", ")", ":", "import", "csv", "with", "open", "(", "output", ",", "'w'", ")", "as", "csvfile", ":", "w", "=", "csv", ".", "writer", "(", "csvfile", ")", "w", ".", "writerow", "(", "[", "title", "]", ")", "w", ".", "writerow", "(", "[", "' '", "]", ")", "for", "key", "in", "sorted", "(", "data", ".", "keys", "(", ")", ")", ":", "val", "=", "data", "[", "key", "]", "[", "'data'", "]", "unit", "=", "data", "[", "key", "]", "[", "'unit'", "]", "if", "not", "data", "[", "key", "]", ".", "get", "(", "'rel'", ",", "False", ")", ":", "w", ".", "writerow", "(", "[", "key", ".", "ljust", "(", "30", ")", "+", "':'", "+", "str", "(", "str", "(", "val", ")", "+", "' '", "+", "unit", ")", ".", "rjust", "(", "17", ")", "]", ")", "else", ":", "rel", "=", "data", "[", "key", "]", "[", "'rel'", "]", "w", ".", "writerow", "(", "[", "key", ".", "ljust", "(", "30", ")", "+", "':'", "+", "str", "(", "str", "(", "val", ")", "+", "' '", "+", "unit", ")", ".", "rjust", "(", "17", ")", "+", "str", "(", "' ('", "+", "'%6.2f'", "%", "(", "rel", ")", "+", "' %)'", ")", "]", ")", "return" ]
write data to file as to be read by function readfile
[ "write", "data", "to", "file", "as", "to", "be", "read", "by", "function", "readfile" ]
[ "\"\"\"write data to file as to be read by function readfile\"\"\"" ]
[ { "param": "data", "type": null }, { "param": "output", "type": null }, { "param": "title", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "data", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "output", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "title", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import csv def writefile(data, output, title): import csv with open(output, 'w') as csvfile: w = csv.writer(csvfile) w.writerow([title]) w.writerow([' ']) for key in sorted(data.keys()): val = data[key]['data'] unit = data[key]['unit'] if not data[key].get('rel', False): w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17)]) else: rel = data[key]['rel'] w.writerow( [key.ljust(30) + ':' + str(str(val) + ' ' + unit).rjust(17) + str(' (' + '%6.2f' % (rel) + ' %)')]) return
866
756
493b4080a38b52d4af2d46fe63e658233a49a798
MKlauck/qcomp2020
toolpackages/PRISM/tool.py
[ "CC-BY-4.0" ]
Python
is_benchmark_supported
<not_specific>
def is_benchmark_supported(benchmark : Benchmark): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" # Check for unsupported input languages: everything but PRISM currently if benchmark.is_prism(): # Temporarily disable pacman - very slow # if benchmark.get_model_short_name() == "pacman": # return False # Check for unsupported property types: just reward bounded currently if benchmark.is_reward_bounded_probabilistic_reachability() or benchmark.is_reward_bounded_expected_reward(): return False # print("{},{},{},{}".format(benchmark.get_identifier(),benchmark.get_model_type(),benchmark.get_property_type(),benchmark.get_max_num_states())) return True else: return False
returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list
returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list
[ "returns", "True", "if", "the", "provided", "benchmark", "is", "supported", "by", "the", "tool", "and", "if", "the", "given", "benchmark", "should", "appear", "on", "the", "generated", "benchmark", "list" ]
def is_benchmark_supported(benchmark : Benchmark): if benchmark.is_prism(): if benchmark.is_reward_bounded_probabilistic_reachability() or benchmark.is_reward_bounded_expected_reward(): return False return True else: return False
[ "def", "is_benchmark_supported", "(", "benchmark", ":", "Benchmark", ")", ":", "if", "benchmark", ".", "is_prism", "(", ")", ":", "if", "benchmark", ".", "is_reward_bounded_probabilistic_reachability", "(", ")", "or", "benchmark", ".", "is_reward_bounded_expected_reward", "(", ")", ":", "return", "False", "return", "True", "else", ":", "return", "False" ]
returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list
[ "returns", "True", "if", "the", "provided", "benchmark", "is", "supported", "by", "the", "tool", "and", "if", "the", "given", "benchmark", "should", "appear", "on", "the", "generated", "benchmark", "list" ]
[ "\"\"\"returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list\"\"\"", "# Check for unsupported input languages: everything but PRISM currently", "# Temporarily disable pacman - very slow", "# if benchmark.get_model_short_name() == \"pacman\":", "# return False", "# Check for unsupported property types: just reward bounded currently", "# print(\"{},{},{},{}\".format(benchmark.get_identifier(),benchmark.get_model_type(),benchmark.get_property_type(),benchmark.get_max_num_states()))" ]
[ { "param": "benchmark", "type": "Benchmark" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "benchmark", "type": "Benchmark", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def is_benchmark_supported(benchmark : Benchmark): if benchmark.is_prism(): if benchmark.is_reward_bounded_probabilistic_reachability() or benchmark.is_reward_bounded_expected_reward(): return False return True else: return False
867
176
a1b3b517bce890f64945f838bed5c7f56cc4cef1
valeriabriones/dvm-dos-tem
scripts/generate-html-viewer.py
[ "MIT" ]
Python
classify
<not_specific>
def classify(filepath): ''' Attempts to classify a file based on the underscore seperated fields. Expects a file name something like the following: "sometag_Vegetation_pft0.png" # calibration "suites" "_histo_pestplot.png" # pest plots "*-diagnostics.png" # diagnostics plots For the calibration suites, the category is the last filed before the extension, unless 'pft' is in the last field, in which case the category is the second to last field. For pest plots, the category is the last field before the extension. For diagnostic plots, the category is the second to last field before the extension. Parameters ---------- filepath : str (required) Splits the last element (basename) of a path on underscores, and then looks for either the last element, or second to last element. Returns ------- c : str The classification string. ''' bn = os.path.basename(filepath) sbn = os.path.splitext(bn)[0] tokens = sbn.split('_') #print tokens classification = None if 'pft' in tokens[-1]: classification = tokens[-2] elif 'diagnostic' in tokens[-1]: classification = "diagnostic-" + tokens[-2] else: classification = tokens[-1] #print "returning %s" % (classification) return classification
Attempts to classify a file based on the underscore seperated fields. Expects a file name something like the following: "sometag_Vegetation_pft0.png" # calibration "suites" "_histo_pestplot.png" # pest plots "*-diagnostics.png" # diagnostics plots For the calibration suites, the category is the last filed before the extension, unless 'pft' is in the last field, in which case the category is the second to last field. For pest plots, the category is the last field before the extension. For diagnostic plots, the category is the second to last field before the extension. Parameters ---------- filepath : str (required) Splits the last element (basename) of a path on underscores, and then looks for either the last element, or second to last element. Returns ------- c : str The classification string.
Attempts to classify a file based on the underscore seperated fields. Expects a file name something like the following. For the calibration suites, the category is the last filed before the extension, unless 'pft' is in the last field, in which case the category is the second to last field. For pest plots, the category is the last field before the extension. For diagnostic plots, the category is the second to last field before the extension. Parameters filepath : str (required) Splits the last element (basename) of a path on underscores, and then looks for either the last element, or second to last element. Returns c : str The classification string.
[ "Attempts", "to", "classify", "a", "file", "based", "on", "the", "underscore", "seperated", "fields", ".", "Expects", "a", "file", "name", "something", "like", "the", "following", ".", "For", "the", "calibration", "suites", "the", "category", "is", "the", "last", "filed", "before", "the", "extension", "unless", "'", "pft", "'", "is", "in", "the", "last", "field", "in", "which", "case", "the", "category", "is", "the", "second", "to", "last", "field", ".", "For", "pest", "plots", "the", "category", "is", "the", "last", "field", "before", "the", "extension", ".", "For", "diagnostic", "plots", "the", "category", "is", "the", "second", "to", "last", "field", "before", "the", "extension", ".", "Parameters", "filepath", ":", "str", "(", "required", ")", "Splits", "the", "last", "element", "(", "basename", ")", "of", "a", "path", "on", "underscores", "and", "then", "looks", "for", "either", "the", "last", "element", "or", "second", "to", "last", "element", ".", "Returns", "c", ":", "str", "The", "classification", "string", "." ]
def classify(filepath): bn = os.path.basename(filepath) sbn = os.path.splitext(bn)[0] tokens = sbn.split('_') classification = None if 'pft' in tokens[-1]: classification = tokens[-2] elif 'diagnostic' in tokens[-1]: classification = "diagnostic-" + tokens[-2] else: classification = tokens[-1] return classification
[ "def", "classify", "(", "filepath", ")", ":", "bn", "=", "os", ".", "path", ".", "basename", "(", "filepath", ")", "sbn", "=", "os", ".", "path", ".", "splitext", "(", "bn", ")", "[", "0", "]", "tokens", "=", "sbn", ".", "split", "(", "'_'", ")", "classification", "=", "None", "if", "'pft'", "in", "tokens", "[", "-", "1", "]", ":", "classification", "=", "tokens", "[", "-", "2", "]", "elif", "'diagnostic'", "in", "tokens", "[", "-", "1", "]", ":", "classification", "=", "\"diagnostic-\"", "+", "tokens", "[", "-", "2", "]", "else", ":", "classification", "=", "tokens", "[", "-", "1", "]", "return", "classification" ]
Attempts to classify a file based on the underscore seperated fields.
[ "Attempts", "to", "classify", "a", "file", "based", "on", "the", "underscore", "seperated", "fields", "." ]
[ "'''\n Attempts to classify a file based on the underscore seperated fields.\n Expects a file name something like the following:\n\n \"sometag_Vegetation_pft0.png\" # calibration \"suites\"\n \"_histo_pestplot.png\" # pest plots\n \"*-diagnostics.png\" # diagnostics plots\n\n\n For the calibration suites, the category is the last filed before the \n extension, unless 'pft' is in the last field, in which case the category\n is the second to last field.\n\n For pest plots, the category is the last field before the extension.\n\n For diagnostic plots, the category is the second to last field before the\n extension.\n\n Parameters\n ----------\n filepath : str (required)\n Splits the last element (basename) of a path on underscores, and\n then looks for either the last element, or second to last element.\n\n Returns\n -------\n c : str\n The classification string.\n '''", "#print tokens", "#print \"returning %s\" % (classification) " ]
[ { "param": "filepath", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "filepath", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def classify(filepath): bn = os.path.basename(filepath) sbn = os.path.splitext(bn)[0] tokens = sbn.split('_') classification = None if 'pft' in tokens[-1]: classification = tokens[-2] elif 'diagnostic' in tokens[-1]: classification = "diagnostic-" + tokens[-2] else: classification = tokens[-1] return classification
868
761
0cd757e3021342ed1b2f13b217b19c80e9bad499
GeminiDRSoftware/OCAMDR
scorpiodr/scorpio/recipes/sq/recipes_ARC_LS_SPECT_CCD.py
[ "BSD-3-Clause" ]
Python
makeProcessedArc
<not_specific>
def makeProcessedArc(p): """ This recipe performs the standardization and corrections needed to convert the raw input arc images into a reduced arc, with a wavelength solution attached to it. This output processed arc is stored on disk using storeProcessedArc and has a name equal to the name of the first input arc image with "_arc.fits" appended. Parameters ---------- p : Primitives object A primitive set matching the recipe_tags. """ p.prepare() p.addDQ(static_bpm=None) p.addVAR(read_noise=True) p.overscanCorrect() p.biasCorrect() p.ADUToElectrons() p.addVAR(poisson_noise=True) p.determineWavelengthSolution() p.determineDistortion() p.storeProcessedArc() return
This recipe performs the standardization and corrections needed to convert the raw input arc images into a reduced arc, with a wavelength solution attached to it. This output processed arc is stored on disk using storeProcessedArc and has a name equal to the name of the first input arc image with "_arc.fits" appended. Parameters ---------- p : Primitives object A primitive set matching the recipe_tags.
This recipe performs the standardization and corrections needed to convert the raw input arc images into a reduced arc, with a wavelength solution attached to it. This output processed arc is stored on disk using storeProcessedArc and has a name equal to the name of the first input arc image with "_arc.fits" appended. Parameters p : Primitives object A primitive set matching the recipe_tags.
[ "This", "recipe", "performs", "the", "standardization", "and", "corrections", "needed", "to", "convert", "the", "raw", "input", "arc", "images", "into", "a", "reduced", "arc", "with", "a", "wavelength", "solution", "attached", "to", "it", ".", "This", "output", "processed", "arc", "is", "stored", "on", "disk", "using", "storeProcessedArc", "and", "has", "a", "name", "equal", "to", "the", "name", "of", "the", "first", "input", "arc", "image", "with", "\"", "_arc", ".", "fits", "\"", "appended", ".", "Parameters", "p", ":", "Primitives", "object", "A", "primitive", "set", "matching", "the", "recipe_tags", "." ]
def makeProcessedArc(p): p.prepare() p.addDQ(static_bpm=None) p.addVAR(read_noise=True) p.overscanCorrect() p.biasCorrect() p.ADUToElectrons() p.addVAR(poisson_noise=True) p.determineWavelengthSolution() p.determineDistortion() p.storeProcessedArc() return
[ "def", "makeProcessedArc", "(", "p", ")", ":", "p", ".", "prepare", "(", ")", "p", ".", "addDQ", "(", "static_bpm", "=", "None", ")", "p", ".", "addVAR", "(", "read_noise", "=", "True", ")", "p", ".", "overscanCorrect", "(", ")", "p", ".", "biasCorrect", "(", ")", "p", ".", "ADUToElectrons", "(", ")", "p", ".", "addVAR", "(", "poisson_noise", "=", "True", ")", "p", ".", "determineWavelengthSolution", "(", ")", "p", ".", "determineDistortion", "(", ")", "p", ".", "storeProcessedArc", "(", ")", "return" ]
This recipe performs the standardization and corrections needed to convert the raw input arc images into a reduced arc, with a wavelength solution attached to it.
[ "This", "recipe", "performs", "the", "standardization", "and", "corrections", "needed", "to", "convert", "the", "raw", "input", "arc", "images", "into", "a", "reduced", "arc", "with", "a", "wavelength", "solution", "attached", "to", "it", "." ]
[ "\"\"\"\n This recipe performs the standardization and corrections needed to convert\n the raw input arc images into a reduced arc, with a wavelength solution\n attached to it. This output processed arc is stored on disk using\n storeProcessedArc and has a name equal to the name of the first input arc\n image with \"_arc.fits\" appended.\n\n Parameters\n ----------\n p : Primitives object\n A primitive set matching the recipe_tags.\n \"\"\"" ]
[ { "param": "p", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "p", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def makeProcessedArc(p): p.prepare() p.addDQ(static_bpm=None) p.addVAR(read_noise=True) p.overscanCorrect() p.biasCorrect() p.ADUToElectrons() p.addVAR(poisson_noise=True) p.determineWavelengthSolution() p.determineDistortion() p.storeProcessedArc() return
869
453
2bb8090aa91e7ecb93bb17d12ab42880f60463a0
akanksha1304/msds692
hw/code/search/index_search.py
[ "MIT" ]
Python
index_search
<not_specific>
def index_search(files, index, terms): """ Given an index and a list of fully-qualified filenames, return a list of filenames whose file contents has all words in terms parameter as normalized by your words() function. Parameter terms is a list of strings. You can only use the index to find matching files; you cannot open the files and look inside. """ first = True common_files_index = set() for term in terms: if first == True: first = False if term not in index.keys(): continue common_files_index = index[term] else: if common_files_index: common_files_index = common_files_index.intersection(index[term]) result = [] if common_files_index: for i in common_files_index: result.append(files[i]) return result
Given an index and a list of fully-qualified filenames, return a list of filenames whose file contents has all words in terms parameter as normalized by your words() function. Parameter terms is a list of strings. You can only use the index to find matching files; you cannot open the files and look inside.
Given an index and a list of fully-qualified filenames, return a list of filenames whose file contents has all words in terms parameter as normalized by your words() function. Parameter terms is a list of strings. You can only use the index to find matching files; you cannot open the files and look inside.
[ "Given", "an", "index", "and", "a", "list", "of", "fully", "-", "qualified", "filenames", "return", "a", "list", "of", "filenames", "whose", "file", "contents", "has", "all", "words", "in", "terms", "parameter", "as", "normalized", "by", "your", "words", "()", "function", ".", "Parameter", "terms", "is", "a", "list", "of", "strings", ".", "You", "can", "only", "use", "the", "index", "to", "find", "matching", "files", ";", "you", "cannot", "open", "the", "files", "and", "look", "inside", "." ]
def index_search(files, index, terms): first = True common_files_index = set() for term in terms: if first == True: first = False if term not in index.keys(): continue common_files_index = index[term] else: if common_files_index: common_files_index = common_files_index.intersection(index[term]) result = [] if common_files_index: for i in common_files_index: result.append(files[i]) return result
[ "def", "index_search", "(", "files", ",", "index", ",", "terms", ")", ":", "first", "=", "True", "common_files_index", "=", "set", "(", ")", "for", "term", "in", "terms", ":", "if", "first", "==", "True", ":", "first", "=", "False", "if", "term", "not", "in", "index", ".", "keys", "(", ")", ":", "continue", "common_files_index", "=", "index", "[", "term", "]", "else", ":", "if", "common_files_index", ":", "common_files_index", "=", "common_files_index", ".", "intersection", "(", "index", "[", "term", "]", ")", "result", "=", "[", "]", "if", "common_files_index", ":", "for", "i", "in", "common_files_index", ":", "result", ".", "append", "(", "files", "[", "i", "]", ")", "return", "result" ]
Given an index and a list of fully-qualified filenames, return a list of filenames whose file contents has all words in terms parameter as normalized by your words() function.
[ "Given", "an", "index", "and", "a", "list", "of", "fully", "-", "qualified", "filenames", "return", "a", "list", "of", "filenames", "whose", "file", "contents", "has", "all", "words", "in", "terms", "parameter", "as", "normalized", "by", "your", "words", "()", "function", "." ]
[ "\"\"\"\n Given an index and a list of fully-qualified filenames, return a list of\n filenames whose file contents has all words in terms parameter as normalized\n by your words() function. Parameter terms is a list of strings.\n You can only use the index to find matching files; you cannot open the files\n and look inside.\n \"\"\"" ]
[ { "param": "files", "type": null }, { "param": "index", "type": null }, { "param": "terms", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "files", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "index", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "terms", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def index_search(files, index, terms): first = True common_files_index = set() for term in terms: if first == True: first = False if term not in index.keys(): continue common_files_index = index[term] else: if common_files_index: common_files_index = common_files_index.intersection(index[term]) result = [] if common_files_index: for i in common_files_index: result.append(files[i]) return result
871
92
557056a2c4f4e40beabd8bf06f543d53f1229ff5
veryju/unsupervised_coreset_selection
svp/common/active.py
[ "MIT" ]
Python
symlink_target_to_proxy
null
def symlink_target_to_proxy(run_dir: str): """ Create symbolic links from proxy files to the corresponding target files. Parameters ---------- run_dir : str """ # Symlink target directory and files to proxy becasue they # are the same. print('Proxy and target are not different.') proxy_dir = os.path.join(run_dir, 'proxy') target_dir = os.path.join(run_dir, 'target') os.symlink(os.path.relpath(proxy_dir, run_dir), target_dir) print(f'Linked {target_dir} to {proxy_dir}') proxy_csv = os.path.join(run_dir, 'proxy.csv') target_csv = os.path.join(run_dir, 'target.csv') os.symlink(os.path.relpath(proxy_csv, run_dir), target_csv) print(f'Linked {target_csv} to {proxy_csv}')
Create symbolic links from proxy files to the corresponding target files. Parameters ---------- run_dir : str
Create symbolic links from proxy files to the corresponding target files. Parameters
[ "Create", "symbolic", "links", "from", "proxy", "files", "to", "the", "corresponding", "target", "files", ".", "Parameters" ]
def symlink_target_to_proxy(run_dir: str): print('Proxy and target are not different.') proxy_dir = os.path.join(run_dir, 'proxy') target_dir = os.path.join(run_dir, 'target') os.symlink(os.path.relpath(proxy_dir, run_dir), target_dir) print(f'Linked {target_dir} to {proxy_dir}') proxy_csv = os.path.join(run_dir, 'proxy.csv') target_csv = os.path.join(run_dir, 'target.csv') os.symlink(os.path.relpath(proxy_csv, run_dir), target_csv) print(f'Linked {target_csv} to {proxy_csv}')
[ "def", "symlink_target_to_proxy", "(", "run_dir", ":", "str", ")", ":", "print", "(", "'Proxy and target are not different.'", ")", "proxy_dir", "=", "os", ".", "path", ".", "join", "(", "run_dir", ",", "'proxy'", ")", "target_dir", "=", "os", ".", "path", ".", "join", "(", "run_dir", ",", "'target'", ")", "os", ".", "symlink", "(", "os", ".", "path", ".", "relpath", "(", "proxy_dir", ",", "run_dir", ")", ",", "target_dir", ")", "print", "(", "f'Linked {target_dir} to {proxy_dir}'", ")", "proxy_csv", "=", "os", ".", "path", ".", "join", "(", "run_dir", ",", "'proxy.csv'", ")", "target_csv", "=", "os", ".", "path", ".", "join", "(", "run_dir", ",", "'target.csv'", ")", "os", ".", "symlink", "(", "os", ".", "path", ".", "relpath", "(", "proxy_csv", ",", "run_dir", ")", ",", "target_csv", ")", "print", "(", "f'Linked {target_csv} to {proxy_csv}'", ")" ]
Create symbolic links from proxy files to the corresponding target files.
[ "Create", "symbolic", "links", "from", "proxy", "files", "to", "the", "corresponding", "target", "files", "." ]
[ "\"\"\"\n Create symbolic links from proxy files to the corresponding target files.\n\n Parameters\n ----------\n run_dir : str\n \"\"\"", "# Symlink target directory and files to proxy becasue they", "# are the same." ]
[ { "param": "run_dir", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "run_dir", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def symlink_target_to_proxy(run_dir: str): print('Proxy and target are not different.') proxy_dir = os.path.join(run_dir, 'proxy') target_dir = os.path.join(run_dir, 'target') os.symlink(os.path.relpath(proxy_dir, run_dir), target_dir) print(f'Linked {target_dir} to {proxy_dir}') proxy_csv = os.path.join(run_dir, 'proxy.csv') target_csv = os.path.join(run_dir, 'target.csv') os.symlink(os.path.relpath(proxy_csv, run_dir), target_csv) print(f'Linked {target_csv} to {proxy_csv}')
872
263
1342fdd1c29c6eed917d897a052e7cea78b0bf28
snadampal/tensorflow
tensorflow/python/ops/control_flow_util.py
[ "Apache-2.0" ]
Python
GetContainingCondContext
<not_specific>
def GetContainingCondContext(ctxt): """Returns the first ancestor CondContext of `ctxt`. Returns `ctxt` if `ctxt` is a CondContext, or None if `ctxt` is not in a cond. Args: ctxt: ControlFlowContext Returns: `ctxt` if `ctxt` is a CondContext, the most nested CondContext containing `ctxt`, or None if `ctxt` is not in a cond. """ while ctxt: if ctxt.IsCondContext(): return ctxt ctxt = ctxt.outer_context return None
Returns the first ancestor CondContext of `ctxt`. Returns `ctxt` if `ctxt` is a CondContext, or None if `ctxt` is not in a cond. Args: ctxt: ControlFlowContext Returns: `ctxt` if `ctxt` is a CondContext, the most nested CondContext containing `ctxt`, or None if `ctxt` is not in a cond.
Returns the first ancestor CondContext of `ctxt`.
[ "Returns", "the", "first", "ancestor", "CondContext", "of", "`", "ctxt", "`", "." ]
def GetContainingCondContext(ctxt): while ctxt: if ctxt.IsCondContext(): return ctxt ctxt = ctxt.outer_context return None
[ "def", "GetContainingCondContext", "(", "ctxt", ")", ":", "while", "ctxt", ":", "if", "ctxt", ".", "IsCondContext", "(", ")", ":", "return", "ctxt", "ctxt", "=", "ctxt", ".", "outer_context", "return", "None" ]
Returns the first ancestor CondContext of `ctxt`.
[ "Returns", "the", "first", "ancestor", "CondContext", "of", "`", "ctxt", "`", "." ]
[ "\"\"\"Returns the first ancestor CondContext of `ctxt`.\n\n Returns `ctxt` if `ctxt` is a CondContext, or None if `ctxt` is not in a cond.\n\n Args:\n ctxt: ControlFlowContext\n\n Returns:\n `ctxt` if `ctxt` is a CondContext, the most nested CondContext containing\n `ctxt`, or None if `ctxt` is not in a cond.\n \"\"\"" ]
[ { "param": "ctxt", "type": null } ]
{ "returns": [ { "docstring": "`ctxt` if `ctxt` is a CondContext, the most nested CondContext containing\n`ctxt`, or None if `ctxt` is not in a cond.", "docstring_tokens": [ "`", "ctxt", "`", "if", "`", "ctxt", "`", "is", "a", "CondContext", "the", "most", "nested", "CondContext", "containing", "`", "ctxt", "`", "or", "None", "if", "`", "ctxt", "`", "is", "not", "in", "a", "cond", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "ctxt", "type": null, "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def GetContainingCondContext(ctxt): while ctxt: if ctxt.IsCondContext(): return ctxt ctxt = ctxt.outer_context return None
873
180
84fd01944ce1dde3df55987a06164d748d9b41b4
magnusross/gpcm
gpcm/gprvm.py
[ "MIT" ]
Python
psd_matern_12
<not_specific>
def psd_matern_12(omega, lam, lam_t): """Spectral density of Matern-1/2 process. Args: omega (tensor): Frequency. lam (tensor): Decay. lam_t (tensor): Scale. Returns: tensor: Spectral density. """ return 2 * lam_t * lam / (lam ** 2 + omega ** 2)
Spectral density of Matern-1/2 process. Args: omega (tensor): Frequency. lam (tensor): Decay. lam_t (tensor): Scale. Returns: tensor: Spectral density.
Spectral density of Matern-1/2 process.
[ "Spectral", "density", "of", "Matern", "-", "1", "/", "2", "process", "." ]
def psd_matern_12(omega, lam, lam_t): return 2 * lam_t * lam / (lam ** 2 + omega ** 2)
[ "def", "psd_matern_12", "(", "omega", ",", "lam", ",", "lam_t", ")", ":", "return", "2", "*", "lam_t", "*", "lam", "/", "(", "lam", "**", "2", "+", "omega", "**", "2", ")" ]
Spectral density of Matern-1/2 process.
[ "Spectral", "density", "of", "Matern", "-", "1", "/", "2", "process", "." ]
[ "\"\"\"Spectral density of Matern-1/2 process.\n\n Args:\n omega (tensor): Frequency.\n lam (tensor): Decay.\n lam_t (tensor): Scale.\n\n Returns:\n tensor: Spectral density.\n \"\"\"" ]
[ { "param": "omega", "type": null }, { "param": "lam", "type": null }, { "param": "lam_t", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": "tensor" } ], "raises": [], "params": [ { "identifier": "omega", "type": null, "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": false }, { "identifier": "lam", "type": null, "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": false }, { "identifier": "lam_t", "type": null, "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def psd_matern_12(omega, lam, lam_t): return 2 * lam_t * lam / (lam ** 2 + omega ** 2)
874
297
ad90e4882b41e059e2805a01c4e3e763c3874f40
salayhin/talkofacta
eggs/PasteScript-1.7.5-py2.7.egg/paste/script/serve.py
[ "MIT" ]
Python
_turn_sigterm_into_systemexit
<not_specific>
def _turn_sigterm_into_systemexit(): """ Attempts to turn a SIGTERM exception into a SystemExit exception. """ try: import signal except ImportError: return def handle_term(signo, frame): raise SystemExit signal.signal(signal.SIGTERM, handle_term)
Attempts to turn a SIGTERM exception into a SystemExit exception.
Attempts to turn a SIGTERM exception into a SystemExit exception.
[ "Attempts", "to", "turn", "a", "SIGTERM", "exception", "into", "a", "SystemExit", "exception", "." ]
def _turn_sigterm_into_systemexit(): try: import signal except ImportError: return def handle_term(signo, frame): raise SystemExit signal.signal(signal.SIGTERM, handle_term)
[ "def", "_turn_sigterm_into_systemexit", "(", ")", ":", "try", ":", "import", "signal", "except", "ImportError", ":", "return", "def", "handle_term", "(", "signo", ",", "frame", ")", ":", "raise", "SystemExit", "signal", ".", "signal", "(", "signal", ".", "SIGTERM", ",", "handle_term", ")" ]
Attempts to turn a SIGTERM exception into a SystemExit exception.
[ "Attempts", "to", "turn", "a", "SIGTERM", "exception", "into", "a", "SystemExit", "exception", "." ]
[ "\"\"\"\n Attempts to turn a SIGTERM exception into a SystemExit exception.\n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import signal def _turn_sigterm_into_systemexit(): try: import signal except ImportError: return def handle_term(signo, frame): raise SystemExit signal.signal(signal.SIGTERM, handle_term)
875
68
23c9304061c03a5c7b7dd2c9b972a702492481be
HenryKobin/sentinelhub-py
sentinelhub/data_collections.py
[ "MIT" ]
Python
_raise_invalid_id
null
def _raise_invalid_id(collection_id): """ Checks if a given collection ID conforms to an expected pattern and raises an error if it doesn't """ collection_id_pattern = '.{8}-.{4}-.{4}-.{4}-.{12}' if not re.compile(collection_id_pattern).match(collection_id): raise ValueError("Given collection id does not match the expected format {}".format(collection_id_pattern))
Checks if a given collection ID conforms to an expected pattern and raises an error if it doesn't
Checks if a given collection ID conforms to an expected pattern and raises an error if it doesn't
[ "Checks", "if", "a", "given", "collection", "ID", "conforms", "to", "an", "expected", "pattern", "and", "raises", "an", "error", "if", "it", "doesn", "'", "t" ]
def _raise_invalid_id(collection_id): collection_id_pattern = '.{8}-.{4}-.{4}-.{4}-.{12}' if not re.compile(collection_id_pattern).match(collection_id): raise ValueError("Given collection id does not match the expected format {}".format(collection_id_pattern))
[ "def", "_raise_invalid_id", "(", "collection_id", ")", ":", "collection_id_pattern", "=", "'.{8}-.{4}-.{4}-.{4}-.{12}'", "if", "not", "re", ".", "compile", "(", "collection_id_pattern", ")", ".", "match", "(", "collection_id", ")", ":", "raise", "ValueError", "(", "\"Given collection id does not match the expected format {}\"", ".", "format", "(", "collection_id_pattern", ")", ")" ]
Checks if a given collection ID conforms to an expected pattern and raises an error if it doesn't
[ "Checks", "if", "a", "given", "collection", "ID", "conforms", "to", "an", "expected", "pattern", "and", "raises", "an", "error", "if", "it", "doesn", "'", "t" ]
[ "\"\"\" Checks if a given collection ID conforms to an expected pattern and raises an error if it doesn't\n \"\"\"" ]
[ { "param": "collection_id", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "collection_id", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import re def _raise_invalid_id(collection_id): collection_id_pattern = '.{8}-.{4}-.{4}-.{4}-.{12}' if not re.compile(collection_id_pattern).match(collection_id): raise ValueError("Given collection id does not match the expected format {}".format(collection_id_pattern))
876
923
142f5adce110b02163de6d1569ff259385301975
lrt512/emol
emol/emol/initialize/jinja.py
[ "MIT" ]
Python
yes_no_auth
<not_specific>
def yes_no_auth(card, authorization): """Return HTML for yes or no values. A green FontAwesome checkmark or a red FontAwesome X depending on the result of check_authorization """ if card.has_authorization(authorization): return '<i class="fa fa-check fa-lg green yes-no-icon"></i>' return '<i class="fa fa-close fa-lg red yes-no-icon"></i>'
Return HTML for yes or no values. A green FontAwesome checkmark or a red FontAwesome X depending on the result of check_authorization
Return HTML for yes or no values. A green FontAwesome checkmark or a red FontAwesome X depending on the result of check_authorization
[ "Return", "HTML", "for", "yes", "or", "no", "values", ".", "A", "green", "FontAwesome", "checkmark", "or", "a", "red", "FontAwesome", "X", "depending", "on", "the", "result", "of", "check_authorization" ]
def yes_no_auth(card, authorization): if card.has_authorization(authorization): return '<i class="fa fa-check fa-lg green yes-no-icon"></i>' return '<i class="fa fa-close fa-lg red yes-no-icon"></i>'
[ "def", "yes_no_auth", "(", "card", ",", "authorization", ")", ":", "if", "card", ".", "has_authorization", "(", "authorization", ")", ":", "return", "'<i class=\"fa fa-check fa-lg green yes-no-icon\"></i>'", "return", "'<i class=\"fa fa-close fa-lg red yes-no-icon\"></i>'" ]
Return HTML for yes or no values.
[ "Return", "HTML", "for", "yes", "or", "no", "values", "." ]
[ "\"\"\"Return HTML for yes or no values.\n\n A green FontAwesome checkmark or a red FontAwesome\n X depending on the result of check_authorization\n\n \"\"\"" ]
[ { "param": "card", "type": null }, { "param": "authorization", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "card", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "authorization", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def yes_no_auth(card, authorization): if card.has_authorization(authorization): return '<i class="fa fa-check fa-lg green yes-no-icon"></i>' return '<i class="fa fa-close fa-lg red yes-no-icon"></i>'
878
596
88e94fb27fb3f7d6e469a546a28ebaccd2c3278e
lakesterful/tara
bikeshare_2.py
[ "Unlicense" ]
Python
user_stats
null
def user_stats(df, city): """Displays statistics on bikeshare users.""" print('\nCalculating User Stats...\n') start_time = time.time() # TO DO: Display counts of user types counts_user = df['User Type'].value_counts() print('Counts of user type: ',counts_user) # TO DO: Display counts of gender. Display earliest, most recent, and most common year of birth if city != 'washington': counts_gender = df['Gender'].value_counts() print('Counts of gender: ', counts_gender) print('Earliest year of birth: ', df['Birth Year'].min()) print('Most recent year of birth: ', df['Birth Year'].max()) print('Most common year of birth: ', df['Birth Year'].mode()[0]) else: print('The list for Washington does not contain a Gender and Birth Year column.') print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40)
Displays statistics on bikeshare users.
Displays statistics on bikeshare users.
[ "Displays", "statistics", "on", "bikeshare", "users", "." ]
def user_stats(df, city): print('\nCalculating User Stats...\n') start_time = time.time() counts_user = df['User Type'].value_counts() print('Counts of user type: ',counts_user) if city != 'washington': counts_gender = df['Gender'].value_counts() print('Counts of gender: ', counts_gender) print('Earliest year of birth: ', df['Birth Year'].min()) print('Most recent year of birth: ', df['Birth Year'].max()) print('Most common year of birth: ', df['Birth Year'].mode()[0]) else: print('The list for Washington does not contain a Gender and Birth Year column.') print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40)
[ "def", "user_stats", "(", "df", ",", "city", ")", ":", "print", "(", "'\\nCalculating User Stats...\\n'", ")", "start_time", "=", "time", ".", "time", "(", ")", "counts_user", "=", "df", "[", "'User Type'", "]", ".", "value_counts", "(", ")", "print", "(", "'Counts of user type: '", ",", "counts_user", ")", "if", "city", "!=", "'washington'", ":", "counts_gender", "=", "df", "[", "'Gender'", "]", ".", "value_counts", "(", ")", "print", "(", "'Counts of gender: '", ",", "counts_gender", ")", "print", "(", "'Earliest year of birth: '", ",", "df", "[", "'Birth Year'", "]", ".", "min", "(", ")", ")", "print", "(", "'Most recent year of birth: '", ",", "df", "[", "'Birth Year'", "]", ".", "max", "(", ")", ")", "print", "(", "'Most common year of birth: '", ",", "df", "[", "'Birth Year'", "]", ".", "mode", "(", ")", "[", "0", "]", ")", "else", ":", "print", "(", "'The list for Washington does not contain a Gender and Birth Year column.'", ")", "print", "(", "\"\\nThis took %s seconds.\"", "%", "(", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", "print", "(", "'-'", "*", "40", ")" ]
Displays statistics on bikeshare users.
[ "Displays", "statistics", "on", "bikeshare", "users", "." ]
[ "\"\"\"Displays statistics on bikeshare users.\"\"\"", "# TO DO: Display counts of user types", "# TO DO: Display counts of gender. Display earliest, most recent, and most common year of birth" ]
[ { "param": "df", "type": null }, { "param": "city", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "df", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "city", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import time def user_stats(df, city): print('\nCalculating User Stats...\n') start_time = time.time() counts_user = df['User Type'].value_counts() print('Counts of user type: ',counts_user) if city != 'washington': counts_gender = df['Gender'].value_counts() print('Counts of gender: ', counts_gender) print('Earliest year of birth: ', df['Birth Year'].min()) print('Most recent year of birth: ', df['Birth Year'].max()) print('Most common year of birth: ', df['Birth Year'].mode()[0]) else: print('The list for Washington does not contain a Gender and Birth Year column.') print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40)
879
125
9b0b58656627217d303d6168087a96015492b937
goelakash/sagemaker-rl-container
src/vw-serving/src/vw_serving/sagemaker/integration.py
[ "Apache-2.0" ]
Python
pretty_string_validator
<not_specific>
def pretty_string_validator(validator): """Returns a human friendly description of the string validator or None if not applicable""" allowed_keys = {'type', 'pattern'} if validator['type'] == 'string' and set(validator.keys()).issubset(allowed_keys): message = "a string" if 'pattern' in validator: message += " which matches the pattern '{}'".format(validator['pattern']) return message else: return None
Returns a human friendly description of the string validator or None if not applicable
Returns a human friendly description of the string validator or None if not applicable
[ "Returns", "a", "human", "friendly", "description", "of", "the", "string", "validator", "or", "None", "if", "not", "applicable" ]
def pretty_string_validator(validator): allowed_keys = {'type', 'pattern'} if validator['type'] == 'string' and set(validator.keys()).issubset(allowed_keys): message = "a string" if 'pattern' in validator: message += " which matches the pattern '{}'".format(validator['pattern']) return message else: return None
[ "def", "pretty_string_validator", "(", "validator", ")", ":", "allowed_keys", "=", "{", "'type'", ",", "'pattern'", "}", "if", "validator", "[", "'type'", "]", "==", "'string'", "and", "set", "(", "validator", ".", "keys", "(", ")", ")", ".", "issubset", "(", "allowed_keys", ")", ":", "message", "=", "\"a string\"", "if", "'pattern'", "in", "validator", ":", "message", "+=", "\" which matches the pattern '{}'\"", ".", "format", "(", "validator", "[", "'pattern'", "]", ")", "return", "message", "else", ":", "return", "None" ]
Returns a human friendly description of the string validator or None if not applicable
[ "Returns", "a", "human", "friendly", "description", "of", "the", "string", "validator", "or", "None", "if", "not", "applicable" ]
[ "\"\"\"Returns a human friendly description of the string validator or None if not applicable\"\"\"" ]
[ { "param": "validator", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "validator", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def pretty_string_validator(validator): allowed_keys = {'type', 'pattern'} if validator['type'] == 'string' and set(validator.keys()).issubset(allowed_keys): message = "a string" if 'pattern' in validator: message += " which matches the pattern '{}'".format(validator['pattern']) return message else: return None
880
952
ddb8cfb5f3d8699806c106de358c19b1d5c31367
raneem11/DynamicHead
web_data/augmentation.py
[ "MIT" ]
Python
policy_v0
<not_specific>
def policy_v0(): """Autoaugment policy that was used in AutoAugment Detection Paper.""" # Each tuple is an augmentation operation of the form # (operation, probability, magnitude). Each element in policy is a # sub-policy that will be applied sequentially on the image. policy = [ [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)], [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)], [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)], [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)], [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)], ] return policy
Autoaugment policy that was used in AutoAugment Detection Paper.
Autoaugment policy that was used in AutoAugment Detection Paper.
[ "Autoaugment", "policy", "that", "was", "used", "in", "AutoAugment", "Detection", "Paper", "." ]
def policy_v0(): policy = [ [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)], [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)], [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)], [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)], [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)], ] return policy
[ "def", "policy_v0", "(", ")", ":", "policy", "=", "[", "[", "(", "'TranslateX_BBox'", ",", "0.6", ",", "4", ")", ",", "(", "'Equalize'", ",", "0.8", ",", "10", ")", "]", ",", "[", "(", "'TranslateY_Only_BBoxes'", ",", "0.2", ",", "2", ")", ",", "(", "'Cutout'", ",", "0.8", ",", "8", ")", "]", ",", "[", "(", "'Sharpness'", ",", "0.0", ",", "8", ")", ",", "(", "'ShearX_BBox'", ",", "0.4", ",", "0", ")", "]", ",", "[", "(", "'ShearY_BBox'", ",", "1.0", ",", "2", ")", ",", "(", "'TranslateY_Only_BBoxes'", ",", "0.6", ",", "6", ")", "]", ",", "[", "(", "'Rotate_BBox'", ",", "0.6", ",", "10", ")", ",", "(", "'Color'", ",", "1.0", ",", "6", ")", "]", ",", "]", "return", "policy" ]
Autoaugment policy that was used in AutoAugment Detection Paper.
[ "Autoaugment", "policy", "that", "was", "used", "in", "AutoAugment", "Detection", "Paper", "." ]
[ "\"\"\"Autoaugment policy that was used in AutoAugment Detection Paper.\"\"\"", "# Each tuple is an augmentation operation of the form", "# (operation, probability, magnitude). Each element in policy is a", "# sub-policy that will be applied sequentially on the image." ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def policy_v0(): policy = [ [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)], [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)], [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)], [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)], [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)], ] return policy
881
749
8f7038af4f6294245008fe2e65f87fe40be64b87
R3v1L/evogtk
evogtk/tools/__init__.py
[ "MIT" ]
Python
openWithDefaultApp
null
def openWithDefaultApp(filename): """ Open a file in default system application """ if sys.platform in ['win32','cygwin']: os.startfile(filename) elif sys.platform == 'linux2': os.system('/usr/bin/xdg-open "%s"' % filename) elif sys.platform =='darwin': os.system('open "%s"' % filename) elif os.name == 'nt': os.startfile(filename) elif os.name == 'posix': os.system('/usr/bin/xdg-open "%s"' % filename)
Open a file in default system application
Open a file in default system application
[ "Open", "a", "file", "in", "default", "system", "application" ]
def openWithDefaultApp(filename): if sys.platform in ['win32','cygwin']: os.startfile(filename) elif sys.platform == 'linux2': os.system('/usr/bin/xdg-open "%s"' % filename) elif sys.platform =='darwin': os.system('open "%s"' % filename) elif os.name == 'nt': os.startfile(filename) elif os.name == 'posix': os.system('/usr/bin/xdg-open "%s"' % filename)
[ "def", "openWithDefaultApp", "(", "filename", ")", ":", "if", "sys", ".", "platform", "in", "[", "'win32'", ",", "'cygwin'", "]", ":", "os", ".", "startfile", "(", "filename", ")", "elif", "sys", ".", "platform", "==", "'linux2'", ":", "os", ".", "system", "(", "'/usr/bin/xdg-open \"%s\"'", "%", "filename", ")", "elif", "sys", ".", "platform", "==", "'darwin'", ":", "os", ".", "system", "(", "'open \"%s\"'", "%", "filename", ")", "elif", "os", ".", "name", "==", "'nt'", ":", "os", ".", "startfile", "(", "filename", ")", "elif", "os", ".", "name", "==", "'posix'", ":", "os", ".", "system", "(", "'/usr/bin/xdg-open \"%s\"'", "%", "filename", ")" ]
Open a file in default system application
[ "Open", "a", "file", "in", "default", "system", "application" ]
[ "\"\"\"\n Open a file in default system application\n \"\"\"" ]
[ { "param": "filename", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "filename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import sys import os def openWithDefaultApp(filename): if sys.platform in ['win32','cygwin']: os.startfile(filename) elif sys.platform == 'linux2': os.system('/usr/bin/xdg-open "%s"' % filename) elif sys.platform =='darwin': os.system('open "%s"' % filename) elif os.name == 'nt': os.startfile(filename) elif os.name == 'posix': os.system('/usr/bin/xdg-open "%s"' % filename)
882
480
cd084741f783a0ea12babbcc5ae828dfc408040e
akshaygupta2208/hangoutsbot
hangupsbot/plugins/forecast.py
[ "Unlicense" ]
Python
_get_forcast_units
<not_specific>
def _get_forcast_units(result): """ Checks to see what uni the results were passed back as and sets the display units accordingly """ units = { 'temperature': 'F', 'distance': 'Miles', 'percipIntensity': 'in./hr.', 'precipAccumulation': 'inches', 'windSpeed': 'mph', 'pressure': 'millibars' } if result['flags']: unit = result['flags']['units'] if unit != 'us': units['temperature'] = 'C' units['distance'] = 'KM' units['percipIntensity'] = 'milimeters per hour' units['precipAccumulation'] = 'centimeters' units['windSpeed'] = 'm/s' units['pressure'] = 'kPa' if unit == 'ca': units['windSpeed'] = 'km/h' if unit == 'uk2': units['windSpeed'] = 'mph' units['distance'] = 'Miles' return units
Checks to see what uni the results were passed back as and sets the display units accordingly
Checks to see what uni the results were passed back as and sets the display units accordingly
[ "Checks", "to", "see", "what", "uni", "the", "results", "were", "passed", "back", "as", "and", "sets", "the", "display", "units", "accordingly" ]
def _get_forcast_units(result): units = { 'temperature': 'F', 'distance': 'Miles', 'percipIntensity': 'in./hr.', 'precipAccumulation': 'inches', 'windSpeed': 'mph', 'pressure': 'millibars' } if result['flags']: unit = result['flags']['units'] if unit != 'us': units['temperature'] = 'C' units['distance'] = 'KM' units['percipIntensity'] = 'milimeters per hour' units['precipAccumulation'] = 'centimeters' units['windSpeed'] = 'm/s' units['pressure'] = 'kPa' if unit == 'ca': units['windSpeed'] = 'km/h' if unit == 'uk2': units['windSpeed'] = 'mph' units['distance'] = 'Miles' return units
[ "def", "_get_forcast_units", "(", "result", ")", ":", "units", "=", "{", "'temperature'", ":", "'F'", ",", "'distance'", ":", "'Miles'", ",", "'percipIntensity'", ":", "'in./hr.'", ",", "'precipAccumulation'", ":", "'inches'", ",", "'windSpeed'", ":", "'mph'", ",", "'pressure'", ":", "'millibars'", "}", "if", "result", "[", "'flags'", "]", ":", "unit", "=", "result", "[", "'flags'", "]", "[", "'units'", "]", "if", "unit", "!=", "'us'", ":", "units", "[", "'temperature'", "]", "=", "'C'", "units", "[", "'distance'", "]", "=", "'KM'", "units", "[", "'percipIntensity'", "]", "=", "'milimeters per hour'", "units", "[", "'precipAccumulation'", "]", "=", "'centimeters'", "units", "[", "'windSpeed'", "]", "=", "'m/s'", "units", "[", "'pressure'", "]", "=", "'kPa'", "if", "unit", "==", "'ca'", ":", "units", "[", "'windSpeed'", "]", "=", "'km/h'", "if", "unit", "==", "'uk2'", ":", "units", "[", "'windSpeed'", "]", "=", "'mph'", "units", "[", "'distance'", "]", "=", "'Miles'", "return", "units" ]
Checks to see what uni the results were passed back as and sets the display units accordingly
[ "Checks", "to", "see", "what", "uni", "the", "results", "were", "passed", "back", "as", "and", "sets", "the", "display", "units", "accordingly" ]
[ "\"\"\"\n Checks to see what uni the results were passed back as and sets the display units accordingly\n \"\"\"" ]
[ { "param": "result", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "result", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _get_forcast_units(result): units = { 'temperature': 'F', 'distance': 'Miles', 'percipIntensity': 'in./hr.', 'precipAccumulation': 'inches', 'windSpeed': 'mph', 'pressure': 'millibars' } if result['flags']: unit = result['flags']['units'] if unit != 'us': units['temperature'] = 'C' units['distance'] = 'KM' units['percipIntensity'] = 'milimeters per hour' units['precipAccumulation'] = 'centimeters' units['windSpeed'] = 'm/s' units['pressure'] = 'kPa' if unit == 'ca': units['windSpeed'] = 'km/h' if unit == 'uk2': units['windSpeed'] = 'mph' units['distance'] = 'Miles' return units
883
201
183542f4c4bb82b2aab92c8adb23f5cbb8d5d321
JonasGlobevnik/Project_GB_1718
src/evaluation.py
[ "Apache-2.0" ]
Python
idx_tuple_in_df
<not_specific>
def idx_tuple_in_df(tuple_x, df): """ Find the first row index of tuple_x in df """ for i,v in enumerate(df.values): if tuple_x == tuple(v): res = i break else: res=None return res
Find the first row index of tuple_x in df
Find the first row index of tuple_x in df
[ "Find", "the", "first", "row", "index", "of", "tuple_x", "in", "df" ]
def idx_tuple_in_df(tuple_x, df): for i,v in enumerate(df.values): if tuple_x == tuple(v): res = i break else: res=None return res
[ "def", "idx_tuple_in_df", "(", "tuple_x", ",", "df", ")", ":", "for", "i", ",", "v", "in", "enumerate", "(", "df", ".", "values", ")", ":", "if", "tuple_x", "==", "tuple", "(", "v", ")", ":", "res", "=", "i", "break", "else", ":", "res", "=", "None", "return", "res" ]
Find the first row index of tuple_x in df
[ "Find", "the", "first", "row", "index", "of", "tuple_x", "in", "df" ]
[ "\"\"\"\n Find the first row index of tuple_x in df\n\n \"\"\"" ]
[ { "param": "tuple_x", "type": null }, { "param": "df", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "tuple_x", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "df", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def idx_tuple_in_df(tuple_x, df): for i,v in enumerate(df.values): if tuple_x == tuple(v): res = i break else: res=None return res
884
105
7b510ee49e48f24e640c2c7b3642cf5121e8770e
plaplant/hera_opm
hera_opm/mf_tools.py
[ "BSD-2-Clause" ]
Python
clean_wrapper_scripts
<not_specific>
def clean_wrapper_scripts(work_dir): """Clean up wrapper scripts from work directory. This script removes any files in the specified directory that begin with "wrapper_", which is how the scripts are named in the 'build_makeflow_from_config' function above. It also removes files that end in ".wrapper", which is how makeflow labels wrapper scripts for batch processing. Parameters ---------- work_dir : str The full path to the work directory. Returns ------- None """ # list files in work directory files = os.listdir(work_dir) wrapper_files = [ fn for fn in files if fn[:8] == "wrapper_" or fn[-8:] == ".wrapper" ] # remove files; assumes individual files (and not directories) for fn in wrapper_files: abspath = os.path.join(work_dir, fn) os.remove(abspath) return
Clean up wrapper scripts from work directory. This script removes any files in the specified directory that begin with "wrapper_", which is how the scripts are named in the 'build_makeflow_from_config' function above. It also removes files that end in ".wrapper", which is how makeflow labels wrapper scripts for batch processing. Parameters ---------- work_dir : str The full path to the work directory. Returns ------- None
Clean up wrapper scripts from work directory. This script removes any files in the specified directory that begin with "wrapper_", which is how the scripts are named in the 'build_makeflow_from_config' function above. It also removes files that end in ".wrapper", which is how makeflow labels wrapper scripts for batch processing. Parameters work_dir : str The full path to the work directory. Returns None
[ "Clean", "up", "wrapper", "scripts", "from", "work", "directory", ".", "This", "script", "removes", "any", "files", "in", "the", "specified", "directory", "that", "begin", "with", "\"", "wrapper_", "\"", "which", "is", "how", "the", "scripts", "are", "named", "in", "the", "'", "build_makeflow_from_config", "'", "function", "above", ".", "It", "also", "removes", "files", "that", "end", "in", "\"", ".", "wrapper", "\"", "which", "is", "how", "makeflow", "labels", "wrapper", "scripts", "for", "batch", "processing", ".", "Parameters", "work_dir", ":", "str", "The", "full", "path", "to", "the", "work", "directory", ".", "Returns", "None" ]
def clean_wrapper_scripts(work_dir): files = os.listdir(work_dir) wrapper_files = [ fn for fn in files if fn[:8] == "wrapper_" or fn[-8:] == ".wrapper" ] for fn in wrapper_files: abspath = os.path.join(work_dir, fn) os.remove(abspath) return
[ "def", "clean_wrapper_scripts", "(", "work_dir", ")", ":", "files", "=", "os", ".", "listdir", "(", "work_dir", ")", "wrapper_files", "=", "[", "fn", "for", "fn", "in", "files", "if", "fn", "[", ":", "8", "]", "==", "\"wrapper_\"", "or", "fn", "[", "-", "8", ":", "]", "==", "\".wrapper\"", "]", "for", "fn", "in", "wrapper_files", ":", "abspath", "=", "os", ".", "path", ".", "join", "(", "work_dir", ",", "fn", ")", "os", ".", "remove", "(", "abspath", ")", "return" ]
Clean up wrapper scripts from work directory.
[ "Clean", "up", "wrapper", "scripts", "from", "work", "directory", "." ]
[ "\"\"\"Clean up wrapper scripts from work directory.\n\n This script removes any files in the specified directory that begin with\n \"wrapper_\", which is how the scripts are named in the\n 'build_makeflow_from_config' function above. It also removes files that end\n in \".wrapper\", which is how makeflow labels wrapper scripts for batch\n processing.\n\n Parameters\n ----------\n work_dir : str\n The full path to the work directory.\n\n Returns\n -------\n None\n\n \"\"\"", "# list files in work directory", "# remove files; assumes individual files (and not directories)" ]
[ { "param": "work_dir", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "work_dir", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def clean_wrapper_scripts(work_dir): files = os.listdir(work_dir) wrapper_files = [ fn for fn in files if fn[:8] == "wrapper_" or fn[-8:] == ".wrapper" ] for fn in wrapper_files: abspath = os.path.join(work_dir, fn) os.remove(abspath) return
886
822
f23dc658f4c3448a7816db93093611e4c3130a08
monkeywithacupcake/pygorithm
pygorithm/sorting/insertion_sort.py
[ "MIT" ]
Python
time_complexities
<not_specific>
def time_complexities(): """ Return information on functions time complexity :return: string """ return "Best Case: O(n), Average Case: O(n ^ 2), Worst Case: O(n ^ 2)"
Return information on functions time complexity :return: string
Return information on functions time complexity
[ "Return", "information", "on", "functions", "time", "complexity" ]
def time_complexities(): return "Best Case: O(n), Average Case: O(n ^ 2), Worst Case: O(n ^ 2)"
[ "def", "time_complexities", "(", ")", ":", "return", "\"Best Case: O(n), Average Case: O(n ^ 2), Worst Case: O(n ^ 2)\"" ]
Return information on functions time complexity
[ "Return", "information", "on", "functions", "time", "complexity" ]
[ "\"\"\"\n Return information on functions\n time complexity\n :return: string\n \"\"\"" ]
[]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [], "params": [], "outlier_params": [], "others": [] }
def time_complexities(): return "Best Case: O(n), Average Case: O(n ^ 2), Worst Case: O(n ^ 2)"
887
857
72faab8d6bc25a48f492e19987ee1318423fcc8b
Kotti/kotti_contentgenerator
kotti_contentgenerator/generator.py
[ "BSD-2-Clause" ]
Python
infinite_list
null
def infinite_list(list_): """ return an infinite stream of items from a list :param list_: a python list """ i = 0 while True: yield list_[i] i = i + 1 if i == len(list_): i = 0
return an infinite stream of items from a list :param list_: a python list
return an infinite stream of items from a list
[ "return", "an", "infinite", "stream", "of", "items", "from", "a", "list" ]
def infinite_list(list_): i = 0 while True: yield list_[i] i = i + 1 if i == len(list_): i = 0
[ "def", "infinite_list", "(", "list_", ")", ":", "i", "=", "0", "while", "True", ":", "yield", "list_", "[", "i", "]", "i", "=", "i", "+", "1", "if", "i", "==", "len", "(", "list_", ")", ":", "i", "=", "0" ]
return an infinite stream of items from a list
[ "return", "an", "infinite", "stream", "of", "items", "from", "a", "list" ]
[ "\"\"\" return an infinite stream of items from a list\n\n :param list_: a python list\n \"\"\"" ]
[ { "param": "list_", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "list_", "type": null, "docstring": "a python list", "docstring_tokens": [ "a", "python", "list" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def infinite_list(list_): i = 0 while True: yield list_[i] i = i + 1 if i == len(list_): i = 0
888
23
6a3e80ba0dfd14103932b2156abe82b56739d1f5
TomStarshak/project-euler-helper
euler_helper/euler_helper.py
[ "MIT" ]
Python
is_prime
<not_specific>
def is_prime(n): '''Returns True if n is prime, otherwise False''' # SPECIALCASE: These are special cases that are not primes if n % 2 == 0 and n != 2 or n <= 1: return False # Look for a factor for i in range(3, int(n ** (0.5)) + 1, 2): # If there is a factor if n % i == 0: # Its not a prime number return False return True
Returns True if n is prime, otherwise False
Returns True if n is prime, otherwise False
[ "Returns", "True", "if", "n", "is", "prime", "otherwise", "False" ]
def is_prime(n): if n % 2 == 0 and n != 2 or n <= 1: return False for i in range(3, int(n ** (0.5)) + 1, 2): if n % i == 0: return False return True
[ "def", "is_prime", "(", "n", ")", ":", "if", "n", "%", "2", "==", "0", "and", "n", "!=", "2", "or", "n", "<=", "1", ":", "return", "False", "for", "i", "in", "range", "(", "3", ",", "int", "(", "n", "**", "(", "0.5", ")", ")", "+", "1", ",", "2", ")", ":", "if", "n", "%", "i", "==", "0", ":", "return", "False", "return", "True" ]
Returns True if n is prime, otherwise False
[ "Returns", "True", "if", "n", "is", "prime", "otherwise", "False" ]
[ "'''Returns True if n is prime, otherwise False'''", "# SPECIALCASE: These are special cases that are not primes\r", "# Look for a factor\r", "# If there is a factor\r", "# Its not a prime number\r" ]
[ { "param": "n", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "n", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def is_prime(n): if n % 2 == 0 and n != 2 or n <= 1: return False for i in range(3, int(n ** (0.5)) + 1, 2): if n % i == 0: return False return True
889
669
ae9e915e91bc592f4848dc439aa05fbb51d38776
iacopy/coveragepy
tests/test_farm.py
[ "Apache-2.0" ]
Python
contains_any
<not_specific>
def contains_any(filename, *strlist): """Check that the file contains at least one of a list of strings. An assert will be raised if none of the arguments in `strlist` is in `filename`. """ with open(filename, "r") as fobj: text = fobj.read() for s in strlist: if s in text: return assert False, "Missing content in %s: %r [1 of %d]" % (filename, strlist[0], len(strlist),)
Check that the file contains at least one of a list of strings. An assert will be raised if none of the arguments in `strlist` is in `filename`.
Check that the file contains at least one of a list of strings. An assert will be raised if none of the arguments in `strlist` is in `filename`.
[ "Check", "that", "the", "file", "contains", "at", "least", "one", "of", "a", "list", "of", "strings", ".", "An", "assert", "will", "be", "raised", "if", "none", "of", "the", "arguments", "in", "`", "strlist", "`", "is", "in", "`", "filename", "`", "." ]
def contains_any(filename, *strlist): with open(filename, "r") as fobj: text = fobj.read() for s in strlist: if s in text: return assert False, "Missing content in %s: %r [1 of %d]" % (filename, strlist[0], len(strlist),)
[ "def", "contains_any", "(", "filename", ",", "*", "strlist", ")", ":", "with", "open", "(", "filename", ",", "\"r\"", ")", "as", "fobj", ":", "text", "=", "fobj", ".", "read", "(", ")", "for", "s", "in", "strlist", ":", "if", "s", "in", "text", ":", "return", "assert", "False", ",", "\"Missing content in %s: %r [1 of %d]\"", "%", "(", "filename", ",", "strlist", "[", "0", "]", ",", "len", "(", "strlist", ")", ",", ")" ]
Check that the file contains at least one of a list of strings.
[ "Check", "that", "the", "file", "contains", "at", "least", "one", "of", "a", "list", "of", "strings", "." ]
[ "\"\"\"Check that the file contains at least one of a list of strings.\n\n An assert will be raised if none of the arguments in `strlist` is in\n `filename`.\n\n \"\"\"" ]
[ { "param": "filename", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "filename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def contains_any(filename, *strlist): with open(filename, "r") as fobj: text = fobj.read() for s in strlist: if s in text: return assert False, "Missing content in %s: %r [1 of %d]" % (filename, strlist[0], len(strlist),)
890
556
f978a48f82509dfe5cb910f1ab81591d1a3b8a39
mobergd/interfaces
chemkin_io/mechparser/reaction.py
[ "Apache-2.0" ]
Python
units
<not_specific>
def units(block_str): """ get the units for the rate parameters """ # print('block string') # print(block_str) # print(block_str.strip().splitlines()[0]) units_str = block_str.strip().splitlines()[0] units_lst = units_str.split() if units_lst: ea_units = units_lst[0].lower() a_units = units_lst[1].lower() else: ea_units = 'cal/mole' a_units = 'moles' return ea_units, a_units
get the units for the rate parameters
get the units for the rate parameters
[ "get", "the", "units", "for", "the", "rate", "parameters" ]
def units(block_str): units_str = block_str.strip().splitlines()[0] units_lst = units_str.split() if units_lst: ea_units = units_lst[0].lower() a_units = units_lst[1].lower() else: ea_units = 'cal/mole' a_units = 'moles' return ea_units, a_units
[ "def", "units", "(", "block_str", ")", ":", "units_str", "=", "block_str", ".", "strip", "(", ")", ".", "splitlines", "(", ")", "[", "0", "]", "units_lst", "=", "units_str", ".", "split", "(", ")", "if", "units_lst", ":", "ea_units", "=", "units_lst", "[", "0", "]", ".", "lower", "(", ")", "a_units", "=", "units_lst", "[", "1", "]", ".", "lower", "(", ")", "else", ":", "ea_units", "=", "'cal/mole'", "a_units", "=", "'moles'", "return", "ea_units", ",", "a_units" ]
get the units for the rate parameters
[ "get", "the", "units", "for", "the", "rate", "parameters" ]
[ "\"\"\" get the units for the rate parameters\n \"\"\"", "# print('block string')", "# print(block_str)", "# print(block_str.strip().splitlines()[0])" ]
[ { "param": "block_str", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "block_str", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def units(block_str): units_str = block_str.strip().splitlines()[0] units_lst = units_str.split() if units_lst: ea_units = units_lst[0].lower() a_units = units_lst[1].lower() else: ea_units = 'cal/mole' a_units = 'moles' return ea_units, a_units
892
24
5e8e0614e6e7dadb56511ae3879bb1e4063f579f
ramgtv/mongo
buildscripts/errorcodes.py
[ "Apache-2.0" ]
Python
isTerminated
<not_specific>
def isTerminated( lines ): """Given .cpp/.h source lines as text, determine if assert is terminated.""" x = " ".join(lines) return ';' in x \ or x.count('(') - x.count(')') <= 0
Given .cpp/.h source lines as text, determine if assert is terminated.
Given .cpp/.h source lines as text, determine if assert is terminated.
[ "Given", ".", "cpp", "/", ".", "h", "source", "lines", "as", "text", "determine", "if", "assert", "is", "terminated", "." ]
def isTerminated( lines ): x = " ".join(lines) return ';' in x \ or x.count('(') - x.count(')') <= 0
[ "def", "isTerminated", "(", "lines", ")", ":", "x", "=", "\" \"", ".", "join", "(", "lines", ")", "return", "';'", "in", "x", "or", "x", ".", "count", "(", "'('", ")", "-", "x", ".", "count", "(", "')'", ")", "<=", "0" ]
Given .cpp/.h source lines as text, determine if assert is terminated.
[ "Given", ".", "cpp", "/", ".", "h", "source", "lines", "as", "text", "determine", "if", "assert", "is", "terminated", "." ]
[ "\"\"\"Given .cpp/.h source lines as text, determine if assert is terminated.\"\"\"" ]
[ { "param": "lines", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "lines", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def isTerminated( lines ): x = " ".join(lines) return ';' in x \ or x.count('(') - x.count(')') <= 0
893
808
7dea4bec92c507587e0f8bd81afdf0f87a72727f
fengggli/pegasus
lib/pegasus/python/Pegasus/plots_stats/utils.py
[ "Apache-2.0" ]
Python
create_home_button
<not_specific>
def create_home_button(): """ Utility method for creating a home button """ html_content =""" <a href="../index.html" target="_self"><img src="images/home.png" width =72 height =72 border =0 title ="Home" alt ="Home"></a> """ return html_content
Utility method for creating a home button
Utility method for creating a home button
[ "Utility", "method", "for", "creating", "a", "home", "button" ]
def create_home_button(): html_content =""" <a href="../index.html" target="_self"><img src="images/home.png" width =72 height =72 border =0 title ="Home" alt ="Home"></a> """ return html_content
[ "def", "create_home_button", "(", ")", ":", "html_content", "=", "\"\"\"\n<a href=\"../index.html\" target=\"_self\"><img src=\"images/home.png\" width =72 height =72 border =0 title =\"Home\" alt =\"Home\"></a>\n\t\"\"\"", "return", "html_content" ]
Utility method for creating a home button
[ "Utility", "method", "for", "creating", "a", "home", "button" ]
[ "\"\"\"\n\tUtility method for creating a home button\n\t\"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def create_home_button(): html_content =""" <a href="../index.html" target="_self"><img src="images/home.png" width =72 height =72 border =0 title ="Home" alt ="Home"></a> """ return html_content
894
857
cb3a5cfb0775a610c1c0fa736758e5113b82d364
gladstone-institutes/RASLseqTools
RASLseqTools/RASLseqAnalysis_old.py
[ "MIT" ]
Python
observed_wellbc_extraction
<not_specific>
def observed_wellbc_extraction(line, AD1='GGAAGCCTTGGCTTTTG'): ''' This function returns the sequence (observed wellbc) before the first adaptor sequence ToDo, fix alignments to well bc Parameters ---------- line: Pandas dataframe line (Series) requires column: 'seq' possessing fastq read sequence AD1: str, optional, default='GGAAGCCTTGGCTTTTG' Specifies the first adaptor sequence expected in the fastq read Returns ------- Fastq sequence before first occurent of AD1 or '0' if AD1 not in seq sequence ''' seq = line['seq'] if AD1 in seq: return seq[ : seq.index(AD1)] else: return '0'
This function returns the sequence (observed wellbc) before the first adaptor sequence ToDo, fix alignments to well bc Parameters ---------- line: Pandas dataframe line (Series) requires column: 'seq' possessing fastq read sequence AD1: str, optional, default='GGAAGCCTTGGCTTTTG' Specifies the first adaptor sequence expected in the fastq read Returns ------- Fastq sequence before first occurent of AD1 or '0' if AD1 not in seq sequence
This function returns the sequence (observed wellbc) before the first adaptor sequence ToDo, fix alignments to well bc Parameters Pandas dataframe line (Series) requires column: 'seq' possessing fastq read sequence str, optional, default='GGAAGCCTTGGCTTTTG' Specifies the first adaptor sequence expected in the fastq read Returns Fastq sequence before first occurent of AD1 or '0' if AD1 not in seq sequence
[ "This", "function", "returns", "the", "sequence", "(", "observed", "wellbc", ")", "before", "the", "first", "adaptor", "sequence", "ToDo", "fix", "alignments", "to", "well", "bc", "Parameters", "Pandas", "dataframe", "line", "(", "Series", ")", "requires", "column", ":", "'", "seq", "'", "possessing", "fastq", "read", "sequence", "str", "optional", "default", "=", "'", "GGAAGCCTTGGCTTTTG", "'", "Specifies", "the", "first", "adaptor", "sequence", "expected", "in", "the", "fastq", "read", "Returns", "Fastq", "sequence", "before", "first", "occurent", "of", "AD1", "or", "'", "0", "'", "if", "AD1", "not", "in", "seq", "sequence" ]
def observed_wellbc_extraction(line, AD1='GGAAGCCTTGGCTTTTG'): seq = line['seq'] if AD1 in seq: return seq[ : seq.index(AD1)] else: return '0'
[ "def", "observed_wellbc_extraction", "(", "line", ",", "AD1", "=", "'GGAAGCCTTGGCTTTTG'", ")", ":", "seq", "=", "line", "[", "'seq'", "]", "if", "AD1", "in", "seq", ":", "return", "seq", "[", ":", "seq", ".", "index", "(", "AD1", ")", "]", "else", ":", "return", "'0'" ]
This function returns the sequence (observed wellbc) before the first adaptor sequence ToDo, fix alignments to well bc
[ "This", "function", "returns", "the", "sequence", "(", "observed", "wellbc", ")", "before", "the", "first", "adaptor", "sequence", "ToDo", "fix", "alignments", "to", "well", "bc" ]
[ "''' \n This function returns the sequence (observed wellbc) before the first adaptor sequence \n ToDo, fix alignments to well bc\n \n Parameters\n ----------\n line: Pandas dataframe line (Series)\n requires column: 'seq' possessing fastq read sequence\n \n AD1: str, optional, default='GGAAGCCTTGGCTTTTG'\n Specifies the first adaptor sequence expected in the fastq read\n \n Returns\n -------\n Fastq sequence before first occurent of AD1\n or\n '0' if AD1 not in seq sequence\n '''" ]
[ { "param": "line", "type": null }, { "param": "AD1", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "line", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "AD1", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def observed_wellbc_extraction(line, AD1='GGAAGCCTTGGCTTTTG'): seq = line['seq'] if AD1 in seq: return seq[ : seq.index(AD1)] else: return '0'
895
976
cb5f70c83266061e31e165a6e3ff41c686ae86e7
Vinesma/youtube-chat-render
core/clean.py
[ "MIT" ]
Python
all
null
def all(frames_folder, chat_video_path): """Delete all non-essentials.""" try: for file in os.listdir(frames_folder): if file.endswith('.png'): os.remove(os.path.join(frames_folder, file)) os.remove(chat_video_path) os.remove('30_sec_test.mp4') except FileNotFoundError: pass
Delete all non-essentials.
Delete all non-essentials.
[ "Delete", "all", "non", "-", "essentials", "." ]
def all(frames_folder, chat_video_path): try: for file in os.listdir(frames_folder): if file.endswith('.png'): os.remove(os.path.join(frames_folder, file)) os.remove(chat_video_path) os.remove('30_sec_test.mp4') except FileNotFoundError: pass
[ "def", "all", "(", "frames_folder", ",", "chat_video_path", ")", ":", "try", ":", "for", "file", "in", "os", ".", "listdir", "(", "frames_folder", ")", ":", "if", "file", ".", "endswith", "(", "'.png'", ")", ":", "os", ".", "remove", "(", "os", ".", "path", ".", "join", "(", "frames_folder", ",", "file", ")", ")", "os", ".", "remove", "(", "chat_video_path", ")", "os", ".", "remove", "(", "'30_sec_test.mp4'", ")", "except", "FileNotFoundError", ":", "pass" ]
Delete all non-essentials.
[ "Delete", "all", "non", "-", "essentials", "." ]
[ "\"\"\"Delete all non-essentials.\"\"\"" ]
[ { "param": "frames_folder", "type": null }, { "param": "chat_video_path", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "frames_folder", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "chat_video_path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def all(frames_folder, chat_video_path): try: for file in os.listdir(frames_folder): if file.endswith('.png'): os.remove(os.path.join(frames_folder, file)) os.remove(chat_video_path) os.remove('30_sec_test.mp4') except FileNotFoundError: pass
896
107
bf735c164b16ee50c3cbf0f338789c1f2304653f
tiwarylab/Belief-Propagation
belief_propagation.py
[ "MIT" ]
Python
clean_names
<not_specific>
def clean_names(names): """Clean factor names to remove formatting characters. Parameters ---------- names: list of str Names to be cleaned. Returns ------- list of str List of strings without formatting characters. """ new_names = copy.copy(names) for i in range(len(names)): name = new_names[i] name = name.replace('_','') name = name.replace('$','') name = name.replace('\\','') new_names[i] = name return new_names
Clean factor names to remove formatting characters. Parameters ---------- names: list of str Names to be cleaned. Returns ------- list of str List of strings without formatting characters.
Clean factor names to remove formatting characters. Parameters list of str Names to be cleaned. Returns list of str List of strings without formatting characters.
[ "Clean", "factor", "names", "to", "remove", "formatting", "characters", ".", "Parameters", "list", "of", "str", "Names", "to", "be", "cleaned", ".", "Returns", "list", "of", "str", "List", "of", "strings", "without", "formatting", "characters", "." ]
def clean_names(names): new_names = copy.copy(names) for i in range(len(names)): name = new_names[i] name = name.replace('_','') name = name.replace('$','') name = name.replace('\\','') new_names[i] = name return new_names
[ "def", "clean_names", "(", "names", ")", ":", "new_names", "=", "copy", ".", "copy", "(", "names", ")", "for", "i", "in", "range", "(", "len", "(", "names", ")", ")", ":", "name", "=", "new_names", "[", "i", "]", "name", "=", "name", ".", "replace", "(", "'_'", ",", "''", ")", "name", "=", "name", ".", "replace", "(", "'$'", ",", "''", ")", "name", "=", "name", ".", "replace", "(", "'\\\\'", ",", "''", ")", "new_names", "[", "i", "]", "=", "name", "return", "new_names" ]
Clean factor names to remove formatting characters.
[ "Clean", "factor", "names", "to", "remove", "formatting", "characters", "." ]
[ "\"\"\"Clean factor names to remove formatting characters.\n \n Parameters\n ----------\n names: list of str\n Names to be cleaned.\n \n Returns\n -------\n list of str\n List of strings without formatting characters.\n \n \"\"\"" ]
[ { "param": "names", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "names", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import copy def clean_names(names): new_names = copy.copy(names) for i in range(len(names)): name = new_names[i] name = name.replace('_','') name = name.replace('$','') name = name.replace('\\','') new_names[i] = name return new_names
897
707
2b44bbf0fe7be0b4d4f92e65e723b92564be70cd
spel-uchile/langmuir_parser
langmuir_parser.py
[ "MIT" ]
Python
add_is_anomaly
<not_specific>
def add_is_anomaly(dataset, threshold): """ Appends a column that sorts out the particles counter values (greater or lower than a threshold) to a dataset that contains a "Particles counter" column. :param dataset: DataFrame Dataset with a "Particles counter" column :return: DataFrame with is_anomaly column added """ particles = dataset['Particles counter'] is_anomaly = [] for row in particles: if row >= threshold: is_anomaly.append(1) else: is_anomaly.append(0) dataset["is_anom"] = is_anomaly dataset = dataset[dataset["Lat"] > -50] dataset = dataset[dataset["Lat"] < 0] return dataset
Appends a column that sorts out the particles counter values (greater or lower than a threshold) to a dataset that contains a "Particles counter" column. :param dataset: DataFrame Dataset with a "Particles counter" column :return: DataFrame with is_anomaly column added
Appends a column that sorts out the particles counter values (greater or lower than a threshold) to a dataset that contains a "Particles counter" column.
[ "Appends", "a", "column", "that", "sorts", "out", "the", "particles", "counter", "values", "(", "greater", "or", "lower", "than", "a", "threshold", ")", "to", "a", "dataset", "that", "contains", "a", "\"", "Particles", "counter", "\"", "column", "." ]
def add_is_anomaly(dataset, threshold): particles = dataset['Particles counter'] is_anomaly = [] for row in particles: if row >= threshold: is_anomaly.append(1) else: is_anomaly.append(0) dataset["is_anom"] = is_anomaly dataset = dataset[dataset["Lat"] > -50] dataset = dataset[dataset["Lat"] < 0] return dataset
[ "def", "add_is_anomaly", "(", "dataset", ",", "threshold", ")", ":", "particles", "=", "dataset", "[", "'Particles counter'", "]", "is_anomaly", "=", "[", "]", "for", "row", "in", "particles", ":", "if", "row", ">=", "threshold", ":", "is_anomaly", ".", "append", "(", "1", ")", "else", ":", "is_anomaly", ".", "append", "(", "0", ")", "dataset", "[", "\"is_anom\"", "]", "=", "is_anomaly", "dataset", "=", "dataset", "[", "dataset", "[", "\"Lat\"", "]", ">", "-", "50", "]", "dataset", "=", "dataset", "[", "dataset", "[", "\"Lat\"", "]", "<", "0", "]", "return", "dataset" ]
Appends a column that sorts out the particles counter values (greater or lower than a threshold) to a dataset that contains a "Particles counter" column.
[ "Appends", "a", "column", "that", "sorts", "out", "the", "particles", "counter", "values", "(", "greater", "or", "lower", "than", "a", "threshold", ")", "to", "a", "dataset", "that", "contains", "a", "\"", "Particles", "counter", "\"", "column", "." ]
[ "\"\"\"\n Appends a column that sorts out the particles counter\n values (greater or lower than a threshold) to a dataset that contains\n a \"Particles counter\" column.\n :param dataset: DataFrame Dataset with a \"Particles counter\" column\n :return: DataFrame with is_anomaly column added\n \"\"\"" ]
[ { "param": "dataset", "type": null }, { "param": "threshold", "type": null } ]
{ "returns": [ { "docstring": "DataFrame with is_anomaly column added", "docstring_tokens": [ "DataFrame", "with", "is_anomaly", "column", "added" ], "type": null } ], "raises": [], "params": [ { "identifier": "dataset", "type": null, "docstring": "DataFrame Dataset with a \"Particles counter\" column", "docstring_tokens": [ "DataFrame", "Dataset", "with", "a", "\"", "Particles", "counter", "\"", "column" ], "default": null, "is_optional": null }, { "identifier": "threshold", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def add_is_anomaly(dataset, threshold): particles = dataset['Particles counter'] is_anomaly = [] for row in particles: if row >= threshold: is_anomaly.append(1) else: is_anomaly.append(0) dataset["is_anom"] = is_anomaly dataset = dataset[dataset["Lat"] > -50] dataset = dataset[dataset["Lat"] < 0] return dataset
899
12
a69c8d1a9ca3d9de2824eb3ce8819bb45c57f2ab
lmmentel/chemtools
chemtools/basisset.py
[ "MIT" ]
Python
ncartesian
<not_specific>
def ncartesian(l): ''' Calculate the number of cartesian components of a function with a given angular momentum value *l*. ''' return int((l + 1) * (l + 2) / 2)
Calculate the number of cartesian components of a function with a given angular momentum value *l*.
Calculate the number of cartesian components of a function with a given angular momentum value *l*.
[ "Calculate", "the", "number", "of", "cartesian", "components", "of", "a", "function", "with", "a", "given", "angular", "momentum", "value", "*", "l", "*", "." ]
def ncartesian(l): return int((l + 1) * (l + 2) / 2)
[ "def", "ncartesian", "(", "l", ")", ":", "return", "int", "(", "(", "l", "+", "1", ")", "*", "(", "l", "+", "2", ")", "/", "2", ")" ]
Calculate the number of cartesian components of a function with a given angular momentum value *l*.
[ "Calculate", "the", "number", "of", "cartesian", "components", "of", "a", "function", "with", "a", "given", "angular", "momentum", "value", "*", "l", "*", "." ]
[ "'''\n Calculate the number of cartesian components of a function with a given\n angular momentum value *l*.\n '''" ]
[ { "param": "l", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "l", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def ncartesian(l): return int((l + 1) * (l + 2) / 2)
900
58
e813403061e64970f93bf5f20ed637644bd23ad9
PySCeS/PyscesToolbox
psctb/utils/misc/_misc.py
[ "BSD-3-Clause" ]
Python
is_linear
<not_specific>
def is_linear(scan_range): """ For any 1-demensional data structure containing numbers return True if the numbers follows a linear sequence. Within the context of PySCeSToolbox this function will be called on either a linear range or a log range. Thus, while not indicative of log ranges, this is what a False return value indicates in this software. Parameters ---------- scan_range : iterable Any iterable object containing a range of numbers. Returns ------- bool A boolean indicating if `scan_range` is a linear sequence of numbers. """ if scan_range[1] - scan_range[0] == scan_range[-1] - scan_range[-2]: return True else: return False
For any 1-demensional data structure containing numbers return True if the numbers follows a linear sequence. Within the context of PySCeSToolbox this function will be called on either a linear range or a log range. Thus, while not indicative of log ranges, this is what a False return value indicates in this software. Parameters ---------- scan_range : iterable Any iterable object containing a range of numbers. Returns ------- bool A boolean indicating if `scan_range` is a linear sequence of numbers.
For any 1-demensional data structure containing numbers return True if the numbers follows a linear sequence. Within the context of PySCeSToolbox this function will be called on either a linear range or a log range. Thus, while not indicative of log ranges, this is what a False return value indicates in this software. Parameters scan_range : iterable Any iterable object containing a range of numbers. Returns bool A boolean indicating if `scan_range` is a linear sequence of numbers.
[ "For", "any", "1", "-", "demensional", "data", "structure", "containing", "numbers", "return", "True", "if", "the", "numbers", "follows", "a", "linear", "sequence", ".", "Within", "the", "context", "of", "PySCeSToolbox", "this", "function", "will", "be", "called", "on", "either", "a", "linear", "range", "or", "a", "log", "range", ".", "Thus", "while", "not", "indicative", "of", "log", "ranges", "this", "is", "what", "a", "False", "return", "value", "indicates", "in", "this", "software", ".", "Parameters", "scan_range", ":", "iterable", "Any", "iterable", "object", "containing", "a", "range", "of", "numbers", ".", "Returns", "bool", "A", "boolean", "indicating", "if", "`", "scan_range", "`", "is", "a", "linear", "sequence", "of", "numbers", "." ]
def is_linear(scan_range): if scan_range[1] - scan_range[0] == scan_range[-1] - scan_range[-2]: return True else: return False
[ "def", "is_linear", "(", "scan_range", ")", ":", "if", "scan_range", "[", "1", "]", "-", "scan_range", "[", "0", "]", "==", "scan_range", "[", "-", "1", "]", "-", "scan_range", "[", "-", "2", "]", ":", "return", "True", "else", ":", "return", "False" ]
For any 1-demensional data structure containing numbers return True if the numbers follows a linear sequence.
[ "For", "any", "1", "-", "demensional", "data", "structure", "containing", "numbers", "return", "True", "if", "the", "numbers", "follows", "a", "linear", "sequence", "." ]
[ "\"\"\"\n For any 1-demensional data structure containing numbers return True\n if the numbers follows a linear sequence.\n\n Within the context of PySCeSToolbox this function will be called on\n either a linear range or a log range. Thus, while not indicative\n of log ranges, this is what a False return value indicates in this\n software.\n\n Parameters\n ----------\n scan_range : iterable\n Any iterable object containing a range of numbers.\n\n Returns\n -------\n bool\n A boolean indicating if `scan_range` is a linear sequence of\n numbers.\n \"\"\"" ]
[ { "param": "scan_range", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "scan_range", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def is_linear(scan_range): if scan_range[1] - scan_range[0] == scan_range[-1] - scan_range[-2]: return True else: return False
902
706
91a58852945c4dc0ef2db24061ddcb313f39ee08
vagmcs/pylogit
src/pylogit/bootstrap_abc.py
[ "BSD-3-Clause" ]
Python
calc_bias_abc
<not_specific>
def calc_bias_abc(second_order_influence): """ Calculates the approximate bias of the MLE estimates for use in calculating the approximate bootstrap confidence (ABC) intervals. Parameters ---------- second_order_influence : 2D ndarray. Should have one row for each observation. Should have one column for each parameter in the parameter vector being estimated. Elements should denote the second order empirical influence of the associated observation on the associated parameter. Returns ------- bias : 1D ndarray. Contains the approximate bias of the MLE estimates for use in the ABC confidence intervals. References ---------- Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap. CRC press, 1994. Section 22.6, Equation 22.35. """ num_obs = second_order_influence.shape[0] constant = 2.0 * num_obs**2 bias = second_order_influence.sum(axis=0) / constant return bias
Calculates the approximate bias of the MLE estimates for use in calculating the approximate bootstrap confidence (ABC) intervals. Parameters ---------- second_order_influence : 2D ndarray. Should have one row for each observation. Should have one column for each parameter in the parameter vector being estimated. Elements should denote the second order empirical influence of the associated observation on the associated parameter. Returns ------- bias : 1D ndarray. Contains the approximate bias of the MLE estimates for use in the ABC confidence intervals. References ---------- Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap. CRC press, 1994. Section 22.6, Equation 22.35.
Calculates the approximate bias of the MLE estimates for use in calculating the approximate bootstrap confidence (ABC) intervals. Parameters second_order_influence : 2D ndarray. Should have one row for each observation. Should have one column for each parameter in the parameter vector being estimated. Elements should denote the second order empirical influence of the associated observation on the associated parameter. Returns bias : 1D ndarray. Contains the approximate bias of the MLE estimates for use in the ABC confidence intervals. References Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap.
[ "Calculates", "the", "approximate", "bias", "of", "the", "MLE", "estimates", "for", "use", "in", "calculating", "the", "approximate", "bootstrap", "confidence", "(", "ABC", ")", "intervals", ".", "Parameters", "second_order_influence", ":", "2D", "ndarray", ".", "Should", "have", "one", "row", "for", "each", "observation", ".", "Should", "have", "one", "column", "for", "each", "parameter", "in", "the", "parameter", "vector", "being", "estimated", ".", "Elements", "should", "denote", "the", "second", "order", "empirical", "influence", "of", "the", "associated", "observation", "on", "the", "associated", "parameter", ".", "Returns", "bias", ":", "1D", "ndarray", ".", "Contains", "the", "approximate", "bias", "of", "the", "MLE", "estimates", "for", "use", "in", "the", "ABC", "confidence", "intervals", ".", "References", "Efron", "Bradley", "and", "Robert", "J", ".", "Tibshirani", ".", "An", "Introduction", "to", "the", "Bootstrap", "." ]
def calc_bias_abc(second_order_influence): num_obs = second_order_influence.shape[0] constant = 2.0 * num_obs**2 bias = second_order_influence.sum(axis=0) / constant return bias
[ "def", "calc_bias_abc", "(", "second_order_influence", ")", ":", "num_obs", "=", "second_order_influence", ".", "shape", "[", "0", "]", "constant", "=", "2.0", "*", "num_obs", "**", "2", "bias", "=", "second_order_influence", ".", "sum", "(", "axis", "=", "0", ")", "/", "constant", "return", "bias" ]
Calculates the approximate bias of the MLE estimates for use in calculating the approximate bootstrap confidence (ABC) intervals.
[ "Calculates", "the", "approximate", "bias", "of", "the", "MLE", "estimates", "for", "use", "in", "calculating", "the", "approximate", "bootstrap", "confidence", "(", "ABC", ")", "intervals", "." ]
[ "\"\"\"\n Calculates the approximate bias of the MLE estimates for use in calculating\n the approximate bootstrap confidence (ABC) intervals.\n\n Parameters\n ----------\n second_order_influence : 2D ndarray.\n Should have one row for each observation. Should have one column for\n each parameter in the parameter vector being estimated. Elements should\n denote the second order empirical influence of the associated\n observation on the associated parameter.\n\n Returns\n -------\n bias : 1D ndarray.\n Contains the approximate bias of the MLE estimates for use in the ABC\n confidence intervals.\n\n References\n ----------\n Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap.\n CRC press, 1994. Section 22.6, Equation 22.35.\n \"\"\"" ]
[ { "param": "second_order_influence", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "second_order_influence", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def calc_bias_abc(second_order_influence): num_obs = second_order_influence.shape[0] constant = 2.0 * num_obs**2 bias = second_order_influence.sum(axis=0) / constant return bias
903
747
f867a013a43c3399f8b7912eb52238bc17b51802
iyappan24/bqcon
bqcon/query_processor.py
[ "MIT" ]
Python
count_query
<not_specific>
def count_query(project,dataset,tablename,condition): """ Function to process query for count process """ if isinstance(tablename, str): pass else: raise ValueError("Tablename should be a String") if isinstance(dataset, str): pass else: raise ValueError("Tablename should be a String") if condition == None or isinstance(condition, str): pass else: raise ValueError("Condition can only be either None or String") final_tablename = "["+project+":"+dataset+"."+tablename+"]" if condition == None: query = "select count(*) from " + final_tablename else: # building the query query = "select count(*) from " + final_tablename + " where " + condition return query
Function to process query for count process
Function to process query for count process
[ "Function", "to", "process", "query", "for", "count", "process" ]
def count_query(project,dataset,tablename,condition): if isinstance(tablename, str): pass else: raise ValueError("Tablename should be a String") if isinstance(dataset, str): pass else: raise ValueError("Tablename should be a String") if condition == None or isinstance(condition, str): pass else: raise ValueError("Condition can only be either None or String") final_tablename = "["+project+":"+dataset+"."+tablename+"]" if condition == None: query = "select count(*) from " + final_tablename else: query = "select count(*) from " + final_tablename + " where " + condition return query
[ "def", "count_query", "(", "project", ",", "dataset", ",", "tablename", ",", "condition", ")", ":", "if", "isinstance", "(", "tablename", ",", "str", ")", ":", "pass", "else", ":", "raise", "ValueError", "(", "\"Tablename should be a String\"", ")", "if", "isinstance", "(", "dataset", ",", "str", ")", ":", "pass", "else", ":", "raise", "ValueError", "(", "\"Tablename should be a String\"", ")", "if", "condition", "==", "None", "or", "isinstance", "(", "condition", ",", "str", ")", ":", "pass", "else", ":", "raise", "ValueError", "(", "\"Condition can only be either None or String\"", ")", "final_tablename", "=", "\"[\"", "+", "project", "+", "\":\"", "+", "dataset", "+", "\".\"", "+", "tablename", "+", "\"]\"", "if", "condition", "==", "None", ":", "query", "=", "\"select count(*) from \"", "+", "final_tablename", "else", ":", "query", "=", "\"select count(*) from \"", "+", "final_tablename", "+", "\" where \"", "+", "condition", "return", "query" ]
Function to process query for count process
[ "Function", "to", "process", "query", "for", "count", "process" ]
[ "\"\"\"\n Function to process query for count process\n \"\"\"", "# building the query" ]
[ { "param": "project", "type": null }, { "param": "dataset", "type": null }, { "param": "tablename", "type": null }, { "param": "condition", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "project", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "dataset", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "tablename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "condition", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def count_query(project,dataset,tablename,condition): if isinstance(tablename, str): pass else: raise ValueError("Tablename should be a String") if isinstance(dataset, str): pass else: raise ValueError("Tablename should be a String") if condition == None or isinstance(condition, str): pass else: raise ValueError("Condition can only be either None or String") final_tablename = "["+project+":"+dataset+"."+tablename+"]" if condition == None: query = "select count(*) from " + final_tablename else: query = "select count(*) from " + final_tablename + " where " + condition return query
904
243
c940ec2c565bf018fae115bf20d4c9fe7f922f0a
AhmedHani/mleus
mleus/utils/algorithm_utils.py
[ "BSD-3-Clause" ]
Python
_get_ngrams
<not_specific>
def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i + order]) ngram_counts[ngram] += 1 return ngram_counts
Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred.
Extracts all n-grams upto a given maximum order from an input segment.
[ "Extracts", "all", "n", "-", "grams", "upto", "a", "given", "maximum", "order", "from", "an", "input", "segment", "." ]
def _get_ngrams(segment, max_order): ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i + order]) ngram_counts[ngram] += 1 return ngram_counts
[ "def", "_get_ngrams", "(", "segment", ",", "max_order", ")", ":", "ngram_counts", "=", "collections", ".", "Counter", "(", ")", "for", "order", "in", "range", "(", "1", ",", "max_order", "+", "1", ")", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "segment", ")", "-", "order", "+", "1", ")", ":", "ngram", "=", "tuple", "(", "segment", "[", "i", ":", "i", "+", "order", "]", ")", "ngram_counts", "[", "ngram", "]", "+=", "1", "return", "ngram_counts" ]
Extracts all n-grams upto a given maximum order from an input segment.
[ "Extracts", "all", "n", "-", "grams", "upto", "a", "given", "maximum", "order", "from", "an", "input", "segment", "." ]
[ "\"\"\"Extracts all n-grams upto a given maximum order from an input segment.\n\n Args:\n segment: text segment from which n-grams will be extracted.\n max_order: maximum length in tokens of the n-grams returned by this\n methods.\n\n Returns:\n The Counter containing all n-grams upto max_order in segment\n with a count of how many times each n-gram occurred.\n \"\"\"" ]
[ { "param": "segment", "type": null }, { "param": "max_order", "type": null } ]
{ "returns": [ { "docstring": "The Counter containing all n-grams upto max_order in segment\nwith a count of how many times each n-gram occurred.", "docstring_tokens": [ "The", "Counter", "containing", "all", "n", "-", "grams", "upto", "max_order", "in", "segment", "with", "a", "count", "of", "how", "many", "times", "each", "n", "-", "gram", "occurred", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "segment", "type": null, "docstring": "text segment from which n-grams will be extracted.", "docstring_tokens": [ "text", "segment", "from", "which", "n", "-", "grams", "will", "be", "extracted", "." ], "default": null, "is_optional": null }, { "identifier": "max_order", "type": null, "docstring": "maximum length in tokens of the n-grams returned by this\nmethods.", "docstring_tokens": [ "maximum", "length", "in", "tokens", "of", "the", "n", "-", "grams", "returned", "by", "this", "methods", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import collections def _get_ngrams(segment, max_order): ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i + order]) ngram_counts[ngram] += 1 return ngram_counts
905
12
9697ff0df66c17286bd1263482e822b405ce4f8a
IBM/networking-services-python-sdk
ibm_cloud_networking_services/direct_link_v1.py
[ "Apache-2.0" ]
Python
from_dict
'GatewayBfdConfigActionTemplate'
def from_dict(cls, _dict: Dict) -> 'GatewayBfdConfigActionTemplate': """Initialize a GatewayBfdConfigActionTemplate object from a json dictionary.""" args = {} if 'interval' in _dict: args['interval'] = _dict.get('interval') else: raise ValueError('Required property \'interval\' not present in GatewayBfdConfigActionTemplate JSON') if 'multiplier' in _dict: args['multiplier'] = _dict.get('multiplier') return cls(**args)
Initialize a GatewayBfdConfigActionTemplate object from a json dictionary.
Initialize a GatewayBfdConfigActionTemplate object from a json dictionary.
[ "Initialize", "a", "GatewayBfdConfigActionTemplate", "object", "from", "a", "json", "dictionary", "." ]
def from_dict(cls, _dict: Dict) -> 'GatewayBfdConfigActionTemplate': args = {} if 'interval' in _dict: args['interval'] = _dict.get('interval') else: raise ValueError('Required property \'interval\' not present in GatewayBfdConfigActionTemplate JSON') if 'multiplier' in _dict: args['multiplier'] = _dict.get('multiplier') return cls(**args)
[ "def", "from_dict", "(", "cls", ",", "_dict", ":", "Dict", ")", "->", "'GatewayBfdConfigActionTemplate'", ":", "args", "=", "{", "}", "if", "'interval'", "in", "_dict", ":", "args", "[", "'interval'", "]", "=", "_dict", ".", "get", "(", "'interval'", ")", "else", ":", "raise", "ValueError", "(", "'Required property \\'interval\\' not present in GatewayBfdConfigActionTemplate JSON'", ")", "if", "'multiplier'", "in", "_dict", ":", "args", "[", "'multiplier'", "]", "=", "_dict", ".", "get", "(", "'multiplier'", ")", "return", "cls", "(", "**", "args", ")" ]
Initialize a GatewayBfdConfigActionTemplate object from a json dictionary.
[ "Initialize", "a", "GatewayBfdConfigActionTemplate", "object", "from", "a", "json", "dictionary", "." ]
[ "\"\"\"Initialize a GatewayBfdConfigActionTemplate object from a json dictionary.\"\"\"" ]
[ { "param": "cls", "type": null }, { "param": "_dict", "type": "Dict" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "_dict", "type": "Dict", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def from_dict(cls, _dict: Dict) -> 'GatewayBfdConfigActionTemplate': args = {} if 'interval' in _dict: args['interval'] = _dict.get('interval') else: raise ValueError('Required property \'interval\' not present in GatewayBfdConfigActionTemplate JSON') if 'multiplier' in _dict: args['multiplier'] = _dict.get('multiplier') return cls(**args)
907
550
fa4f30016864a562b88d7dd15f4d610da8b8e76e
bbc/bbc-speech-segmenter
recipe/local/xvector_utils.py
[ "Apache-2.0" ]
Python
extract_timestamp
<not_specific>
def extract_timestamp(xvector_key): ''' X-vector key format: fileid_segStart_segEnd-xvectorStart-xvectorEnd segStart & segEng in seconds xvectorStart & xvectorEnd in milliseconds ''' # Split twice from right as fileid might contain underscore too fileid, seg_start, rest = xvector_key.rsplit('_', 2) # Extract X-vector timimng from the rest xvector_start_ms, xvector_end_ms = rest.split('-')[-2:] # Calculate X-vector duration in seconds xvector_start = int(xvector_start_ms) / 1000 # ms to sec xvector_end = int(xvector_end_ms) / 1000 # ms to sec xvector_duration = xvector_end - xvector_start # duration in sec start = float(seg_start) + xvector_start end = start + xvector_duration return {'fileid': fileid, 'start': '{:.2f}'.format(start), 'end': '{:.2f}'.format(end)}
X-vector key format: fileid_segStart_segEnd-xvectorStart-xvectorEnd segStart & segEng in seconds xvectorStart & xvectorEnd in milliseconds
X-vector key format: fileid_segStart_segEnd-xvectorStart-xvectorEnd segStart & segEng in seconds xvectorStart & xvectorEnd in milliseconds
[ "X", "-", "vector", "key", "format", ":", "fileid_segStart_segEnd", "-", "xvectorStart", "-", "xvectorEnd", "segStart", "&", "segEng", "in", "seconds", "xvectorStart", "&", "xvectorEnd", "in", "milliseconds" ]
def extract_timestamp(xvector_key): fileid, seg_start, rest = xvector_key.rsplit('_', 2) xvector_start_ms, xvector_end_ms = rest.split('-')[-2:] xvector_start = int(xvector_start_ms) / 1000 xvector_end = int(xvector_end_ms) / 1000 xvector_duration = xvector_end - xvector_start start = float(seg_start) + xvector_start end = start + xvector_duration return {'fileid': fileid, 'start': '{:.2f}'.format(start), 'end': '{:.2f}'.format(end)}
[ "def", "extract_timestamp", "(", "xvector_key", ")", ":", "fileid", ",", "seg_start", ",", "rest", "=", "xvector_key", ".", "rsplit", "(", "'_'", ",", "2", ")", "xvector_start_ms", ",", "xvector_end_ms", "=", "rest", ".", "split", "(", "'-'", ")", "[", "-", "2", ":", "]", "xvector_start", "=", "int", "(", "xvector_start_ms", ")", "/", "1000", "xvector_end", "=", "int", "(", "xvector_end_ms", ")", "/", "1000", "xvector_duration", "=", "xvector_end", "-", "xvector_start", "start", "=", "float", "(", "seg_start", ")", "+", "xvector_start", "end", "=", "start", "+", "xvector_duration", "return", "{", "'fileid'", ":", "fileid", ",", "'start'", ":", "'{:.2f}'", ".", "format", "(", "start", ")", ",", "'end'", ":", "'{:.2f}'", ".", "format", "(", "end", ")", "}" ]
X-vector key format: fileid_segStart_segEnd-xvectorStart-xvectorEnd segStart & segEng in seconds xvectorStart & xvectorEnd in milliseconds
[ "X", "-", "vector", "key", "format", ":", "fileid_segStart_segEnd", "-", "xvectorStart", "-", "xvectorEnd", "segStart", "&", "segEng", "in", "seconds", "xvectorStart", "&", "xvectorEnd", "in", "milliseconds" ]
[ "'''\n X-vector key format: fileid_segStart_segEnd-xvectorStart-xvectorEnd\n segStart & segEng in seconds\n xvectorStart & xvectorEnd in milliseconds\n '''", "# Split twice from right as fileid might contain underscore too", "# Extract X-vector timimng from the rest", "# Calculate X-vector duration in seconds", "# ms to sec", "# ms to sec", "# duration in sec" ]
[ { "param": "xvector_key", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "xvector_key", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def extract_timestamp(xvector_key): fileid, seg_start, rest = xvector_key.rsplit('_', 2) xvector_start_ms, xvector_end_ms = rest.split('-')[-2:] xvector_start = int(xvector_start_ms) / 1000 xvector_end = int(xvector_end_ms) / 1000 xvector_duration = xvector_end - xvector_start start = float(seg_start) + xvector_start end = start + xvector_duration return {'fileid': fileid, 'start': '{:.2f}'.format(start), 'end': '{:.2f}'.format(end)}
908
177
62ecc1ad18eaef5a43b7e70445c62fbfce7ccf2c
kotalbert/udacity-customer-churn
churn_script_logging_and_tests.py
[ "Unlicense" ]
Python
_clean_dir
None
def _clean_dir(pth: str, ptrn: str = '*.png') -> None: """ Utility to clear directory before testing if files are presetn. :param pth: path to dir to be cleared :param ptrn: optional, fille pattern to be cleared, defaults to '*.png' """ for img in glob.glob(os.path.join(pth, ptrn)): os.remove(img)
Utility to clear directory before testing if files are presetn. :param pth: path to dir to be cleared :param ptrn: optional, fille pattern to be cleared, defaults to '*.png'
Utility to clear directory before testing if files are presetn.
[ "Utility", "to", "clear", "directory", "before", "testing", "if", "files", "are", "presetn", "." ]
def _clean_dir(pth: str, ptrn: str = '*.png') -> None: for img in glob.glob(os.path.join(pth, ptrn)): os.remove(img)
[ "def", "_clean_dir", "(", "pth", ":", "str", ",", "ptrn", ":", "str", "=", "'*.png'", ")", "->", "None", ":", "for", "img", "in", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "pth", ",", "ptrn", ")", ")", ":", "os", ".", "remove", "(", "img", ")" ]
Utility to clear directory before testing if files are presetn.
[ "Utility", "to", "clear", "directory", "before", "testing", "if", "files", "are", "presetn", "." ]
[ "\"\"\"\n Utility to clear directory before testing if files are presetn.\n\n :param pth: path to dir to be cleared\n :param ptrn: optional, fille pattern to be cleared, defaults to '*.png'\n \"\"\"" ]
[ { "param": "pth", "type": "str" }, { "param": "ptrn", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "pth", "type": "str", "docstring": "path to dir to be cleared", "docstring_tokens": [ "path", "to", "dir", "to", "be", "cleared" ], "default": null, "is_optional": null }, { "identifier": "ptrn", "type": "str", "docstring": "optional, fille pattern to be cleared, defaults to '*.png'", "docstring_tokens": [ "optional", "fille", "pattern", "to", "be", "cleared", "defaults", "to", "'", "*", ".", "png", "'" ], "default": "'*.png'", "is_optional": null } ], "outlier_params": [], "others": [] }
import os import glob def _clean_dir(pth: str, ptrn: str = '*.png') -> None: for img in glob.glob(os.path.join(pth, ptrn)): os.remove(img)
909
57
a4cd43978f015bb2ce39dbf4b8c238acded430ae
matthiasseemoo/hexrec
src/hexrec/utils.py
[ "BSD-2-Clause" ]
Python
humanize_ascii
str
def humanize_ascii( data: Union[ByteString, Iterable[int]], replace: str = '.', ) -> str: r"""ASCII for human readers. Simplifies the ASCII representation replacing all non-human-readable characters with a generic placeholder. Arguments: data (bytes): Byte data. Sequence generator supported. replace (str): String replacement of non-human-readable characters. Returns: str: ASCII representation with only human-readable characters. Example: >>> humanize_ascii(b'\x89PNG\r\n\x1a\n') '.PNG....' """ text = ''.join(chr(b) if 0x20 <= b < 0x7F else replace for b in data) return text
r"""ASCII for human readers. Simplifies the ASCII representation replacing all non-human-readable characters with a generic placeholder. Arguments: data (bytes): Byte data. Sequence generator supported. replace (str): String replacement of non-human-readable characters. Returns: str: ASCII representation with only human-readable characters. Example: >>> humanize_ascii(b'\x89PNG\r\n\x1a\n') '.PNG....'
r"""ASCII for human readers. Simplifies the ASCII representation replacing all non-human-readable characters with a generic placeholder.
[ "r", "\"", "\"", "\"", "ASCII", "for", "human", "readers", ".", "Simplifies", "the", "ASCII", "representation", "replacing", "all", "non", "-", "human", "-", "readable", "characters", "with", "a", "generic", "placeholder", "." ]
def humanize_ascii( data: Union[ByteString, Iterable[int]], replace: str = '.', ) -> str: text = ''.join(chr(b) if 0x20 <= b < 0x7F else replace for b in data) return text
[ "def", "humanize_ascii", "(", "data", ":", "Union", "[", "ByteString", ",", "Iterable", "[", "int", "]", "]", ",", "replace", ":", "str", "=", "'.'", ",", ")", "->", "str", ":", "text", "=", "''", ".", "join", "(", "chr", "(", "b", ")", "if", "0x20", "<=", "b", "<", "0x7F", "else", "replace", "for", "b", "in", "data", ")", "return", "text" ]
r"""ASCII for human readers.
[ "r", "\"", "\"", "\"", "ASCII", "for", "human", "readers", "." ]
[ "r\"\"\"ASCII for human readers.\n\n Simplifies the ASCII representation replacing all non-human-readable\n characters with a generic placeholder.\n\n Arguments:\n data (bytes):\n Byte data. Sequence generator supported.\n\n replace (str):\n String replacement of non-human-readable characters.\n\n Returns:\n str: ASCII representation with only human-readable characters.\n\n Example:\n >>> humanize_ascii(b'\\x89PNG\\r\\n\\x1a\\n')\n '.PNG....'\n \"\"\"" ]
[ { "param": "data", "type": "Union[ByteString, Iterable[int]]" }, { "param": "replace", "type": "str" } ]
{ "returns": [ { "docstring": "ASCII representation with only human-readable characters.", "docstring_tokens": [ "ASCII", "representation", "with", "only", "human", "-", "readable", "characters", "." ], "type": "str" } ], "raises": [], "params": [ { "identifier": "data", "type": "Union[ByteString, Iterable[int]]", "docstring": "Byte data. Sequence generator supported.", "docstring_tokens": [ "Byte", "data", ".", "Sequence", "generator", "supported", "." ], "default": null, "is_optional": false }, { "identifier": "replace", "type": "str", "docstring": "String replacement of non-human-readable characters.", "docstring_tokens": [ "String", "replacement", "of", "non", "-", "human", "-", "readable", "characters", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [ { "identifier": "examples", "docstring": null, "docstring_tokens": [ "None" ] } ] }
def humanize_ascii( data: Union[ByteString, Iterable[int]], replace: str = '.', ) -> str: text = ''.join(chr(b) if 0x20 <= b < 0x7F else replace for b in data) return text
910
630
7d544d066281f1790fe0a8097931ff7ca8af980e
PhyloSofS-Team/exonhomology
thoraxe/subexons/phylosofs.py
[ "MIT" ]
Python
_fill_sequence_and_annotation
<not_specific>
def _fill_sequence_and_annotation(df_group, s_exon2char): """Create a list of sequences and s-exons (annotation).""" s_exon_annot = [] seqs = [] for row in df_group.itertuples(): s_exon = s_exon2char[row.S_exonID] seq = str(row.S_exon_Sequence).replace('*', '') for _ in range(len(seq)): s_exon_annot.append(s_exon) seqs.append(seq) return "".join(seqs), "".join(s_exon_annot)
Create a list of sequences and s-exons (annotation).
Create a list of sequences and s-exons (annotation).
[ "Create", "a", "list", "of", "sequences", "and", "s", "-", "exons", "(", "annotation", ")", "." ]
def _fill_sequence_and_annotation(df_group, s_exon2char): s_exon_annot = [] seqs = [] for row in df_group.itertuples(): s_exon = s_exon2char[row.S_exonID] seq = str(row.S_exon_Sequence).replace('*', '') for _ in range(len(seq)): s_exon_annot.append(s_exon) seqs.append(seq) return "".join(seqs), "".join(s_exon_annot)
[ "def", "_fill_sequence_and_annotation", "(", "df_group", ",", "s_exon2char", ")", ":", "s_exon_annot", "=", "[", "]", "seqs", "=", "[", "]", "for", "row", "in", "df_group", ".", "itertuples", "(", ")", ":", "s_exon", "=", "s_exon2char", "[", "row", ".", "S_exonID", "]", "seq", "=", "str", "(", "row", ".", "S_exon_Sequence", ")", ".", "replace", "(", "'*'", ",", "''", ")", "for", "_", "in", "range", "(", "len", "(", "seq", ")", ")", ":", "s_exon_annot", ".", "append", "(", "s_exon", ")", "seqs", ".", "append", "(", "seq", ")", "return", "\"\"", ".", "join", "(", "seqs", ")", ",", "\"\"", ".", "join", "(", "s_exon_annot", ")" ]
Create a list of sequences and s-exons (annotation).
[ "Create", "a", "list", "of", "sequences", "and", "s", "-", "exons", "(", "annotation", ")", "." ]
[ "\"\"\"Create a list of sequences and s-exons (annotation).\"\"\"" ]
[ { "param": "df_group", "type": null }, { "param": "s_exon2char", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "df_group", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "s_exon2char", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _fill_sequence_and_annotation(df_group, s_exon2char): s_exon_annot = [] seqs = [] for row in df_group.itertuples(): s_exon = s_exon2char[row.S_exonID] seq = str(row.S_exon_Sequence).replace('*', '') for _ in range(len(seq)): s_exon_annot.append(s_exon) seqs.append(seq) return "".join(seqs), "".join(s_exon_annot)
911
619
20f7a0dc19c96f2ffed7670cc3b3c55def16723b
LSSTDESC/skyCatalogs
python/desc/skycatalogs/utils/translate_utils.py
[ "BSD-3-Clause" ]
Python
check_file
<not_specific>
def check_file(path): '''Look for a file that should not exist''' try: f = open(path, mode='r') except FileNotFoundError as e: return raise ValueError(f'File for {path} already exists')
Look for a file that should not exist
Look for a file that should not exist
[ "Look", "for", "a", "file", "that", "should", "not", "exist" ]
def check_file(path): try: f = open(path, mode='r') except FileNotFoundError as e: return raise ValueError(f'File for {path} already exists')
[ "def", "check_file", "(", "path", ")", ":", "try", ":", "f", "=", "open", "(", "path", ",", "mode", "=", "'r'", ")", "except", "FileNotFoundError", "as", "e", ":", "return", "raise", "ValueError", "(", "f'File for {path} already exists'", ")" ]
Look for a file that should not exist
[ "Look", "for", "a", "file", "that", "should", "not", "exist" ]
[ "'''Look for a file that should not exist'''" ]
[ { "param": "path", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def check_file(path): try: f = open(path, mode='r') except FileNotFoundError as e: return raise ValueError(f'File for {path} already exists')
912
728
63cb7683c15d7dddc2ff1762704552c378b478fb
ythlml/mindspore
mindspore/dataset/transforms/vision/validators.py
[ "Apache-2.0" ]
Python
check_degrees
<not_specific>
def check_degrees(degrees): """Check if the degrees is legal.""" if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it cannot be negative.") degrees = (-degrees, degrees) elif isinstance(degrees, (list, tuple)): if len(degrees) != 2: raise TypeError("If degrees is a sequence, the length must be 2.") else: raise TypeError("Degrees must be a single non-negative number or a sequence") return degrees
Check if the degrees is legal.
Check if the degrees is legal.
[ "Check", "if", "the", "degrees", "is", "legal", "." ]
def check_degrees(degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it cannot be negative.") degrees = (-degrees, degrees) elif isinstance(degrees, (list, tuple)): if len(degrees) != 2: raise TypeError("If degrees is a sequence, the length must be 2.") else: raise TypeError("Degrees must be a single non-negative number or a sequence") return degrees
[ "def", "check_degrees", "(", "degrees", ")", ":", "if", "isinstance", "(", "degrees", ",", "numbers", ".", "Number", ")", ":", "if", "degrees", "<", "0", ":", "raise", "ValueError", "(", "\"If degrees is a single number, it cannot be negative.\"", ")", "degrees", "=", "(", "-", "degrees", ",", "degrees", ")", "elif", "isinstance", "(", "degrees", ",", "(", "list", ",", "tuple", ")", ")", ":", "if", "len", "(", "degrees", ")", "!=", "2", ":", "raise", "TypeError", "(", "\"If degrees is a sequence, the length must be 2.\"", ")", "else", ":", "raise", "TypeError", "(", "\"Degrees must be a single non-negative number or a sequence\"", ")", "return", "degrees" ]
Check if the degrees is legal.
[ "Check", "if", "the", "degrees", "is", "legal", "." ]
[ "\"\"\"Check if the degrees is legal.\"\"\"" ]
[ { "param": "degrees", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "degrees", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import numbers def check_degrees(degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it cannot be negative.") degrees = (-degrees, degrees) elif isinstance(degrees, (list, tuple)): if len(degrees) != 2: raise TypeError("If degrees is a sequence, the length must be 2.") else: raise TypeError("Degrees must be a single non-negative number or a sequence") return degrees
913
829