Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
License:
Commit
·
d420fa6
1
Parent(s):
1ac27ab
Delete loading script
Browse files- food101.py +0 -217
food101.py
DELETED
@@ -1,217 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Dataset class for Food-101 dataset."""
|
16 |
-
|
17 |
-
import datasets
|
18 |
-
from datasets.tasks import ImageClassification
|
19 |
-
|
20 |
-
|
21 |
-
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
|
22 |
-
|
23 |
-
_METADATA_URLS = {
|
24 |
-
"train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt",
|
25 |
-
"test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt",
|
26 |
-
}
|
27 |
-
|
28 |
-
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"
|
29 |
-
|
30 |
-
_DESCRIPTION = (
|
31 |
-
"This dataset consists of 101 food categories, with 101'000 images. For "
|
32 |
-
"each class, 250 manually reviewed test images are provided as well as 750"
|
33 |
-
" training images. On purpose, the training images were not cleaned, and "
|
34 |
-
"thus still contain some amount of noise. This comes mostly in the form of"
|
35 |
-
" intense colors and sometimes wrong labels. All images were rescaled to "
|
36 |
-
"have a maximum side length of 512 pixels."
|
37 |
-
)
|
38 |
-
|
39 |
-
_CITATION = """\
|
40 |
-
@inproceedings{bossard14,
|
41 |
-
title = {Food-101 -- Mining Discriminative Components with Random Forests},
|
42 |
-
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
|
43 |
-
booktitle = {European Conference on Computer Vision},
|
44 |
-
year = {2014}
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
|
48 |
-
_LICENSE = """\
|
49 |
-
LICENSE AGREEMENT
|
50 |
-
=================
|
51 |
-
- The Food-101 data set consists of images from Foodspotting [1] which are not
|
52 |
-
property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
|
53 |
-
scientific fair use must be negociated with the respective picture owners
|
54 |
-
according to the Foodspotting terms of use [2].
|
55 |
-
|
56 |
-
[1] http://www.foodspotting.com/
|
57 |
-
[2] http://www.foodspotting.com/terms/
|
58 |
-
"""
|
59 |
-
|
60 |
-
_NAMES = [
|
61 |
-
"apple_pie",
|
62 |
-
"baby_back_ribs",
|
63 |
-
"baklava",
|
64 |
-
"beef_carpaccio",
|
65 |
-
"beef_tartare",
|
66 |
-
"beet_salad",
|
67 |
-
"beignets",
|
68 |
-
"bibimbap",
|
69 |
-
"bread_pudding",
|
70 |
-
"breakfast_burrito",
|
71 |
-
"bruschetta",
|
72 |
-
"caesar_salad",
|
73 |
-
"cannoli",
|
74 |
-
"caprese_salad",
|
75 |
-
"carrot_cake",
|
76 |
-
"ceviche",
|
77 |
-
"cheesecake",
|
78 |
-
"cheese_plate",
|
79 |
-
"chicken_curry",
|
80 |
-
"chicken_quesadilla",
|
81 |
-
"chicken_wings",
|
82 |
-
"chocolate_cake",
|
83 |
-
"chocolate_mousse",
|
84 |
-
"churros",
|
85 |
-
"clam_chowder",
|
86 |
-
"club_sandwich",
|
87 |
-
"crab_cakes",
|
88 |
-
"creme_brulee",
|
89 |
-
"croque_madame",
|
90 |
-
"cup_cakes",
|
91 |
-
"deviled_eggs",
|
92 |
-
"donuts",
|
93 |
-
"dumplings",
|
94 |
-
"edamame",
|
95 |
-
"eggs_benedict",
|
96 |
-
"escargots",
|
97 |
-
"falafel",
|
98 |
-
"filet_mignon",
|
99 |
-
"fish_and_chips",
|
100 |
-
"foie_gras",
|
101 |
-
"french_fries",
|
102 |
-
"french_onion_soup",
|
103 |
-
"french_toast",
|
104 |
-
"fried_calamari",
|
105 |
-
"fried_rice",
|
106 |
-
"frozen_yogurt",
|
107 |
-
"garlic_bread",
|
108 |
-
"gnocchi",
|
109 |
-
"greek_salad",
|
110 |
-
"grilled_cheese_sandwich",
|
111 |
-
"grilled_salmon",
|
112 |
-
"guacamole",
|
113 |
-
"gyoza",
|
114 |
-
"hamburger",
|
115 |
-
"hot_and_sour_soup",
|
116 |
-
"hot_dog",
|
117 |
-
"huevos_rancheros",
|
118 |
-
"hummus",
|
119 |
-
"ice_cream",
|
120 |
-
"lasagna",
|
121 |
-
"lobster_bisque",
|
122 |
-
"lobster_roll_sandwich",
|
123 |
-
"macaroni_and_cheese",
|
124 |
-
"macarons",
|
125 |
-
"miso_soup",
|
126 |
-
"mussels",
|
127 |
-
"nachos",
|
128 |
-
"omelette",
|
129 |
-
"onion_rings",
|
130 |
-
"oysters",
|
131 |
-
"pad_thai",
|
132 |
-
"paella",
|
133 |
-
"pancakes",
|
134 |
-
"panna_cotta",
|
135 |
-
"peking_duck",
|
136 |
-
"pho",
|
137 |
-
"pizza",
|
138 |
-
"pork_chop",
|
139 |
-
"poutine",
|
140 |
-
"prime_rib",
|
141 |
-
"pulled_pork_sandwich",
|
142 |
-
"ramen",
|
143 |
-
"ravioli",
|
144 |
-
"red_velvet_cake",
|
145 |
-
"risotto",
|
146 |
-
"samosa",
|
147 |
-
"sashimi",
|
148 |
-
"scallops",
|
149 |
-
"seaweed_salad",
|
150 |
-
"shrimp_and_grits",
|
151 |
-
"spaghetti_bolognese",
|
152 |
-
"spaghetti_carbonara",
|
153 |
-
"spring_rolls",
|
154 |
-
"steak",
|
155 |
-
"strawberry_shortcake",
|
156 |
-
"sushi",
|
157 |
-
"tacos",
|
158 |
-
"takoyaki",
|
159 |
-
"tiramisu",
|
160 |
-
"tuna_tartare",
|
161 |
-
"waffles",
|
162 |
-
]
|
163 |
-
|
164 |
-
_IMAGES_DIR = "food-101/images/"
|
165 |
-
|
166 |
-
|
167 |
-
class Food101(datasets.GeneratorBasedBuilder):
|
168 |
-
"""Food-101 Images dataset."""
|
169 |
-
|
170 |
-
def _info(self):
|
171 |
-
return datasets.DatasetInfo(
|
172 |
-
description=_DESCRIPTION,
|
173 |
-
features=datasets.Features(
|
174 |
-
{
|
175 |
-
"image": datasets.Image(),
|
176 |
-
"label": datasets.ClassLabel(names=_NAMES),
|
177 |
-
}
|
178 |
-
),
|
179 |
-
supervised_keys=("image", "label"),
|
180 |
-
homepage=_HOMEPAGE,
|
181 |
-
citation=_CITATION,
|
182 |
-
license=_LICENSE,
|
183 |
-
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
184 |
-
)
|
185 |
-
|
186 |
-
def _split_generators(self, dl_manager):
|
187 |
-
archive_path = dl_manager.download(_BASE_URL)
|
188 |
-
split_metadata_paths = dl_manager.download(_METADATA_URLS)
|
189 |
-
return [
|
190 |
-
datasets.SplitGenerator(
|
191 |
-
name=datasets.Split.TRAIN,
|
192 |
-
gen_kwargs={
|
193 |
-
"images": dl_manager.iter_archive(archive_path),
|
194 |
-
"metadata_path": split_metadata_paths["train"],
|
195 |
-
},
|
196 |
-
),
|
197 |
-
datasets.SplitGenerator(
|
198 |
-
name=datasets.Split.VALIDATION,
|
199 |
-
gen_kwargs={
|
200 |
-
"images": dl_manager.iter_archive(archive_path),
|
201 |
-
"metadata_path": split_metadata_paths["test"],
|
202 |
-
},
|
203 |
-
),
|
204 |
-
]
|
205 |
-
|
206 |
-
def _generate_examples(self, images, metadata_path):
|
207 |
-
"""Generate images and labels for splits."""
|
208 |
-
with open(metadata_path, encoding="utf-8") as f:
|
209 |
-
files_to_keep = set(f.read().split("\n"))
|
210 |
-
for file_path, file_obj in images:
|
211 |
-
if file_path.startswith(_IMAGES_DIR):
|
212 |
-
if file_path[len(_IMAGES_DIR) : -len(".jpg")] in files_to_keep:
|
213 |
-
label = file_path.split("/")[2]
|
214 |
-
yield file_path, {
|
215 |
-
"image": {"path": file_path, "bytes": file_obj.read()},
|
216 |
-
"label": label,
|
217 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|