Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Turkish
Size:
100K<n<1M
ArXiv:
License:
File size: 5,069 Bytes
8e3b9cf 09d2355 8e3b9cf 09d2355 b1ce537 8e3b9cf 5c56ed2 8e3b9cf df06097 7236c96 4f96e68 7236c96 4f96e68 7236c96 8e3b9cf 137e98f 8e3b9cf 137e98f 8e3b9cf eafab00 8e3b9cf eafab00 7236c96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- tr
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TurkishNer
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: domain
dtype:
class_label:
names:
'0': architecture
'1': basketball
'2': book
'3': business
'4': education
'5': fictional_universe
'6': film
'7': food
'8': geography
'9': government
'10': law
'11': location
'12': military
'13': music
'14': opera
'15': organization
'16': people
'17': religion
'18': royalty
'19': soccer
'20': sports
'21': theater
'22': time
'23': travel
'24': tv
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PERSON
'2': I-PERSON
'3': B-ORGANIZATION
'4': I-ORGANIZATION
'5': B-LOCATION
'6': I-LOCATION
'7': B-MISC
'8': I-MISC
splits:
- name: train
num_bytes: 177658278
num_examples: 532629
download_size: 204393976
dataset_size: 177658278
---
# Dataset Card for turkish_ner
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://arxiv.org/abs/1702.02363
- **Repository:** [Needs More Information]
- **Paper:** http://arxiv.org/abs/1702.02363
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [email protected]
### Dataset Summary
Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Turkish
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
There's only the training set.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
H. Bahadir Sahin, Caglar Tirkaz, Eray Yildiz, Mustafa Tolga Eren and Omer Ozan Sonmez
### Licensing Information
Creative Commons Attribution 4.0 International
### Citation Information
@InProceedings@article{DBLP:journals/corr/SahinTYES17,
author = {H. Bahadir Sahin and
Caglar Tirkaz and
Eray Yildiz and
Mustafa Tolga Eren and
Omer Ozan Sonmez},
title = {Automatically Annotated Turkish Corpus for Named Entity Recognition
and Text Categorization using Large-Scale Gazetteers},
journal = {CoRR},
volume = {abs/1702.02363},
year = {2017},
url = {http://arxiv.org/abs/1702.02363},
archivePrefix = {arXiv},
eprint = {1702.02363},
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
### Contributions
Thanks to [@merveenoyan](https://github.com/merveenoyan) for adding this dataset. |