File size: 5,069 Bytes
8e3b9cf
 
 
 
 
09d2355
8e3b9cf
09d2355
b1ce537
8e3b9cf
 
 
 
 
 
 
5c56ed2
8e3b9cf
 
df06097
7236c96
 
 
 
 
 
 
 
 
 
4f96e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7236c96
 
 
 
4f96e68
 
 
 
 
 
 
 
 
7236c96
 
 
 
 
 
8e3b9cf
 
 
 
 
 
 
 
137e98f
8e3b9cf
 
 
137e98f
 
8e3b9cf
 
 
 
 
 
 
 
 
 
 
 
 
eafab00
8e3b9cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eafab00
 
 
7236c96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- tr
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TurkishNer
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: domain
    dtype:
      class_label:
        names:
          '0': architecture
          '1': basketball
          '2': book
          '3': business
          '4': education
          '5': fictional_universe
          '6': film
          '7': food
          '8': geography
          '9': government
          '10': law
          '11': location
          '12': military
          '13': music
          '14': opera
          '15': organization
          '16': people
          '17': religion
          '18': royalty
          '19': soccer
          '20': sports
          '21': theater
          '22': time
          '23': travel
          '24': tv
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PERSON
          '2': I-PERSON
          '3': B-ORGANIZATION
          '4': I-ORGANIZATION
          '5': B-LOCATION
          '6': I-LOCATION
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: train
    num_bytes: 177658278
    num_examples: 532629
  download_size: 204393976
  dataset_size: 177658278
---


# Dataset Card for turkish_ner

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** http://arxiv.org/abs/1702.02363
- **Repository:** [Needs More Information]
- **Paper:** http://arxiv.org/abs/1702.02363
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [email protected]

### Dataset Summary

Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

Turkish

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

There's only the training set.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

H. Bahadir Sahin, Caglar Tirkaz, Eray Yildiz, Mustafa Tolga Eren and Omer Ozan Sonmez

### Licensing Information

Creative Commons Attribution 4.0 International

### Citation Information

@InProceedings@article{DBLP:journals/corr/SahinTYES17,
  author    = {H. Bahadir Sahin and
               Caglar Tirkaz and
               Eray Yildiz and
               Mustafa Tolga Eren and
               Omer Ozan Sonmez},
  title     = {Automatically Annotated Turkish Corpus for Named Entity Recognition
               and Text Categorization using Large-Scale Gazetteers},
  journal   = {CoRR},
  volume    = {abs/1702.02363},
  year      = {2017},
  url       = {http://arxiv.org/abs/1702.02363},
  archivePrefix = {arXiv},
  eprint    = {1702.02363},
  timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/SahinTYES17.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

### Contributions

Thanks to [@merveenoyan](https://github.com/merveenoyan) for adding this dataset.