|
"""FROM SQUAD_V2""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
|
|
_CITATION = """\ |
|
Tuora, R., Zawadzka-Paluektau, N., Klamra, C., Zwierzchowska, A., Kobyliński, Ł. (2022). |
|
Towards a Polish Question Answering Dataset (PoQuAD). |
|
In: Tseng, YH., Katsurai, M., Nguyen, H.N. (eds) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. ICADL 2022. |
|
Lecture Notes in Computer Science, vol 13636. Springer, Cham. |
|
https://doi.org/10.1007/978-3-031-21756-2_16 |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
PoQuaD description |
|
""" |
|
|
|
|
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/clarin-pl/poquad/blob/main/poquad-dev.json", |
|
"dev": "https://huggingface.co/datasets/clarin-pl/poquad/blob/main/poquad-train.json, |
|
} |
|
|
|
|
|
class SquadV2Config(datasets.BuilderConfig): |
|
"""BuilderConfig for SQUAD.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQUADV2. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SquadV2Config, self).__init__(**kwargs) |
|
|
|
|
|
class SquadV2(datasets.GeneratorBasedBuilder): |
|
"""TODO(squad_v2): Short description of my dataset.""" |
|
|
|
# TODO(squad_v2): Set up version. |
|
BUILDER_CONFIGS = [ |
|
SquadV2Config(name="poquad", version=datasets.Version("1.0.0"), description="PoQuaD plaint text"), |
|
] |
|
|
|
def _info(self): |
|
# TODO(squad_v2): Specifies the datasets.DatasetInfo object |
|
return datasets.DatasetInfo( |
|
# This is the description that will appear on the datasets page. |
|
description=_DESCRIPTION, |
|
# datasets.features.FeatureConnectors |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
# These are the features of your dataset like images, labels ... |
|
} |
|
), |
|
# If there's a common (input, target) tuple from the features, |
|
# specify them here. They'll be used if as_supervised=True in |
|
# builder.as_dataset. |
|
supervised_keys=None, |
|
# Homepage of the dataset for documentation |
|
homepage="https://rajpurkar.github.io/SQuAD-explorer/", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
# TODO(squad_v2): Downloads the data and defines the splits |
|
# dl_manager is a datasets.download.DownloadManager that can be used to |
|
# download and extract URLs |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
# TODO(squad_v2): Yields (key, example) tuples from the dataset |
|
with open(filepath, encoding="utf-8") as f: |
|
squad = json.load(f) |
|
for example in squad["data"]: |
|
title = example.get("title", "") |
|
for paragraph in example["paragraphs"]: |
|
context = paragraph["context"] # do not strip leading blank spaces GH-2585 |
|
for qa in paragraph["qas"]: |
|
question = qa["question"] |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"] for answer in qa["answers"]] |
|
|
|
# Features currently used are "context", "question", and "answers". |
|
# Others are extracted here for the ease of future expansions. |
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |