File size: 5,066 Bytes
c0b84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8c9e6
 
c0b84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf70961
c0b84ff
 
45a09eb
c0b84ff
 
 
 
45a09eb
c0b84ff
 
 
86b94d5
c0b84ff
 
bf70961
 
c0b84ff
 
 
86b94d5
45a09eb
c0b84ff
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""FROM SQUAD_V2"""


import json

import datasets
from datasets.tasks import QuestionAnsweringExtractive


# TODO(squad_v2): BibTeX citation
_CITATION = """\
Tuora, R., Zawadzka-Paluektau, N., Klamra, C., Zwierzchowska, A., Kobyliński, Ł. (2022). 
Towards a Polish Question Answering Dataset (PoQuAD). 
In: Tseng, YH., Katsurai, M., Nguyen, H.N. (eds) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. ICADL 2022. 
Lecture Notes in Computer Science, vol 13636. Springer, Cham. 
https://doi.org/10.1007/978-3-031-21756-2_16
"""

_DESCRIPTION = """\
PoQuaD description
"""


_URLS = {
    "train": "poquad-dev.json",
    "dev": "poquad-train.json",
}


class SquadV2Config(datasets.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUADV2.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadV2Config, self).__init__(**kwargs)


class SquadV2(datasets.GeneratorBasedBuilder):
    """TODO(squad_v2): Short description of my dataset."""

    # TODO(squad_v2): Set up version.
    BUILDER_CONFIGS = [
        SquadV2Config(name="poquad", version=datasets.Version("1.0.0"), description="PoQuaD plaint text"),
    ]

    def _info(self):
        # TODO(squad_v2): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://rajpurkar.github.io/SQuAD-explorer/",
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(squad_v2): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(squad_v2): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            id_ = 0
            for example in squad["data"]:
                title = example.get("title", "")
                paragraph_id = example["id"]
                for paragraph in example["paragraphs"]:
                    context = paragraph["context"]  # do not strip leading blank spaces GH-2585
                    for qa in paragraph["qas"]:
                        question = qa["question"]
                        

                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"] for answer in qa["answers"]]
                        # is_impossible = qa["is_impossible"]
                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        id_ += 1
                        yield id_, {
                            "title": title,
                            "context": context,
                            "question": question,
                            #"is_impossible" : is_impossible,
                            "paragraph_id": paragraph_id,
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }