|
|
|
|
|
import datasets |
|
|
|
import itertools |
|
|
|
import os |
|
|
|
import pyarrow as pa |
|
import pyarrow.parquet as pq |
|
|
|
BASE_DATASET = "ejschwartz/oo-method-test" |
|
|
|
def setexe(r): |
|
r['Dirname'], r['Exename'] = os.path.split(r['Binary']) |
|
return r |
|
|
|
class OOMethodTestDataset(datasets.ArrowBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="combined", |
|
version=datasets.Version("1.0.0"), |
|
description="All data files combined", |
|
), |
|
datasets.BuilderConfig( |
|
name="byrow", |
|
version=datasets.Version("1.0.0"), |
|
description="Split by example (dumb)", |
|
), |
|
datasets.BuilderConfig( |
|
name="byfuncname", |
|
version=datasets.Version("1.0.0"), |
|
description="Split by function name", |
|
), |
|
datasets.BuilderConfig( |
|
name="bylibrary", |
|
version=datasets.Version("1.0.0"), |
|
description="Split so that library functions (those appearing in >1 exe) are used for training, and non-library functions are used for testing", |
|
) |
|
|
|
] |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo() |
|
|
|
def _split_generators(self, dl_manager): |
|
ds = datasets.load_dataset(BASE_DATASET)['combined'] |
|
|
|
|
|
|
|
|
|
|
|
ds = ds.map(setexe, batched=False) |
|
|
|
if self.config.name == "combined": |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="combined", |
|
gen_kwargs={ |
|
"ds": ds, |
|
}, |
|
), |
|
] |
|
|
|
elif self.config.name == "byrow": |
|
|
|
ds = ds.train_test_split(test_size=0.1, seed=42) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"ds": ds['train'], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"ds": ds['test'], |
|
}, |
|
), |
|
|
|
] |
|
|
|
elif self.config.name == "byfuncname": |
|
|
|
unique_names = ds.unique('Name') |
|
nameds = datasets.Dataset.from_dict({'Name': unique_names}) |
|
|
|
name_split = nameds.train_test_split(test_size=0.1, seed=42) |
|
|
|
|
|
train_name = name_split['train']['Name'] |
|
test_name = name_split['test']['Name'] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"ds": ds.filter(lambda r: r['Name'] in train_name), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"ds": ds.filter(lambda r: r['Name'] in test_name), |
|
}, |
|
), |
|
|
|
] |
|
|
|
elif self.config.name == "bylibrary": |
|
|
|
|
|
|
|
testcount = set(zip(ds['Name'], ds['Exename'])) |
|
|
|
|
|
testcount = sorted(testcount, key=lambda x: x[0]) |
|
|
|
|
|
grouped = itertools.groupby(testcount, lambda t: t[0]) |
|
|
|
grouped = {k: [b for _,b in g] for k, g in grouped} |
|
|
|
library_func_names = {f for f, exes in grouped.items() if len(exes) > 1} |
|
nonlibrary_func_names = {f for f, exes in grouped.items() if len(exes) == 1} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"ds": ds.filter(lambda r: r['Name'] in library_func_names), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"ds": ds.filter(lambda r: r['Name'] in nonlibrary_func_names), |
|
}, |
|
), |
|
|
|
] |
|
|
|
else: |
|
assert False |
|
|
|
def _generate_tables(self, ds): |
|
|
|
|
|
|
|
for i, batch in enumerate(ds.to_pandas(batched=True)): |
|
yield i, pa.Table.from_pandas(batch) |
|
|