ubaldus commited on
Commit
413eb4e
·
verified ·
1 Parent(s): 0d1a087

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -3
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: gfdl
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Processed Wikipedia SQLite Databases for Wikilite
2
+
3
+ This dataset provides pre-processed SQLite databases of Wikipedia articles for use with the [Wikilite](https://github.com/eja/wikilite) tool. These databases allow you to quickly and efficiently search and access Wikipedia content offline using Wikilite's lexical and semantic search capabilities.
4
+
5
+ ## Supported Languages
6
+
7
+ Currently, the dataset includes databases for the following languages:
8
+
9
+ * **Sardinian (sc)**
10
+ * **Italian (it)**
11
+ * **Spanish (es)**
12
+
13
+ More languages may be added in the future.
14
+
15
+ ## Dataset Structure
16
+
17
+ Each language is stored as a separate compressed file (`.db.gz`) within the dataset. For example:
18
+
19
+ * `it.db.gz` - Italian Wikipedia database
20
+ * `sc.db.gz` - Sardinian Wikipedia database
21
+ * `es.db.gz` - Spanish Wikipedia database
22
+
23
+ ## How to Use this Dataset
24
+
25
+ 1. **Download the Desired Database:** Choose the database for the language you want to use and download the corresponding `.db.gz` file.
26
+
27
+ 2. **Decompress the Database:** Use a tool like `gunzip` to decompress the downloaded file. For example, on Linux or macOS, you can run the following command in your terminal:
28
+
29
+ ```bash
30
+ gunzip it.db.gz
31
+ ```
32
+ This will create the decompressed database file (`it.db` in the example above).
33
+
34
+ 3. **Install Wikilite**: Follow the instructions on the [Wikilite github repo](https://github.com/eja/wikilite) to clone the repository and build the binary.
35
+
36
+ 4. **Run Wikilite:** Navigate to the directory where you extracted the database and where you have the compiled `wikilite` binary. Use the `wikilite` command with the appropriate options. For example, to start the web interface for the Italian database, use:
37
+
38
+ ```bash
39
+ ./wikilite --db it.db --web
40
+ ```
41
+
42
+ This will start a local web server allowing you to browse and search the Wikipedia content.
43
+
44
+ **Command-line Usage:** Alternatively, you can search the database directly from the command line:
45
+
46
+ ```bash
47
+ ./wikilite --db it.db --query "search term"
48
+ ```
49
+
50
+ 5. **Access the Web Interface:** If you started the web server, open a web browser and navigate to `http://localhost:35248` to access the web interface.
51
+
52
+ ## About Wikilite
53
+
54
+ [Wikilite](https://github.com/eja/wikilite) is a tool that provides offline access to Wikipedia content, featuring:
55
+
56
+ * **Fast and Flexible Lexical Searching:** Uses FTS5 (Full-Text Search 5) for efficient keyword-based searching.
57
+ * **Enhanced Semantic Search:** Integrates with Qdrant (optional) for semantic search capabilities, allowing you to find information based on meaning rather than just keywords.
58
+ * **Offline Access:** Enables access to Wikipedia articles without an internet connection.
59
+ * **Command-Line Interface (CLI):** Allows direct searching from the terminal.
60
+ * **Web Interface (Optional):** Provides a user-friendly way to browse and search content.
61
+
62
+ ### Semantic Search Details
63
+
64
+ Wikilite leverages text embeddings for its optional semantic search. This allows you to find results even if your query does not match keywords directly, handling cases like:
65
+
66
+ * Typos in your search query.
67
+ * Different wordings to express the same concept.
68
+ * The article uses synonyms or related terms.
69
+
70
+ **Note:** To enable semantic search, you'll need to have a running Qdrant instance and configure Wikilite accordingly. See the Wikilite GitHub repository for more details.
71
+
72
+ ## Contributing
73
+
74
+ If you would like to contribute databases for additional languages, please feel free to submit a pull request.
75
+
76
+ ## Acknowledgments
77
+
78
+ * [Wikipedia](https://www.wikipedia.org/): For providing the valuable data.
79
+ * [SQLite](https://www.sqlite.org/): For the robust database engine.
80
+ * [Qdrant](https://qdrant.tech/): For the high-performance vector database used in semantic search.
81
+ * [Wikilite](https://github.com/eja/wikilite): For making this project possible.