VQG-Balanced / VQG-Balanced.py
eduvedras
Changes
5ab0aaf
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
import pandas as pd
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}
"""
_DESCRIPTION = """\
Visual questions for data science
"""
_URL = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/images.tar.gz"
class VQGBalancedTargz(datasets.GeneratorBasedBuilder):
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Id": datasets.Value("string"),
"Question": datasets.Value("string"),
"Chart": datasets.Image(),
"Chart_name": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://huggingface.co/datasets/eduvedras/VQG-Balanced",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
path = dl_manager.download(_URL)
image_iters = dl_manager.iter_archive(path)
#split_metadata_path = dl_manager.download(_METADATA_URLS)
metadata_train_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_train.csv"
metadata_validation_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_validation.csv"
metadata_test_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_test.csv"
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters,
"metadata_path": metadata_train_path}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"images": image_iters,
"metadata_path": metadata_validation_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"images": image_iters,
"metadata_path": metadata_test_path}),
]
def _generate_examples(self, images, metadata_path):
"""This function returns the examples in the raw (text) form."""
metadata = pd.read_csv(metadata_path)
idx = 0
for index, row in metadata.iterrows():
for filepath, image in images:
filepath = filepath.split('/')[-1]
if row['Chart'] in filepath:
yield idx, {
"Chart": {"path": filepath, "bytes": image.read()},
"Question": row['Question'],
"Id": row['Id'],
"Chart_name": row['Chart'],
}
break
idx += 1