File size: 35,746 Bytes
1de8de7
69440bb
afa14ae
88bda97
 
1de8de7
7fcc229
88bda97
1de8de7
7fcc229
1de8de7
7fcc229
 
 
 
1de8de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88bda97
1de8de7
 
 
7fcc229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8de7
 
 
 
7fcc229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88bda97
7fcc229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b694a
 
 
 
 
7fcc229
88bda97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa14ae
88bda97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa14ae
 
 
 
 
 
 
7fcc229
4e2de79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640c6d6
69440bb
 
 
 
 
 
 
 
 
640c6d6
69440bb
 
 
 
 
 
 
 
 
 
640c6d6
4e2de79
 
 
 
 
69440bb
 
 
 
 
 
640c6d6
69440bb
 
 
 
 
 
 
 
4e2de79
 
 
69440bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640c6d6
69440bb
 
 
 
 
640c6d6
69440bb
 
 
 
640c6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8de7
 
 
 
 
88bda97
69440bb
88bda97
 
 
 
 
afa14ae
640c6d6
 
 
1de8de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88bda97
 
 
afa14ae
640c6d6
 
88bda97
4e2de79
88bda97
 
 
 
 
 
 
1de8de7
640c6d6
 
 
 
 
 
 
 
 
 
 
4e2de79
1de8de7
 
 
 
88bda97
 
 
 
 
 
 
 
 
1de8de7
4e2de79
88bda97
 
 
 
 
 
 
 
7fcc229
4e2de79
88bda97
 
 
 
 
 
 
 
 
 
cb8eda9
88bda97
cb8eda9
 
88bda97
 
afa14ae
88bda97
 
 
 
 
 
 
 
 
 
 
afa14ae
88bda97
 
41b694a
cb8eda9
1de8de7
 
 
 
 
 
 
 
 
08d39bb
 
5d3fb60
 
 
08d39bb
1de8de7
41b694a
1de8de7
 
 
 
 
 
 
 
 
afa14ae
1de8de7
 
 
41b694a
1de8de7
 
 
 
cb8eda9
7fcc229
 
 
 
 
 
 
 
afa14ae
 
7fcc229
 
41b694a
 
7fcc229
41b694a
7fcc229
afa14ae
41b694a
afa14ae
 
7fcc229
41b694a
7fcc229
 
640c6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8de7
 
 
 
69440bb
 
 
640c6d6
 
 
 
 
1de8de7
 
 
88bda97
 
 
640c6d6
 
88bda97
 
7fcc229
88bda97
41b694a
88bda97
 
 
 
 
 
 
 
 
1de8de7
 
69440bb
 
 
 
 
 
 
 
88bda97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8de7
 
 
88bda97
 
 
1de8de7
 
69440bb
640c6d6
 
69440bb
88bda97
 
 
 
cb8eda9
88bda97
cb8eda9
88bda97
640c6d6
 
88bda97
640c6d6
7fcc229
 
cb8eda9
41b694a
 
cb8eda9
41b694a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import datasets
from datasets import ClassLabel
from typing import Dict, List, Optional, Union, Callable
import json
import textwrap

import xml.etree.ElementTree as ET
import pandas as pd

logger = datasets.logging.get_logger(__name__)

# Extracted from: 
# - https://huggingface.co/datasets/lener_br
# - https://github.com/peluz/lener-br
# - https://teodecampos.github.io/LeNER-Br/
_LENERBR_KWARGS = dict(
    name = "LeNER-Br",
    description=textwrap.dedent(
            """\
        LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. 
        LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags 
        for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, 
        66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, 
        such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. 
        In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents."""
    ),
    task_type="ner",
    label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"],
    data_urls={
        "train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll",
        "validation": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/dev/dev.conll",
        "test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll",
    },  
    citation=textwrap.dedent(
            """\
        @InProceedings{luz_etal_propor2018,
            author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
                    Renato R. R. {de Oliveira} and Matheus Stauffer and
                    Samuel Couto and Paulo Bermejo},
            title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
            booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
            publisher = {Springer},
            series = {Lecture Notes on Computer Science ({LNCS})},
            pages = {313--323},
            year = {2018},
            month = {September 24-26},
            address = {Canela, RS, Brazil},	  
            doi = {10.1007/978-3-319-99722-3_32},
            url = {https://teodecampos.github.io/LeNER-Br/},
        }"""
    ),
    url="https://teodecampos.github.io/LeNER-Br/",
)

# Extracted from: 
# - https://huggingface.co/datasets/assin2
# - https://sites.google.com/view/assin2
# - https://github.com/ruanchaves/assin
_ASSIN2_BASE_KWARGS = dict(
    description=textwrap.dedent(
            """\
        The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1.
        The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese,
        annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment
        classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same
        annotation. All data were manually annotated."""
    ),
    data_urls={
        "train": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-train-only.xml",
        "validation": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-dev.xml",
        "test": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-test.xml",
    },  
    citation=textwrap.dedent(
            """\
        @inproceedings{real2020assin,
            title={The assin 2 shared task: a quick overview},
            author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
            booktitle={International Conference on Computational Processing of the Portuguese Language},
            pages={406--412},
            year={2020},
            organization={Springer}
        }"""
    ),
    url="https://sites.google.com/view/assin2",
)
_ASSIN2_RTE_KWARGS = dict(
    name = "assin2-rte",
    task_type="rte",
    label_classes=["NONE", "ENTAILMENT"],
    **_ASSIN2_BASE_KWARGS
)
_ASSIN2_STS_KWARGS = dict(
    name = "assin2-sts",
    task_type="sts",
    **_ASSIN2_BASE_KWARGS
)

# Extracted from: 
# - https://huggingface.co/datasets/ruanchaves/hatebr
# - https://github.com/franciellevargas/HateBR
_HATEBR_KWARGS = dict(
    name = "HateBR",
    description=textwrap.dedent(
            """\
        HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection 
        on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated 
        by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive 
        versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and nine hate speech 
        groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, 
        and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore, 
        baseline experiments were implemented reaching 85% of F1-score outperforming the current literature dataset baselines for 
        the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the 
        Natural Language Processing area."""
    ),
    task_type="classification",
    file_type="csv",
    label_classes=["non-offensive", "slightly", "moderately", "highly"],
    data_urls={
        "train": "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv"
    },
    citation=textwrap.dedent(
            """\
        @inproceedings{vargas2022hatebr,
            title={HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection},
            author={Vargas, Francielle and Carvalho, Isabelle and de G{\'o}es, Fabiana Rodrigues and Pardo, Thiago and Benevenuto, Fabr{\'\i}cio},
            booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference},
            pages={7174--7183},
            year={2022}
        }"""
    ),
    url="https://github.com/franciellevargas/HateBR",
    text_and_label_columns=["instagram_comments", "offensiveness_levels"],
    indexes_url="https://huggingface.co/datasets/ruanchaves/hatebr/raw/main/indexes.json"
)
hatebr_map = {
    "0": "non-offensive",
    "1": "slightly",
    "2": "moderately",
    "3": "highly",
}
_HATEBR_KWARGS['process_label'] = lambda x: hatebr_map[x]

# Extracted from: 
# - https://github.com/ulysses-camara/ulysses-ner-br

_ULYSSESNER_META_KWARGS = dict(
    description=textwrap.dedent(
            """\
        UlyssesNER-Br is a corpus of Brazilian Legislative Documents for NER with quality baselines. 
        The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies.
        UlyssesNER-Br has seven semantic classes or categories. Based on HAREM,
        we defined five typical categories: person, location, organization, event and date.
        In addition, we defined two specific semantic classes for the legislative domain:
        law foundation and law product. The law foundation category makes reference to
        entities related to laws, resolutions, decrees, as well as to domain-specific entities
        such as bills, which are law proposals being discussed by the parliament, and legislative consultations, 
        also known as job requests made by the parliamentarians.
        The law product entity refers to systems, programs, and other products created
        from legislation."""
    ),
    task_type="ner",
    citation=textwrap.dedent(
            """\
        @InProceedings{10.1007/978-3-030-98305-5_1,
            author="Albuquerque, Hidelberg O.
            and Costa, Rosimeire
            and Silvestre, Gabriel
            and Souza, Ellen
            and da Silva, N{\'a}dia F. F.
            and Vit{\'o}rio, Douglas
            and Moriyama, Gyovana
            and Martins, Lucas
            and Soezima, Luiza
            and Nunes, Augusto
            and Siqueira, Felipe
            and Tarrega, Jo{\~a}o P.
            and Beinotti, Joao V.
            and Dias, Marcio
            and Silva, Matheus
            and Gardini, Miguel
            and Silva, Vinicius
            and de Carvalho, Andr{\'e} C. P. L. F.
            and Oliveira, Adriano L. I.",
            editor="Pinheiro, Vl{\'a}dia
            and Gamallo, Pablo
            and Amaro, Raquel
            and Scarton, Carolina
            and Batista, Fernando
            and Silva, Diego
            and Magro, Catarina
            and Pinto, Hugo",
            title="UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition",
            booktitle="Computational Processing of the Portuguese Language",
            year="2022",
            publisher="Springer International Publishing",
            address="Cham",
            pages="3--14",
            isbn="978-3-030-98305-5"
        }
        @InProceedings{10.1007/978-3-031-16474-3_62,
            author="Costa, Rosimeire
            and Albuquerque, Hidelberg Oliveira
            and Silvestre, Gabriel
            and Silva, N{\'a}dia F{\'e}lix F.
            and Souza, Ellen
            and Vit{\'o}rio, Douglas
            and Nunes, Augusto
            and Siqueira, Felipe
            and Pedro Tarrega, Jo{\~a}o
            and Vitor Beinotti, Jo{\~a}o
            and de Souza Dias, M{\'a}rcio
            and Pereira, Fab{\'i}ola S. F.
            and Silva, Matheus
            and Gardini, Miguel
            and Silva, Vinicius
            and de Carvalho, Andr{\'e} C. P. L. F.
            and Oliveira, Adriano L. I.",
            editor="Marreiros, Goreti
            and Martins, Bruno
            and Paiva, Ana
            and Ribeiro, Bernardete
            and Sardinha, Alberto",
            title="Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-Generated Text",
            booktitle="Progress in Artificial Intelligence",
            year="2022",
            publisher="Springer International Publishing",
            address="Cham",
            pages="767--779",
            isbn="978-3-031-16474-3"
        }"""
    ),
    url="https://github.com/ulysses-camara/ulysses-ner-br",
)
_ULYSSESNER_PL_KWARGS = dict(
    name = "UlyssesNER-Br-PL-coarse",
    data_urls = {
        "train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt",
        "validation":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt",
        "test":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/test.txt",
    },
    label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'],
    **_ULYSSESNER_META_KWARGS
)
_ULYSSESNER_C_KWARGS = dict(
    name = "UlyssesNER-Br-C-coarse",
    data_urls = {
        "train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt",
        "validation":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt",
        "test":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/test.txt",
    },
    label_classes = ['DATA', 'EVENTO', 'FUNDAMENTO', 'LOCAL', 'ORGANIZACAO', 'PESSOA', 'PRODUTODELEI'],
    **_ULYSSESNER_META_KWARGS
)

_ULYSSESNER_PL_TIPOS_KWARGS = dict(
    name = "UlyssesNER-Br-PL-fine",
    data_urls = {
        "train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt",
        "validation":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt",
        "test":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/test.txt",
    },
    label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \
                    'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAindividual', \
                    'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'],
    **_ULYSSESNER_META_KWARGS
)
_ULYSSESNER_C_TIPOS_KWARGS = dict(
    name = "UlyssesNER-Br-C-fine",
    data_urls = {
        "train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt",
        "validation":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt",
        "test":  "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/test.txt",
    },
    label_classes = ['DATA', 'EVENTO', 'FUNDapelido', 'FUNDlei', 'FUNDprojetodelei', 'LOCALconcreto', 'LOCALvirtual', \
                    'ORGgovernamental', 'ORGnaogovernamental', 'ORGpartido', 'PESSOAcargo', 'PESSOAgrupocargo', 'PESSOAgrupoind', \
                    'PESSOAindividual', 'PRODUTOoutros', 'PRODUTOprograma', 'PRODUTOsistema'],
    **_ULYSSESNER_META_KWARGS
)

_BRAZILIAN_COURT_DECISIONS_JUDGMENT = dict(
    name = "brazilian_court_decisions_judgment",
    task_type = "classification",
    data_urls = "joelito/brazilian_court_decisions",
    text_and_label_columns = ["decision_description", "judgment_label"],
    file_type="hf_dataset",
    url = "https://github.com/lagefreitas/predicting-brazilian-court-decisions",
    description =textwrap.dedent(
            """\
        The dataset is a collection of 4043 Ementa (summary) court decisions and their metadata from the Tribunal de 
        Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil). The court decisions are labeled according 
        to 7 categories and whether the decisions were unanimous on the part of the judges or not. The dataset 
        supports the task of Legal Judgment Prediction."""
    ),
    citation = textwrap.dedent(
        """\
        @article{Lage-Freitas2022,
          author = {Lage-Freitas, Andr{\'{e}} and Allende-Cid, H{\'{e}}ctor and Santana, Orivaldo and Oliveira-Lage, L{\'{i}}via},
          doi = {10.7717/peerj-cs.904},
          issn = {2376-5992},
          journal = {PeerJ. Computer science},
          keywords = {Artificial intelligence,Jurimetrics,Law,Legal,Legal NLP,Legal informatics,Legal outcome forecast,Litigation prediction,Machine learning,NLP,Portuguese,Predictive algorithms,judgement prediction},
          language = {eng},
          month = {mar},
          pages = {e904--e904},
          publisher = {PeerJ Inc.},
          title = {{Predicting Brazilian Court Decisions}},
          url = {https://pubmed.ncbi.nlm.nih.gov/35494851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/},
          volume = {8},
          year = {2022}
        }"""
    ),
    label_classes = ["no", "partial", "yes"]
)
_BRAZILIAN_COURT_DECISIONS_UNANIMITY = {
    **_BRAZILIAN_COURT_DECISIONS_JUDGMENT,
    "name": "brazilian_court_decisions_unanimity",
    "text_and_label_columns": ["decision_description", "unanimity_label"],
    "label_classes": ["unanimity", "not-unanimity"],
}
HAREM_BASE_KWARGS = dict(
    description=textwrap.dedent(
            """\
        The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts,
        from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM
        documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set,
        a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event,
        Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date).
        It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type".
        The dataset version processed here ONLY USE the "Category" level of the original dataset.
        [1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese."
        Brazilian Conference on Intelligent Systems. Springer, Cham, 2020."""
    ),
    task_type="ner",
    data_urls="harem",
    file_type="hf_dataset",
    text_and_label_columns = ["tokens", "ner_tags"],
    citation=textwrap.dedent(
            """\
        @inproceedings{santos2006harem,
            title={Harem: An advanced ner evaluation contest for portuguese},
            author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui},
            booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)},
            year={2006}
        }"""
    ),
    url="https://www.linguateca.pt/primeiroHAREM/harem_coleccaodourada_en.html",
)
HAREM_DEFAULT_KWARGS = dict(
    name = "harem-default",
    extra_configs = {"name": "default"},
    label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR", "ABSTRACCAO", "ACONTECIMENTO", "COISA", "OBRA", "OUTRO"],
    **HAREM_BASE_KWARGS
)
HAREM_SELECTIVE_KWARGS = dict(
    name = "harem-selective",
    extra_configs = {"name": "selective"},
    label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR"],
    **HAREM_BASE_KWARGS
)

_MAPA_BASE_KWARGS = dict(
    task_type = "ner",
    data_urls = "joelito/mapa",
    file_type="hf_dataset",
    url = "",
    description =textwrap.dedent(
            """\
        The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex, 
        a multilingual corpus of court decisions and legal dispositions in the 24 official languages 
        of the European Union. The documents have been annotated for named entities following the 
        guidelines of the MAPA project which foresees two annotation level, a general and a more 
        fine-grained one. The annotated corpus can be used for named entity recognition/classification."""
    ),
    citation = textwrap.dedent(
        """\
        @article{DeGibertBonet2022,
            author = {{de Gibert Bonet}, Ona and {Garc{\'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite},
            journal = {Proceedings of the Language Resources and Evaluation Conference},
            number = {June},
            pages = {3751--3760},
            title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}},
            url = {https://aclanthology.org/2022.lrec-1.400},
            year = {2022}
        }"""
    )
)
_MAPA_BASE_KWARGS['filter'] = lambda item: item["language"] == "pt"
_MAPA_COARSE_KWARGS = dict(
    name = "mapa_pt_coarse",
    text_and_label_columns = ["tokens", "coarse_grained"],
    label_classes = ['ADDRESS', 'AMOUNT', 'DATE', 'ORGANISATION', 'PERSON', 'TIME'],
    **_MAPA_BASE_KWARGS
)

_MAPA_FINE_KWARGS = dict(
    name = "mapa_pt_fine",
    text_and_label_columns = ["tokens", "fine_grained"],
    label_classes = ['AGE', 'BUILDING', 'CITY', 'COUNTRY', 'DAY', 'ETHNIC CATEGORY', 
                     'FAMILY NAME', 'INITIAL NAME', 'MARITAL STATUS', 'MONTH', 'NATIONALITY', 
                     'PLACE', 'PROFESSION', 'ROLE', 'STANDARD ABBREVIATION', 'TERRITORY', 
                     'TITLE', 'TYPE', 'UNIT', 'URL', 'VALUE', 'YEAR'],
    **_MAPA_BASE_KWARGS
)
    

_MULTIEURLEX_BASE_KWARGS = dict(
    name = "multi_eurlex_pt",
    task_type = "multilabel_classification",
    data_urls = "multi_eurlex",
    file_type="hf_dataset",
    extra_configs = {"language": "pt", "label_level": "level_1"},
    text_and_label_columns = ["text", "labels"],
    url = "https://github.com/nlpaueb/MultiEURLEX/",
    description =textwrap.dedent(
            """\
         MultiEURLEX comprises 65k EU laws in 23 official EU languages. 
         Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. 
         Each EUROVOC label ID is associated with a label descriptor, e.g., [60, agri-foodstuffs], 
         [6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages. 
         Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX, 
         comprising 57k EU laws with the originally assigned gold labels."""
    ),
    citation = textwrap.dedent(
        """\
        @InProceedings{chalkidis-etal-2021-multieurlex,
          author = {Chalkidis, Ilias  
                        and Fergadiotis, Manos
                        and Androutsopoulos, Ion},
          title = {MultiEURLEX -- A multi-lingual and multi-label legal document 
                       classification dataset for zero-shot cross-lingual transfer},
          booktitle = {Proceedings of the 2021 Conference on Empirical Methods
                       in Natural Language Processing},
          year = {2021},
          publisher = {Association for Computational Linguistics},
          location = {Punta Cana, Dominican Republic},
          url = {https://arxiv.org/abs/2109.00904}
        }"""
    ),
    label_classes = [
        "100149","100160","100148","100147","100152","100143","100156",
        "100158","100154","100153","100142","100145","100150","100162",
        "100159","100144","100151","100157","100161","100146","100155"
    ]
)

class PTBenchmarkConfig(datasets.BuilderConfig):
    """BuilderConfig for PTBenchmark."""

    def __init__(
        self,
        task_type: str,
        data_urls: Union[str, Dict[str, str]],
        citation: str,
        url: str,
        label_classes: Optional[List[Union[str, int]]] = None,
        file_type: Optional[str] = None, #filetype (csv, tsc, jsonl)
        text_and_label_columns: Optional[List[str]] = None, #columns for train, dev and test for csv datasets
        indexes_url: Optional[str] = None, #indexes for train, dev and test for single file datasets
        process_label: Callable[[str], str] = lambda x: x,
        filter: Callable = lambda x: True,
        extra_configs: Dict = {},
        **kwargs,
    ):
        """BuilderConfig for GLUE.
        Args:
          text_features: `dict[string, string]`, map from the name of the feature
            dict for each text field to the name of the column in the tsv file
          label_column: `string`, name of the column in the tsv file corresponding
            to the label
          data_url: `string`, url to download the zip file from
          data_dir: `string`, the path to the folder containing the tsv files in the
            downloaded zip
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          label_classes: `list[string]`, the list of classes if the label is
            categorical. If not provided, then the label will be of type
            `datasets.Value('float32')`.
          process_label: `Function[string, any]`, function  taking in the raw value
            of the label and processing it to the form required by the label feature
          **kwargs: keyword arguments forwarded to super.
        """
        super(PTBenchmarkConfig, self).__init__(version=datasets.Version("1.0.3", ""), **kwargs)
        self.label_classes = label_classes
        self.task_type = task_type
        self.data_urls = data_urls
        self.citation = citation
        self.url = url
        self.file_type = file_type
        self.text_and_label_columns = text_and_label_columns
        self.indexes_url = indexes_url
        self.process_label = process_label
        self.filter = filter
        self.extra_configs = extra_configs

def _get_classification_features(config: PTBenchmarkConfig):
    return datasets.Features(
        {
            "idx": datasets.Value("int32"),
            "sentence": datasets.Value("string"),
            "label": datasets.features.ClassLabel(names=config.label_classes),
        }
    )

def _get_multilabel_classification_features(config: PTBenchmarkConfig):
    return datasets.Features(
        {
            "idx": datasets.Value("int32"),
            "sentence": datasets.Value("string"),
            "labels": datasets.Sequence(
                datasets.features.ClassLabel(names=config.label_classes)
            ),
        }
    )

def _get_ner_features(config: PTBenchmarkConfig):
    bio_labels = ["O"]
    for label_name in config.label_classes:
        bio_labels.append("B-" + label_name)
        bio_labels.append("I-" + label_name)
    return datasets.Features(
        {
            "idx": datasets.Value("int32"),
            "tokens": datasets.Sequence(datasets.Value("string")),
            "ner_tags": datasets.Sequence(
                datasets.features.ClassLabel(names=bio_labels)
            ),
        }
    )

def _get_rte_features(config: PTBenchmarkConfig):
    return datasets.Features(
        {
            "idx": datasets.Value("int32"),
            "sentence1": datasets.Value("string"),
            "sentence2": datasets.Value("string"),
            "label": datasets.features.ClassLabel(names=config.label_classes),
        }
    )

def _get_sts_features(config: PTBenchmarkConfig = None):
    return datasets.Features(
        {
            "idx": datasets.Value("int32"),
            "sentence1": datasets.Value("string"),
            "sentence2": datasets.Value("string"),
            "label": datasets.Value("float32"),
        }
    )

def _csv_generator(file_path: str,
                   config: PTBenchmarkConfig,
                   indexes_path: Optional[str] = None,
                   split: Optional[str] = None
                   ):
    """Yields examples."""
    df = pd.read_csv(file_path)
    columns = config.text_and_label_columns
    df = df[columns]

    with open(indexes_path, "r") as f:
        indexes= json.load(f)
    split_indexes = indexes[split]
    df_split = df.iloc[split_indexes]

    for id_, row in df_split.iterrows():
        example = {
            "idx": id_,
            "sentence": str(row[columns[0]]),
            "label": config.process_label(str(row[columns[-1]]))
        }
        yield id_, example

def _conll_ner_generator(file_path: str, config: PTBenchmarkConfig):
    with open(file_path, encoding="utf-8") as f:

        guid = 0
        tokens = []
        ner_tags = []

        for line in f:
            if line == "" or line == "\n":
                if tokens:
                    # Filter for Ulysses empty data
                    if len(tokens) == 1 and tokens[0] == '.':
                        guid += 1
                        tokens = []
                        ner_tags = []
                        continue
                    yield guid, {
                        "idx": guid,
                        "tokens": tokens,
                        "ner_tags": ner_tags,
                    }
                    guid += 1
                    tokens = []
                    ner_tags = []
            else:
                splits = line.split(" ")
                tokens.append(splits[0])
                ner_tags.append(config.process_label(splits[1].rstrip()))

        # last example
        yield guid, {
            "idx": guid,
            "tokens": tokens,
            "ner_tags": ner_tags,
        }

def _assin2_generator(file_path, config: PTBenchmarkConfig):
    """Yields examples."""
    id_ = 0

    with open(file_path, "rb") as f:

        tree = ET.parse(f)
        root = tree.getroot()

        task_type = config.task_type

        for pair in root:

            example = {
                "idx": int(pair.attrib.get("id")),
                "sentence1": pair.find(".//t").text,
                "sentence2": pair.find(".//h").text
            }
            if task_type == "rte":
                example["label"] = pair.attrib.get("entailment").upper()
            elif task_type == "sts":
                example["label"] = float(config.process_label(pair.attrib.get("similarity")))

            yield id_, example
            id_ += 1

def _hf_dataset_generator(split, config: PTBenchmarkConfig):
    dataset = datasets.load_dataset(config.data_urls, split=split, **config.extra_configs)
    feature_col, label_col = config.text_and_label_columns
    
    target_feature_col, target_label_col = feature_col, label_col
    if config.task_type == "classification":
        target_feature_col, target_label_col = "sentence", "label"
    elif config.task_type == "multilabel_classification":
        target_feature_col, target_label_col = "sentence", "labels"
    elif config.task_type == "ner":
        target_feature_col, target_label_col = "tokens", "ner_tags"

    for id, item in enumerate(dataset):
        #filter invalid items
        if not config.filter(item):
            continue

        label = item[label_col]
        #Convert label to original text
        if isinstance(dataset.features[label_col], ClassLabel):
            if isinstance(label, list):
                label = [dataset.features[label_col].int2str(l) for l in label]
            else:
                label = dataset.features[label_col].int2str(label)
        
        #Process label
        if isinstance(label, list):
            label = [config.process_label(l) for l in label]
        else:
            label = config.process_label(label)

        #Filter out invalid classes
        if config.task_type != "ner":
            if isinstance(label, list):
                invalid = False
                for i in range(len(label)):
                    if label[i] not in config.label_classes:
                        invalid = True
                        break
                if invalid:
                    continue
            else:
                if label not in config.label_classes:
                    continue

        yield id, {
            "idx": id,
            target_feature_col: item[feature_col],
            target_label_col: label,
        }

class PTBenchmark(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        PTBenchmarkConfig(
            **CONFIG_KWARGS
        ) \
        for CONFIG_KWARGS in \
            [_LENERBR_KWARGS, _ASSIN2_RTE_KWARGS, _ASSIN2_STS_KWARGS, _HATEBR_KWARGS,
            _ULYSSESNER_PL_KWARGS, _ULYSSESNER_C_KWARGS, _ULYSSESNER_PL_TIPOS_KWARGS,
            _ULYSSESNER_C_TIPOS_KWARGS, _BRAZILIAN_COURT_DECISIONS_JUDGMENT, 
            _BRAZILIAN_COURT_DECISIONS_UNANIMITY, HAREM_DEFAULT_KWARGS, HAREM_SELECTIVE_KWARGS, 
            _MULTIEURLEX_BASE_KWARGS, _MAPA_COARSE_KWARGS, _MAPA_FINE_KWARGS]
    ]

    def _info(self) -> datasets.DatasetInfo:
        features = None
        if self.config.task_type == "classification":
            features = _get_classification_features(self.config)
        elif self.config.task_type == "multilabel_classification":
            features = _get_multilabel_classification_features(self.config)
        elif self.config.task_type == "ner":
            features = _get_ner_features(self.config)
        elif self.config.task_type == "rte":
            features = _get_rte_features(self.config)
        elif self.config.task_type == "sts":
            features = _get_sts_features(self.config)
        
        return datasets.DatasetInfo(
            description=self.config.description,
            homepage=self.config.url,
            citation=self.config.citation,
            supervised_keys=None,
            features=features
        )
        
    def _split_generators(self, dl_manager: datasets.DownloadManager):
        if self.config.file_type == 'hf_dataset':
            return [
                datasets.SplitGenerator(
                    name=split,
                    gen_kwargs={"split": split},  # These kwargs will be passed to _generate_examples
                )
                for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
            ]
        data_urls = self.config.data_urls.copy()
        if self.config.indexes_url is not None:
            data_urls['indexes'] = self.config.indexes_url
        file_paths = dl_manager.download_and_extract(data_urls)

        if self.config.indexes_url is None:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"file_path": file_paths["train"]},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"file_path": file_paths["validation"]},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"file_path": file_paths["test"]},
                )
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "train"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "validation"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "test"},
                )
            ]
    
    def _generate_examples(
        self,
        file_path: Optional[str] = None,
        indexes_path: Optional[str] = None,
        split: Optional[str] = None
    ):
        logger.info("⏳ Generating examples from = %s", file_path)
        if self.config.file_type == "hf_dataset":
            yield from _hf_dataset_generator(split, self.config)
            return

        if self.config.task_type == "classification":
            if self.config.file_type == "csv":
                yield from _csv_generator(
                    file_path, 
                    self.config,
                    indexes_path=indexes_path,
                    split=split
                )
        elif self.config.task_type == "multilabel_classification":
            pass
        elif self.config.task_type == "ner":
            yield from _conll_ner_generator(file_path, self.config)
        elif self.config.task_type == "rte":
            if "assin2" in self.config.name:
                yield from _assin2_generator(file_path, self.config)
        elif self.config.task_type == "sts":
            if "assin2" in self.config.name:
                yield from _assin2_generator(file_path, self.config)