eduagarcia commited on
Commit
a5bb2ce
·
verified ·
1 Parent(s): 7cd3a17

Update status of AALF/gemma-2-27b-it-SimPO-37K_eval_request_False_bfloat16_Original to FAILED

Browse files
AALF/gemma-2-27b-it-SimPO-37K_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,10 +8,12 @@
8
  "architectures": "Gemma2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "RUNNING",
12
  "submitted_time": "2024-08-29T19:24:31Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 1470,
16
- "job_start_time": "2025-02-05T15-51-28.287947"
 
 
17
  }
 
8
  "architectures": "Gemma2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "FAILED",
12
  "submitted_time": "2024-08-29T19:24:31Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 1470,
16
+ "job_start_time": "2025-02-05T15-51-28.287947",
17
+ "error_msg": "CUDA out of memory. Tried to allocate 18.00 MiB. GPU 0 has a total capacity of 79.35 GiB of which 12.19 MiB is free. Process 4170526 has 79.32 GiB memory in use. Of the allocated memory 48.40 GiB is allocated by PyTorch, with 3.46 GiB allocated in private pools (e.g., CUDA Graphs), and 406.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
18
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 238, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 106, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 63, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 305, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 621, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/usr/local/lib/python3.12/dist-packages/transformers/models/auto/auto_factory.py\", line 564, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py\", line 4270, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py\", line 4848, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/usr/local/lib/python3.12/dist-packages/transformers/modeling_utils.py\", line 876, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/usr/local/lib/python3.12/dist-packages/accelerate/utils/modeling.py\", line 330, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18.00 MiB. GPU 0 has a total capacity of 79.35 GiB of which 12.19 MiB is free. Process 4170526 has 79.32 GiB memory in use. Of the allocated memory 48.40 GiB is allocated by PyTorch, with 3.46 GiB allocated in private pools (e.g., CUDA Graphs), and 406.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n"
19
  }