Update status of databricks/dbrx-base_eval_request_False_bfloat16_Original to FAILED
Browse files
databricks/dbrx-base_eval_request_False_bfloat16_Original.json
CHANGED
@@ -8,10 +8,12 @@
|
|
8 |
"architectures": "DbrxForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-04-07T15:38:13Z",
|
13 |
"model_type": "🟢 : pretrained",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 393,
|
16 |
-
"job_start_time": "2024-04-07T18-28-58.240299"
|
|
|
|
|
17 |
}
|
|
|
8 |
"architectures": "DbrxForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
+
"status": "FAILED",
|
12 |
"submitted_time": "2024-04-07T15:38:13Z",
|
13 |
"model_type": "🟢 : pretrained",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 393,
|
16 |
+
"job_start_time": "2024-04-07T18-28-58.240299",
|
17 |
+
"error_msg": "CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
|
18 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
|
19 |
}
|