Datasets:
Formats:
imagefolder
Size:
< 1K
extends Node | |
# --fixed-fps 2000 --disable-render-loop | |
enum ControlModes { HUMAN, TRAINING, ONNX_INFERENCE } | |
@export var control_mode: ControlModes = ControlModes.TRAINING | |
@export_range(1, 10, 1, "or_greater") var action_repeat := 8 | |
@export_range(0, 10, 0.1, "or_greater") var speed_up := 1.0 | |
@export var onnx_model_path := "" | |
# Onnx model stored for each requested path | |
var onnx_models: Dictionary | |
@onready var start_time = Time.get_ticks_msec() | |
const MAJOR_VERSION := "0" | |
const MINOR_VERSION := "7" | |
const DEFAULT_PORT := "11008" | |
const DEFAULT_SEED := "1" | |
var stream: StreamPeerTCP = null | |
var connected = false | |
var message_center | |
var should_connect = true | |
var all_agents: Array | |
var agents_training: Array | |
var agents_inference: Array | |
var agents_heuristic: Array | |
## For recording expert demos | |
var agent_demo_record: Node | |
## Stores recorded trajectories | |
var demo_trajectories: Array | |
## A trajectory includes obs: Array, acts: Array, terminal (set in Python env instead) | |
var current_demo_trajectory: Array | |
var need_to_send_obs = false | |
var args = null | |
var initialized = false | |
var just_reset = false | |
var onnx_model = null | |
var n_action_steps = 0 | |
var _action_space: Dictionary | |
var _action_space_inference: Array[Dictionary] = [] | |
var _obs_space: Dictionary | |
# Called when the node enters the scene tree for the first time. | |
func _ready(): | |
await get_tree().root.ready | |
get_tree().set_pause(true) | |
_initialize() | |
await get_tree().create_timer(1.0).timeout | |
get_tree().set_pause(false) | |
func _initialize(): | |
_get_agents() | |
args = _get_args() | |
Engine.physics_ticks_per_second = _get_speedup() * 60 # Replace with function body. | |
Engine.time_scale = _get_speedup() * 1.0 | |
prints( | |
"physics ticks", | |
Engine.physics_ticks_per_second, | |
Engine.time_scale, | |
_get_speedup(), | |
speed_up | |
) | |
_set_heuristic("human", all_agents) | |
_initialize_training_agents() | |
_initialize_inference_agents() | |
_initialize_demo_recording() | |
_set_seed() | |
_set_action_repeat() | |
initialized = true | |
func _initialize_training_agents(): | |
if agents_training.size() > 0: | |
_obs_space = agents_training[0].get_obs_space() | |
_action_space = agents_training[0].get_action_space() | |
connected = connect_to_server() | |
if connected: | |
_set_heuristic("model", agents_training) | |
_handshake() | |
_send_env_info() | |
else: | |
push_warning( | |
"Couldn't connect to Python server, using human controls instead. ", | |
"Did you start the training server using e.g. `gdrl` from the console?" | |
) | |
func _initialize_inference_agents(): | |
if agents_inference.size() > 0: | |
if control_mode == ControlModes.ONNX_INFERENCE: | |
assert( | |
FileAccess.file_exists(onnx_model_path), | |
"Onnx Model Path set on Sync node does not exist: %s" % onnx_model_path | |
) | |
onnx_models[onnx_model_path] = ONNXModel.new(onnx_model_path, 1) | |
for agent in agents_inference: | |
_action_space_inference.append(agent.get_action_space()) | |
var agent_onnx_model: ONNXModel | |
if agent.onnx_model_path.is_empty(): | |
assert( | |
onnx_models.has(onnx_model_path), | |
( | |
"Node %s has no onnx model path set " % agent.get_path() | |
+ "and sync node's control mode is not set to OnnxInference. " | |
+ "Either add the path to the AIController, " | |
+ "or if you want to use the path set on sync node instead, " | |
+ "set control mode to OnnxInference." | |
) | |
) | |
prints( | |
"Info: AIController %s" % agent.get_path(), | |
"has no onnx model path set.", | |
"Using path set on the sync node instead." | |
) | |
agent_onnx_model = onnx_models[onnx_model_path] | |
else: | |
if not onnx_models.has(agent.onnx_model_path): | |
assert( | |
FileAccess.file_exists(agent.onnx_model_path), | |
( | |
"Onnx Model Path set on %s node does not exist: %s" | |
% [agent.get_path(), agent.onnx_model_path] | |
) | |
) | |
onnx_models[agent.onnx_model_path] = ONNXModel.new(agent.onnx_model_path, 1) | |
agent_onnx_model = onnx_models[agent.onnx_model_path] | |
agent.onnx_model = agent_onnx_model | |
_set_heuristic("model", agents_inference) | |
func _initialize_demo_recording(): | |
if agent_demo_record: | |
InputMap.add_action("RemoveLastDemoEpisode") | |
InputMap.action_add_event( | |
"RemoveLastDemoEpisode", agent_demo_record.remove_last_episode_key | |
) | |
current_demo_trajectory.resize(2) | |
current_demo_trajectory[0] = [] | |
current_demo_trajectory[1] = [] | |
agent_demo_record.heuristic = "demo_record" | |
func _physics_process(_delta): | |
# two modes, human control, agent control | |
# pause tree, send obs, get actions, set actions, unpause tree | |
_demo_record_process() | |
if n_action_steps % action_repeat != 0: | |
n_action_steps += 1 | |
return | |
n_action_steps += 1 | |
_training_process() | |
_inference_process() | |
_heuristic_process() | |
func _training_process(): | |
if connected: | |
get_tree().set_pause(true) | |
if just_reset: | |
just_reset = false | |
var obs = _get_obs_from_agents(agents_training) | |
var reply = {"type": "reset", "obs": obs} | |
_send_dict_as_json_message(reply) | |
# this should go straight to getting the action and setting it checked the agent, no need to perform one phyics tick | |
get_tree().set_pause(false) | |
return | |
if need_to_send_obs: | |
need_to_send_obs = false | |
var reward = _get_reward_from_agents() | |
var done = _get_done_from_agents() | |
#_reset_agents_if_done() # this ensures the new observation is from the next env instance : NEEDS REFACTOR | |
var obs = _get_obs_from_agents(agents_training) | |
var reply = {"type": "step", "obs": obs, "reward": reward, "done": done} | |
_send_dict_as_json_message(reply) | |
var handled = handle_message() | |
func _inference_process(): | |
if agents_inference.size() > 0: | |
var obs: Array = _get_obs_from_agents(agents_inference) | |
var actions = [] | |
for agent_id in range(0, agents_inference.size()): | |
var action = agents_inference[agent_id].onnx_model.run_inference( | |
obs[agent_id]["obs"], 1.0 | |
) | |
action["output"] = clamp_array(action["output"], -1.0, 1.0) | |
var action_dict = _extract_action_dict( | |
action["output"], _action_space_inference[agent_id] | |
) | |
actions.append(action_dict) | |
_set_agent_actions(actions, agents_inference) | |
_reset_agents_if_done(agents_inference) | |
get_tree().set_pause(false) | |
func _demo_record_process(): | |
if not agent_demo_record: | |
return | |
if Input.is_action_just_pressed("RemoveLastDemoEpisode"): | |
print("[Sync script][Demo recorder] Removing last recorded episode.") | |
demo_trajectories.remove_at(demo_trajectories.size() - 1) | |
print("Remaining episode count: %d" % demo_trajectories.size()) | |
if n_action_steps % agent_demo_record.action_repeat != 0: | |
return | |
var obs_dict: Dictionary = agent_demo_record.get_obs() | |
# Get the current obs from the agent | |
assert( | |
obs_dict.has("obs"), | |
"Demo recorder needs an 'obs' key in get_obs() returned dictionary to record obs from." | |
) | |
current_demo_trajectory[0].append(obs_dict.obs) | |
# Get the action applied for the current obs from the agent | |
agent_demo_record.set_action() | |
var acts = agent_demo_record.get_action() | |
var terminal = agent_demo_record.get_done() | |
# Record actions only for non-terminal states | |
if terminal: | |
agent_demo_record.set_done_false() | |
else: | |
current_demo_trajectory[1].append(acts) | |
if terminal: | |
#current_demo_trajectory[2].append(true) | |
demo_trajectories.append(current_demo_trajectory.duplicate(true)) | |
print("[Sync script][Demo recorder] Recorded episode count: %d" % demo_trajectories.size()) | |
current_demo_trajectory[0].clear() | |
current_demo_trajectory[1].clear() | |
func _heuristic_process(): | |
for agent in agents_heuristic: | |
_reset_agents_if_done(agents_heuristic) | |
func _extract_action_dict(action_array: Array, action_space: Dictionary): | |
var index = 0 | |
var result = {} | |
for key in action_space.keys(): | |
var size = action_space[key]["size"] | |
if action_space[key]["action_type"] == "discrete": | |
result[key] = round(action_array[index]) | |
else: | |
result[key] = action_array.slice(index, index + size) | |
index += size | |
return result | |
## For AIControllers that inherit mode from sync, sets the correct mode. | |
func _set_agent_mode(agent: Node): | |
var agent_inherits_mode: bool = agent.control_mode == agent.ControlModes.INHERIT_FROM_SYNC | |
if agent_inherits_mode: | |
match control_mode: | |
ControlModes.HUMAN: | |
agent.control_mode = agent.ControlModes.HUMAN | |
ControlModes.TRAINING: | |
agent.control_mode = agent.ControlModes.TRAINING | |
ControlModes.ONNX_INFERENCE: | |
agent.control_mode = agent.ControlModes.ONNX_INFERENCE | |
func _get_agents(): | |
all_agents = get_tree().get_nodes_in_group("AGENT") | |
for agent in all_agents: | |
_set_agent_mode(agent) | |
if agent.control_mode == agent.ControlModes.TRAINING: | |
agents_training.append(agent) | |
elif agent.control_mode == agent.ControlModes.ONNX_INFERENCE: | |
agents_inference.append(agent) | |
elif agent.control_mode == agent.ControlModes.HUMAN: | |
agents_heuristic.append(agent) | |
elif agent.control_mode == agent.ControlModes.RECORD_EXPERT_DEMOS: | |
assert( | |
not agent_demo_record, | |
"Currently only a single AIController can be used for recording expert demos." | |
) | |
agent_demo_record = agent | |
func _set_heuristic(heuristic, agents: Array): | |
for agent in agents: | |
agent.set_heuristic(heuristic) | |
func _handshake(): | |
print("performing handshake") | |
var json_dict = _get_dict_json_message() | |
assert(json_dict["type"] == "handshake") | |
var major_version = json_dict["major_version"] | |
var minor_version = json_dict["minor_version"] | |
if major_version != MAJOR_VERSION: | |
print("WARNING: major verison mismatch ", major_version, " ", MAJOR_VERSION) | |
if minor_version != MINOR_VERSION: | |
print("WARNING: minor verison mismatch ", minor_version, " ", MINOR_VERSION) | |
print("handshake complete") | |
func _get_dict_json_message(): | |
# returns a dictionary from of the most recent message | |
# this is not waiting | |
while stream.get_available_bytes() == 0: | |
stream.poll() | |
if stream.get_status() != 2: | |
print("server disconnected status, closing") | |
get_tree().quit() | |
return null | |
OS.delay_usec(10) | |
var message = stream.get_string() | |
var json_data = JSON.parse_string(message) | |
return json_data | |
func _send_dict_as_json_message(dict): | |
stream.put_string(JSON.stringify(dict, "", false)) | |
func _send_env_info(): | |
var json_dict = _get_dict_json_message() | |
assert(json_dict["type"] == "env_info") | |
var message = { | |
"type": "env_info", | |
"observation_space": _obs_space, | |
"action_space": _action_space, | |
"n_agents": len(agents_training) | |
} | |
_send_dict_as_json_message(message) | |
func connect_to_server(): | |
print("Waiting for one second to allow server to start") | |
OS.delay_msec(1000) | |
print("trying to connect to server") | |
stream = StreamPeerTCP.new() | |
# "localhost" was not working on windows VM, had to use the IP | |
var ip = "127.0.0.1" | |
var port = _get_port() | |
var connect = stream.connect_to_host(ip, port) | |
stream.set_no_delay(true) # TODO check if this improves performance or not | |
stream.poll() | |
# Fetch the status until it is either connected (2) or failed to connect (3) | |
while stream.get_status() < 2: | |
stream.poll() | |
return stream.get_status() == 2 | |
func _get_args(): | |
print("getting command line arguments") | |
var arguments = {} | |
for argument in OS.get_cmdline_args(): | |
print(argument) | |
if argument.find("=") > -1: | |
var key_value = argument.split("=") | |
arguments[key_value[0].lstrip("--")] = key_value[1] | |
else: | |
# Options without an argument will be present in the dictionary, | |
# with the value set to an empty string. | |
arguments[argument.lstrip("--")] = "" | |
return arguments | |
func _get_speedup(): | |
print(args) | |
return args.get("speedup", str(speed_up)).to_float() | |
func _get_port(): | |
return args.get("port", DEFAULT_PORT).to_int() | |
func _set_seed(): | |
var _seed = args.get("env_seed", DEFAULT_SEED).to_int() | |
seed(_seed) | |
func _set_action_repeat(): | |
action_repeat = args.get("action_repeat", str(action_repeat)).to_int() | |
func disconnect_from_server(): | |
stream.disconnect_from_host() | |
func handle_message() -> bool: | |
# get json message: reset, step, close | |
var message = _get_dict_json_message() | |
if message["type"] == "close": | |
print("received close message, closing game") | |
get_tree().quit() | |
get_tree().set_pause(false) | |
return true | |
if message["type"] == "reset": | |
print("resetting all agents") | |
_reset_agents() | |
just_reset = true | |
get_tree().set_pause(false) | |
#print("resetting forcing draw") | |
# RenderingServer.force_draw() | |
# var obs = _get_obs_from_agents() | |
# print("obs ", obs) | |
# var reply = { | |
# "type": "reset", | |
# "obs": obs | |
# } | |
# _send_dict_as_json_message(reply) | |
return true | |
if message["type"] == "call": | |
var method = message["method"] | |
var returns = _call_method_on_agents(method) | |
var reply = {"type": "call", "returns": returns} | |
print("calling method from Python") | |
_send_dict_as_json_message(reply) | |
return handle_message() | |
if message["type"] == "action": | |
var action = message["action"] | |
_set_agent_actions(action, agents_training) | |
need_to_send_obs = true | |
get_tree().set_pause(false) | |
return true | |
print("message was not handled") | |
return false | |
func _call_method_on_agents(method): | |
var returns = [] | |
for agent in all_agents: | |
returns.append(agent.call(method)) | |
return returns | |
func _reset_agents_if_done(agents = all_agents): | |
for agent in agents: | |
if agent.get_done(): | |
agent.set_done_false() | |
func _reset_agents(agents = all_agents): | |
for agent in agents: | |
agent.needs_reset = true | |
#agent.reset() | |
func _get_obs_from_agents(agents: Array = all_agents): | |
var obs = [] | |
for agent in agents: | |
obs.append(agent.get_obs()) | |
return obs | |
func _get_reward_from_agents(agents: Array = agents_training): | |
var rewards = [] | |
for agent in agents: | |
rewards.append(agent.get_reward()) | |
agent.zero_reward() | |
return rewards | |
func _get_done_from_agents(agents: Array = agents_training): | |
var dones = [] | |
for agent in agents: | |
var done = agent.get_done() | |
if done: | |
agent.set_done_false() | |
dones.append(done) | |
return dones | |
func _set_agent_actions(actions, agents: Array = all_agents): | |
for i in range(len(actions)): | |
agents[i].set_action(actions[i]) | |
func clamp_array(arr: Array, min: float, max: float): | |
var output: Array = [] | |
for a in arr: | |
output.append(clamp(a, min, max)) | |
return output | |
## Save recorded export demos on window exit (Close window instead of "Stop" button in Godot Editor) | |
func _notification(what): | |
if not agent_demo_record: | |
return | |
if what == NOTIFICATION_PREDELETE: | |
var json_string = JSON.stringify(demo_trajectories, "", false) | |
var file = FileAccess.open(agent_demo_record.expert_demo_save_path, FileAccess.WRITE) | |
if not file: | |
var error: Error = FileAccess.get_open_error() | |
assert(not error, "There was an error opening the file: %d" % error) | |
file.store_line(json_string) | |
var error = file.get_error() | |
assert(not error, "There was an error after trying to write to the file: %d" % error) | |