zhengxuanzenwu
commited on
Commit
·
30bd47b
1
Parent(s):
8910c0a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DynaSent: Dynamic Sentiment Analysis Dataset
|
2 |
+
|
3 |
+
DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. This dataset card is forked from the original [DynaSent Repository](https://github.com/cgpotts/dynasent).
|
4 |
+
|
5 |
+
## Contents
|
6 |
+
|
7 |
+
* [Citation](#Citation)
|
8 |
+
* [Dataset files](#dataset-files)
|
9 |
+
* [Quick start](#quick-start)
|
10 |
+
* [Data format](#data-format)
|
11 |
+
* [Models](#models)
|
12 |
+
* [Other files](#other-files)
|
13 |
+
* [License](#license)
|
14 |
+
|
15 |
+
|
16 |
+
## Citation
|
17 |
+
|
18 |
+
[Christopher Potts](http://web.stanford.edu/~cgpotts/), [Zhengxuan Wu](http://zen-wu.social), Atticus Geiger, and [Douwe Kiela](https://douwekiela.github.io). 2020. [DynaSent: A dynamic benchmark for sentiment analysis](https://arxiv.org/abs/2012.15349). Ms., Stanford University and Facebook AI Research.
|
19 |
+
|
20 |
+
```stex
|
21 |
+
@article{potts-etal-2020-dynasent,
|
22 |
+
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},
|
23 |
+
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus and Kiela, Douwe},
|
24 |
+
journal={arXiv preprint arXiv:2012.15349},
|
25 |
+
url={https://arxiv.org/abs/2012.15349},
|
26 |
+
year={2020}}
|
27 |
+
```
|
28 |
+
|
29 |
+
## Dataset files
|
30 |
+
|
31 |
+
The dataset is [dynasent-v1.1.zip](dynasent-v1.1.zip), which is included in this repository. `v1.1` differs from `v1` only in that `v1.1` has proper unique ids for Round 1 and corrects a bug that led to some non-unique ids in Round 2. There are no changes to the examples or other metadata.
|
32 |
+
|
33 |
+
The dataset consists of two rounds, each with a train/dev/test split:
|
34 |
+
|
35 |
+
|
36 |
+
### Round 1: Naturally occurring sentences
|
37 |
+
|
38 |
+
* `dynasent-v1.1-round01-yelp-train.jsonl`
|
39 |
+
* `dynasent-v1.1-round01-yelp-dev.jsonl`
|
40 |
+
* `dynasent-v1.1-round01-yelp-test.jsonl`
|
41 |
+
|
42 |
+
|
43 |
+
### Round 1: Sentences crowdsourced using Dynabench
|
44 |
+
|
45 |
+
* `dynasent-v1.1-round02-dynabench-train.jsonl`
|
46 |
+
* `dynasent-v1.1-round02-dynabench-dev.jsonl`
|
47 |
+
* `dynasent-v1.1-round02-dynabench-test.jsonl`
|
48 |
+
|
49 |
+
|
50 |
+
### SST-dev revalidation
|
51 |
+
|
52 |
+
The dataset also contains a version of the [Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/) dev set in our format with labels from our validation task:
|
53 |
+
|
54 |
+
* `sst-dev-validated.jsonl`
|
55 |
+
|
56 |
+
|
57 |
+
## Quick start
|
58 |
+
|
59 |
+
This function can be used to load any subset of the files:
|
60 |
+
|
61 |
+
```python
|
62 |
+
import json
|
63 |
+
|
64 |
+
def load_dataset(*src_filenames, labels=None):
|
65 |
+
data = []
|
66 |
+
for filename in src_filenames:
|
67 |
+
with open(filename) as f:
|
68 |
+
for line in f:
|
69 |
+
d = json.loads(line)
|
70 |
+
if labels is None or d['gold_label'] in labels:
|
71 |
+
data.append(d)
|
72 |
+
return data
|
73 |
+
```
|
74 |
+
|
75 |
+
For example, to create a Round 1 train set restricting to examples with ternary gold labels:
|
76 |
+
|
77 |
+
```python
|
78 |
+
import os
|
79 |
+
|
80 |
+
r1_train_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round01-yelp-train.jsonl')
|
81 |
+
|
82 |
+
ternary_labels = ('positive', 'negative', 'neutral')
|
83 |
+
|
84 |
+
r1_train = load_dataset(r1_train_filename, labels=ternary_labels)
|
85 |
+
|
86 |
+
X_train, y_train = zip(*[(d['sentence'], d['gold_label']) for d in r1_train])
|
87 |
+
```
|
88 |
+
|
89 |
+
## Data format
|
90 |
+
|
91 |
+
### Round 1 format
|
92 |
+
|
93 |
+
```python
|
94 |
+
{'hit_ids': ['y5238'],
|
95 |
+
'sentence': 'Roto-Rooter is always good when you need someone right away.',
|
96 |
+
'indices_into_review_text': [0, 60],
|
97 |
+
'model_0_label': 'positive',
|
98 |
+
'model_0_probs': {'negative': 0.01173639390617609,
|
99 |
+
'positive': 0.7473671436309814,
|
100 |
+
'neutral': 0.24089649319648743},
|
101 |
+
'text_id': 'r1-0000001',
|
102 |
+
'review_id': 'IDHkeGo-nxhqX4Exkdr08A',
|
103 |
+
'review_rating': 1,
|
104 |
+
'label_distribution': {'positive': ['w130', 'w186', 'w207', 'w264', 'w54'],
|
105 |
+
'negative': [],
|
106 |
+
'neutral': [],
|
107 |
+
'mixed': []},
|
108 |
+
'gold_label': 'positive'}
|
109 |
+
```
|
110 |
+
|
111 |
+
Details:
|
112 |
+
|
113 |
+
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
|
114 |
+
* `'sentence'`: The example text.
|
115 |
+
* `'indices_into_review_text':` indices of `'sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
|
116 |
+
* `'model_0_label'`: prediction of Model 0 as described in the paper. The possible values are `'positive'`, `'negative'`, and `'neutral'`.
|
117 |
+
* `'model_0_probs'`: probability distribution predicted by Model 0. The keys are `('positive', 'negative', 'neutral')` and the values are floats.
|
118 |
+
* `'text_id'`: unique identifier for this entry.
|
119 |
+
* `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'sentence'`.
|
120 |
+
* `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset). The possible values are `1`, `2`, `3`, `4`, and `5`.
|
121 |
+
* `'label_distribution':` response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
|
122 |
+
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
|
123 |
+
|
124 |
+
Here is some code one could use to augment a dataset, as loaded by `load_dataset`, with a field giving the full review text from the [Yelp Academic Dataset](https://www.yelp.com/dataset):
|
125 |
+
|
126 |
+
```python
|
127 |
+
import json
|
128 |
+
|
129 |
+
def index_yelp_reviews(yelp_src_filename='yelp_academic_dataset_review.json'):
|
130 |
+
index = {}
|
131 |
+
with open(yelp_src_filename) as f:
|
132 |
+
for line in f:
|
133 |
+
d = json.loads(line)
|
134 |
+
index[d['review_id']] = d['text']
|
135 |
+
return index
|
136 |
+
|
137 |
+
yelp_index = index_yelp_reviews()
|
138 |
+
|
139 |
+
def add_review_text_round1(dataset, yelp_index):
|
140 |
+
for d in dataset:
|
141 |
+
review_text = yelp_index[d['text_id']]
|
142 |
+
# Check that we can find the sentence as expected:
|
143 |
+
start, end = d['indices_into_review_text']
|
144 |
+
assert review_text[start: end] == d['sentence']
|
145 |
+
d['review_text'] = review_text
|
146 |
+
return dataset
|
147 |
+
```
|
148 |
+
|
149 |
+
### Round 2 format
|
150 |
+
|
151 |
+
```python
|
152 |
+
{'hit_ids': ['y22661'],
|
153 |
+
'sentence': "We enjoyed our first and last meal in Toronto at Bombay Palace, and I can't think of a better way to book our journey.",
|
154 |
+
'sentence_author': 'w250',
|
155 |
+
'has_prompt': True,
|
156 |
+
'prompt_data': {'indices_into_review_text': [2093, 2213],
|
157 |
+
'review_rating': 5,
|
158 |
+
'prompt_sentence': "Our first and last meals in Toronto were enjoyed at Bombay Palace and I can't think of a better way to bookend our trip.",
|
159 |
+
'review_id': 'Krm4kSIb06BDHternF4_pA'},
|
160 |
+
'model_1_label': 'positive',
|
161 |
+
'model_1_probs': {'negative': 0.29140257835388184,
|
162 |
+
'positive': 0.6788994669914246,
|
163 |
+
'neutral': 0.029697999358177185},
|
164 |
+
'text_id': 'r2-0000001',
|
165 |
+
'label_distribution': {'positive': ['w43', 'w26', 'w155', 'w23'],
|
166 |
+
'negative': [],
|
167 |
+
'neutral': [],
|
168 |
+
'mixed': ['w174']},
|
169 |
+
'gold_label': 'positive'}
|
170 |
+
```
|
171 |
+
|
172 |
+
Details:
|
173 |
+
|
174 |
+
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
|
175 |
+
* `'sentence'`: The example text.
|
176 |
+
* `'sentence_author'`: Anonymized MTurk id of the worker who wrote `'sentence'`. These are from the same family of ids as used in `'label_distribution'`, but this id is never one of the ids in `'label_distribution'` for this example.
|
177 |
+
* `'has_prompt'`: `True` if the `'sentence'` was written with a Prompt else `False`.
|
178 |
+
* `'prompt_data'`: None if `'has_prompt'` is False, else:
|
179 |
+
* `'indices_into_review_text'`: indices of `'prompt_sentence'` into the original review in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
|
180 |
+
* `'review_rating'`: review-level star-rating for the review containing `'sentence'` in the [Yelp Academic Dataset](https://www.yelp.com/dataset).
|
181 |
+
* `'prompt_sentence'`: The prompt text.
|
182 |
+
* `'review_id'`: review-level identifier for the review from the [Yelp Academic Dataset](https://www.yelp.com/dataset) containing `'prompt_sentence'`.
|
183 |
+
* `'model_1_label'`: prediction of Model 1 as described in the paper. The possible values are `'positive'`, `'negative'`, and '`neutral'`.
|
184 |
+
* `'model_1_probs'`: probability distribution predicted by Model 1. The keys are `('positive', 'negative', 'neutral')` and the values are floats.
|
185 |
+
* `'text_id'`: unique identifier for this entry.
|
186 |
+
* `'label_distribution'`: response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
|
187 |
+
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
|
188 |
+
|
189 |
+
To add the review texts to the `'prompt_data'` field, one can extend the code above for Round 1 with the following function:
|
190 |
+
|
191 |
+
```python
|
192 |
+
def add_review_text_round2(dataset, yelp_index):
|
193 |
+
for d in dataset:
|
194 |
+
if d['has_prompt']:
|
195 |
+
prompt_data = d['prompt_data']
|
196 |
+
review_text = yelp_index[prompt_data['review_id']]
|
197 |
+
# Check that we can find the sentence as expected:
|
198 |
+
start, end = prompt_data['indices_into_review_text']
|
199 |
+
assert review_text[start: end] == prompt_data['prompt_sentence']
|
200 |
+
prompt_data['review_text'] = review_text
|
201 |
+
return dataset
|
202 |
+
```
|
203 |
+
|
204 |
+
### SST-dev format
|
205 |
+
|
206 |
+
```python
|
207 |
+
{'hit_ids': ['s20533'],
|
208 |
+
'sentence': '-LRB- A -RRB- n utterly charming and hilarious film that reminded me of the best of the Disney comedies from the 60s.',
|
209 |
+
'tree': '(4 (2 (1 -LRB-) (2 (2 A) (3 -RRB-))) (4 (4 (2 n) (4 (3 (2 utterly) (4 (3 (4 charming) (2 and)) (4 hilarious))) (3 (2 film) (3 (2 that) (4 (4 (2 (2 reminded) (3 me)) (4 (2 of) (4 (4 (2 the) (4 best)) (2 (2 of) (3 (2 the) (3 (3 Disney) (2 comedies))))))) (2 (2 from) (2 (2 the) (2 60s)))))))) (2 .)))',
|
210 |
+
'text_id': 'sst-dev-validate-0000437',
|
211 |
+
'sst_label': '4',
|
212 |
+
'label_distribution': {'positive': ['w207', 'w3', 'w840', 'w135', 'w26'],
|
213 |
+
'negative': [],
|
214 |
+
'neutral': [],
|
215 |
+
'mixed': []},
|
216 |
+
'gold_label': 'positive'}
|
217 |
+
```
|
218 |
+
|
219 |
+
Details:
|
220 |
+
|
221 |
+
* `'hit_ids'`: List of Amazon Mechanical Turk Human Interface Tasks (HITs) in which this example appeared during validation. The values are anonymized but used consistently throughout the dataset.
|
222 |
+
* `'sentence'`: The example text.
|
223 |
+
* `'tree'`: The parsetree for the example as given in the SST distribution.
|
224 |
+
* `'text_id'`: A new identifier for this example.
|
225 |
+
* `'sst_label'`: The root-node label from the SST. Possible values `'0'`, `'1'` `'2'`, `'3'`, and `'4'`.
|
226 |
+
* `'label_distribution':` response distribution from the MTurk validation task. The keys are `('positive', 'negative', 'neutral')` and the values are lists of anonymized MTurk ids, which are used consistently throughout the dataset.
|
227 |
+
* `'gold_label'`: the label chosen by at least three of the five workers if there is one (possible values: `'positive'`, `'negative'`, '`neutral'`, and `'mixed'`), else `None`.
|
228 |
+
|
229 |
+
|
230 |
+
## Models
|
231 |
+
|
232 |
+
Model 0 and Model 1 from the paper are available here:
|
233 |
+
|
234 |
+
https://drive.google.com/drive/folders/1dpKrjNJfAILUQcJPAFc5YOXUT51VEjKQ?usp=sharing
|
235 |
+
|
236 |
+
This repository includes a Python module `dynasent_models.py` that provides a [Hugging Face](https://huggingface.co)-based wrapper around these ([PyTorch](https://pytorch.org)) models. Simple examples:
|
237 |
+
|
238 |
+
```python
|
239 |
+
import os
|
240 |
+
from dynasent_models import DynaSentModel
|
241 |
+
|
242 |
+
# `dynasent_model0` should be downloaded from the above Google Drive link and
|
243 |
+
# placed in the `models` directory. `dynasent_model1` works the same way.
|
244 |
+
model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))
|
245 |
+
|
246 |
+
examples = [
|
247 |
+
"superb",
|
248 |
+
"They said the experience would be amazing, and they were right!",
|
249 |
+
"They said the experience would be amazing, and they were wrong!"]
|
250 |
+
|
251 |
+
model.predict(examples)
|
252 |
+
```
|
253 |
+
This should return the list `['positive', 'positive', 'negative']`.
|
254 |
+
|
255 |
+
The `predict_proba` method provides access to the predicted distribution over the class labels; see the demo at the bottom of `dynasent_models.py` for details.
|
256 |
+
|
257 |
+
The following code uses `load_dataset` from above to reproduce the Round 2 dev-set report on Model 0 from the paper:
|
258 |
+
|
259 |
+
```python
|
260 |
+
import os
|
261 |
+
from sklearn.metrics import classification_report
|
262 |
+
from dynasent_models import DynaSentModel
|
263 |
+
|
264 |
+
dev_filename = os.path.join('dynasent-v1.1', 'dynasent-v1.1-round02-dynabench-dev.jsonl')
|
265 |
+
|
266 |
+
dev = load_dataset(dev_filename)
|
267 |
+
|
268 |
+
X_dev, y_dev = zip(*[(d['sentence'], d['gold_label']) for d in dev])
|
269 |
+
|
270 |
+
model = DynaSentModel(os.path.join('models', 'dynasent_model0.bin'))
|
271 |
+
|
272 |
+
preds = model.predict(X_dev)
|
273 |
+
|
274 |
+
print(classification_report(y_dev, preds, digits=3))
|
275 |
+
```
|
276 |
+
For a fuller report on these models, see our paper and [our model card](dynasent_modelcard.md).
|
277 |
+
|
278 |
+
|
279 |
+
## Other files
|
280 |
+
|
281 |
+
|
282 |
+
### Analysis notebooks
|
283 |
+
|
284 |
+
The following notebooks reproduce the dataset statistics, figures, and random example selections from the paper:
|
285 |
+
|
286 |
+
* `analyses_comparative.ipynb`
|
287 |
+
* `analysis_round1.ipynb`
|
288 |
+
* `analysis_round2.ipynb`
|
289 |
+
* `analysis_sst_dev_revalidate.ipynb`
|
290 |
+
|
291 |
+
The Python module `dynasent_utils.py` contains functions that support those notebooks, and `dynasent.mplstyle` helps with styling the plots.
|
292 |
+
|
293 |
+
|
294 |
+
### Datasheet
|
295 |
+
|
296 |
+
The [Datasheet](https://arxiv.org/abs/1803.09010) for our dataset:
|
297 |
+
|
298 |
+
* [dynasent_datasheet.md](dynasent_datasheet.md)
|
299 |
+
|
300 |
+
|
301 |
+
### Model Card
|
302 |
+
|
303 |
+
The [Model Card](https://arxiv.org/pdf/1810.03993.pdf) for our models:
|
304 |
+
|
305 |
+
* [dynasent_modelcard.md](dynasent_modelcard.md)
|
306 |
+
|
307 |
+
|
308 |
+
### Tests
|
309 |
+
|
310 |
+
The module `test_dataset.py` contains PyTest tests for the dataset. To use it, run
|
311 |
+
|
312 |
+
```
|
313 |
+
py.test -vv test_dataset.py
|
314 |
+
```
|
315 |
+
|
316 |
+
in the root directory of this repository.
|
317 |
+
|
318 |
+
|
319 |
+
### Validation HIT code
|
320 |
+
|
321 |
+
The file `validation-hit-contents.html` contains the HTML/Javascript used in the validation task. It could be used directly on Amazon Mechanical Turk, by simply pasting its contents into the usual HIT creation window.
|
322 |
+
|
323 |
+
|
324 |
+
## License
|
325 |
+
|
326 |
+
DynaSent has a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).
|