Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
1,818
gui
https://github.com/beeware/toga
['toolkit', 'gui']
null
[]
[]
null
null
null
beeware/toga
toga
3,998
673
85
Python
https://toga.readthedocs.io/en/latest/
A Python native, OS native GUI toolkit.
beeware
2024-01-13
2014-08-01
495
8.067455
https://avatars.githubusercontent.com/u/19795701?v=4
A Python native, OS native GUI toolkit.
[]
['gui', 'toolkit']
2024-01-11
[('hoffstadt/dearpygui', 0.7974780201911926, 'gui', 2), ('kivy/kivy', 0.692936360836029, 'util', 0), ('parthjadhav/tkinter-designer', 0.6891065239906311, 'gui', 1), ('r0x0r/pywebview', 0.6624377965927124, 'gui', 1), ('urwid/urwid', 0.6368706822395325, 'term', 0), ('wxwidgets/phoenix', 0.6360959410667419, 'gui', 1), ('dddomodossola/remi', 0.6270981431007385, 'gui', 1), ('pysimplegui/pysimplegui', 0.6206801533699036, 'gui', 1), ('willmcgugan/textual', 0.5924068689346313, 'term', 0), ('adamerose/pandasgui', 0.590601921081543, 'pandas', 1), ('alexmojaki/snoop', 0.5817451477050781, 'debug', 0), ('pyglet/pyglet', 0.572860598564148, 'gamedev', 0), ('tkrabel/bamboolib', 0.5691761374473572, 'pandas', 0), ('pyston/pyston', 0.5686622262001038, 'util', 0), ('beeware/briefcase', 0.5662544965744019, 'util', 0), ('holoviz/panel', 0.5590908527374268, 'viz', 1), ('jquast/blessed', 0.5573833584785461, 'term', 0), ('pypy/pypy', 0.5504774451255798, 'util', 0), ('holoviz/holoviz', 0.5480042099952698, 'viz', 0), ('python/cpython', 0.5390973091125488, 'util', 0), ('gradio-app/gradio', 0.5377219915390015, 'viz', 0), ('eleutherai/pyfra', 0.5376284718513489, 'ml', 0), ('pytoolz/toolz', 0.5362921953201294, 'util', 0), ('google/gin-config', 0.5335937738418579, 'util', 0), ('samuelcolvin/python-devtools', 0.5332743525505066, 'debug', 0), ('kubeflow/fairing', 0.5289453268051147, 'ml-ops', 0), ('pallets/click', 0.5282005667686462, 'term', 0), ('pyqtgraph/pyqtgraph', 0.5267707109451294, 'viz', 0), ('fastai/fastcore', 0.5267270803451538, 'util', 0), ('goldmansachs/gs-quant', 0.5231086611747742, 'finance', 0), ('erotemic/ubelt', 0.5228415727615356, 'util', 0), ('huggingface/huggingface_hub', 0.5219206213951111, 'ml', 0), ('indygreg/pyoxidizer', 0.5212326645851135, 'util', 0), ('klen/py-frameworks-bench', 0.5207023024559021, 'perf', 0), ('landscapeio/prospector', 0.517236590385437, 'util', 0), ('google/python-fire', 0.5118656754493713, 'term', 0), ('pympler/pympler', 0.5115267634391785, 'perf', 0), ('python-rope/rope', 0.5071592330932617, 'util', 0), ('micropython/micropython', 0.5063884258270264, 'util', 0), ('libtcod/python-tcod', 0.5042990446090698, 'gamedev', 0), ('weaviate/weaviate-python-client', 0.5031599998474121, 'util', 0)]
256
7
null
35.79
200
127
115
0
4
7
4
200
486
90
2.4
58
748
ml
https://github.com/marqo-ai/marqo
[]
null
[]
[]
null
null
null
marqo-ai/marqo
marqo
3,856
162
35
Python
https://www.marqo.ai/
Vector search for humans. Also available on cloud - cloud.marqo.ai
marqo-ai
2024-01-13
2022-08-01
78
49.345521
https://avatars.githubusercontent.com/u/103185353?v=4
Vector search for humans. Also available on cloud - cloud.marqo.ai
['chatgpt', 'clip', 'deep-learning', 'gpt', 'hnsw', 'information-retrieval', 'knn', 'large-language-models', 'machine-learning', 'machinelearning', 'multi-modal', 'natural-language-processing', 'search-engine', 'semantic-search', 'tensor-search', 'transformers', 'vector-search', 'vision-language', 'visual-search']
['chatgpt', 'clip', 'deep-learning', 'gpt', 'hnsw', 'information-retrieval', 'knn', 'large-language-models', 'machine-learning', 'machinelearning', 'multi-modal', 'natural-language-processing', 'search-engine', 'semantic-search', 'tensor-search', 'transformers', 'vector-search', 'vision-language', 'visual-search']
2024-01-11
[('qdrant/qdrant', 0.7367421984672546, 'data', 4), ('cheshire-cat-ai/core', 0.6071776151657104, 'llm', 1), ('activeloopai/deeplake', 0.6008663177490234, 'ml-ops', 4), ('milvus-io/bootcamp', 0.5712332725524902, 'data', 1), ('googlecloudplatform/vertex-ai-samples', 0.5693247318267822, 'ml', 0), ('docarray/docarray', 0.5685033798217773, 'data', 4), ('weaviate/demo-text2vec-openai', 0.5455718040466309, 'util', 1), ('jina-ai/jina', 0.5435925126075745, 'ml', 2), ('mindsdb/mindsdb', 0.5285826325416565, 'data', 3), ('lancedb/lancedb', 0.5243335366249084, 'data', 2), ('rcgai/simplyretrieve', 0.5212767124176025, 'llm', 3), ('neuml/txtai', 0.5169413089752197, 'nlp', 7), ('tensorflow/tensorflow', 0.5045498013496399, 'ml-dl', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5009713768959045, 'study', 2)]
30
2
null
7.23
115
93
18
0
18
17
18
115
33
90
0.3
58
429
viz
https://github.com/holoviz/panel
[]
null
[]
[]
null
null
null
holoviz/panel
panel
3,647
420
53
Python
https://panel.holoviz.org
Panel: The powerful data exploration & web app framework for Python
holoviz
2024-01-14
2018-08-23
283
12.854481
https://avatars.githubusercontent.com/u/51678735?v=4
Panel: The powerful data exploration & web app framework for Python
['bokeh', 'control-panels', 'dashboards', 'dataapp', 'datascience', 'dataviz', 'gui', 'holoviews', 'holoviz', 'hvplot', 'jupyter', 'matplotlib', 'panel', 'plotly']
['bokeh', 'control-panels', 'dashboards', 'dataapp', 'datascience', 'dataviz', 'gui', 'holoviews', 'holoviz', 'hvplot', 'jupyter', 'matplotlib', 'panel', 'plotly']
2024-01-13
[('plotly/dash', 0.7759690284729004, 'viz', 2), ('bokeh/bokeh', 0.7603949308395386, 'viz', 2), ('holoviz/holoviz', 0.7308956384658813, 'viz', 4), ('man-group/dtale', 0.7240487337112427, 'viz', 0), ('plotly/plotly.py', 0.7203231453895569, 'viz', 1), ('kanaries/pygwalker', 0.6920881271362305, 'pandas', 2), ('holoviz/hvplot', 0.6510308980941772, 'pandas', 2), ('mwaskom/seaborn', 0.6487950086593628, 'viz', 1), ('residentmario/geoplot', 0.6484428644180298, 'gis', 1), ('eleutherai/pyfra', 0.6469884514808655, 'ml', 0), ('giswqs/geemap', 0.6401718258857727, 'gis', 2), ('federicoceratto/dashing', 0.6392130851745605, 'term', 0), ('matplotlib/matplotlib', 0.6378490328788757, 'viz', 1), ('vizzuhq/ipyvizzu', 0.6363608837127686, 'jupyter', 2), ('pyqtgraph/pyqtgraph', 0.6308204531669617, 'viz', 0), ('polyaxon/datatile', 0.6254085302352905, 'pandas', 2), ('adamerose/pandasgui', 0.6248031854629517, 'pandas', 1), ('gradio-app/gradio', 0.6235347390174866, 'viz', 0), ('cuemacro/chartpy', 0.6215455532073975, 'viz', 3), ('jakevdp/pythondatasciencehandbook', 0.6207575798034668, 'study', 1), ('tkrabel/bamboolib', 0.620628833770752, 'pandas', 0), ('opengeos/leafmap', 0.6154477596282959, 'gis', 3), ('pandas-dev/pandas', 0.6123045682907104, 'pandas', 0), ('willmcgugan/textual', 0.6071124076843262, 'term', 0), ('lux-org/lux', 0.6041948795318604, 'viz', 1), ('contextlab/hypertools', 0.6038259267807007, 'ml', 0), ('maartenbreddels/ipyvolume', 0.597214937210083, 'jupyter', 2), ('vaexio/vaex', 0.5968863368034363, 'perf', 0), ('krzjoa/awesome-python-data-science', 0.5961334705352783, 'study', 0), ('hoffstadt/dearpygui', 0.5953347086906433, 'gui', 1), ('voila-dashboards/voila', 0.5938263535499573, 'jupyter', 1), ('dylanhogg/awesome-python', 0.5920050144195557, 'study', 1), ('wesm/pydata-book', 0.5906403064727783, 'study', 0), ('masoniteframework/masonite', 0.5894260406494141, 'web', 0), ('altair-viz/altair', 0.5875522494316101, 'viz', 0), ('quantopian/qgrid', 0.5826691389083862, 'jupyter', 0), ('scitools/iris', 0.5823258757591248, 'gis', 0), ('klen/muffin', 0.5814103484153748, 'web', 0), ('ranaroussi/quantstats', 0.5793597102165222, 'finance', 0), ('mito-ds/monorepo', 0.5779578685760498, 'jupyter', 1), ('wxwidgets/phoenix', 0.5708284378051758, 'gui', 1), ('mckinsey/vizro', 0.5707153081893921, 'viz', 1), ('graphistry/pygraphistry', 0.567793607711792, 'data', 1), ('pallets/flask', 0.5666216611862183, 'web', 0), ('datapane/datapane', 0.5654339790344238, 'viz', 0), ('clips/pattern', 0.5649107098579407, 'nlp', 0), ('parthjadhav/tkinter-designer', 0.5603848099708557, 'gui', 1), ('beeware/toga', 0.5590908527374268, 'gui', 1), ('pysimplegui/pysimplegui', 0.5573893189430237, 'gui', 1), ('saulpw/visidata', 0.5565743446350098, 'term', 0), ('has2k1/plotnine', 0.5538381338119507, 'viz', 0), ('geopandas/geopandas', 0.550635039806366, 'gis', 0), ('goldmansachs/gs-quant', 0.5493612289428711, 'finance', 0), ('pytables/pytables', 0.544653058052063, 'data', 0), ('reflex-dev/reflex', 0.5437241196632385, 'web', 0), ('aws/graph-notebook', 0.5436458587646484, 'jupyter', 1), ('gaogaotiantian/viztracer', 0.5426017045974731, 'profiling', 0), ('wandb/client', 0.5422174334526062, 'ml', 0), ('falconry/falcon', 0.5421604514122009, 'web', 0), ('webpy/webpy', 0.5416973829269409, 'web', 0), ('bloomberg/ipydatagrid', 0.5404045581817627, 'jupyter', 0), ('r0x0r/pywebview', 0.5402711629867554, 'gui', 1), ('scrapy/scrapy', 0.5401167869567871, 'data', 0), ('python-visualization/folium', 0.5396947860717773, 'gis', 0), ('hydrosquall/tiingo-python', 0.5386637449264526, 'finance', 0), ('fastai/fastcore', 0.5372098684310913, 'util', 0), ('jupyterlab/jupyterlab-desktop', 0.5330305695533752, 'jupyter', 1), ('enthought/mayavi', 0.5323789715766907, 'viz', 0), ('ibis-project/ibis', 0.5315485596656799, 'data', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5303380489349365, 'jupyter', 0), ('rstudio/py-shiny', 0.5275716781616211, 'web', 0), ('matplotlib/mplfinance', 0.5236456394195557, 'finance', 1), ('pyvista/pyvista', 0.5228663682937622, 'viz', 0), ('holoviz/geoviews', 0.521112859249115, 'gis', 2), ('hazyresearch/meerkat', 0.5195465683937073, 'viz', 0), ('malloydata/malloy-py', 0.5195130109786987, 'data', 0), ('dagworks-inc/hamilton', 0.5194111466407776, 'ml-ops', 0), ('reloadware/reloadium', 0.5191416144371033, 'profiling', 0), ('dlt-hub/dlt', 0.5181348323822021, 'data', 0), ('simonw/datasette', 0.5158277153968811, 'data', 0), ('bottlepy/bottle', 0.5157780647277832, 'web', 0), ('pygraphviz/pygraphviz', 0.5157747268676758, 'viz', 0), ('roniemartinez/dude', 0.5136420726776123, 'util', 0), ('pmaji/crypto-whale-watching-app', 0.5126122236251831, 'crypto', 1), ('cohere-ai/notebooks', 0.5109737515449524, 'llm', 0), ('raphaelquast/eomaps', 0.5107569098472595, 'gis', 1), ('kivy/kivy', 0.5100237131118774, 'util', 0), ('holoviz/datashader', 0.5079904198646545, 'gis', 1), ('pylons/pyramid', 0.507599949836731, 'web', 0), ('visgl/deck.gl', 0.5066721439361572, 'viz', 0), ('pyglet/pyglet', 0.5058193206787109, 'gamedev', 0), ('westhealth/pyvis', 0.5053226947784424, 'graph', 0), ('imageio/imageio', 0.504224419593811, 'util', 0), ('flet-dev/flet', 0.5036301016807556, 'web', 0), ('ipython/ipyparallel', 0.5028029084205627, 'perf', 1), ('twopirllc/pandas-ta', 0.5016809105873108, 'finance', 0), ('python/cpython', 0.5009852051734924, 'util', 0), ('alphasecio/langchain-examples', 0.500730037689209, 'llm', 0), ('alexmojaki/heartrate', 0.5002499222755432, 'debug', 0), ('timofurrer/awesome-asyncio', 0.5001717805862427, 'study', 0)]
156
3
null
19.56
717
455
66
0
19
102
19
714
1,170
90
1.6
58
221
jupyter
https://github.com/jupyterlite/jupyterlite
[]
null
[]
[]
null
null
null
jupyterlite/jupyterlite
jupyterlite
3,470
258
40
TypeScript
https://jupyterlite.rtfd.io/en/stable/try/lab
Wasm powered Jupyter running in the browser 💡
jupyterlite
2024-01-10
2021-03-27
148
23.378248
https://avatars.githubusercontent.com/u/81094398?v=4
Wasm powered Jupyter running in the browser 💡
['jupyter', 'jupyterlab', 'jupyterlab-extension', 'lite', 'pyodide', 'wasm', 'webassembly']
['jupyter', 'jupyterlab', 'jupyterlab-extension', 'lite', 'pyodide', 'wasm', 'webassembly']
2024-01-10
[('voila-dashboards/voila', 0.6913954615592957, 'jupyter', 2), ('jupyterlab/jupyterlab', 0.6288254261016846, 'jupyter', 2), ('jupyterlab/jupyterlab-desktop', 0.6264117956161499, 'jupyter', 2), ('jupyter/notebook', 0.6035483479499817, 'jupyter', 1), ('jupyter-widgets/ipywidgets', 0.5854482650756836, 'jupyter', 1), ('pyodide/pyodide', 0.5671476721763611, 'util', 2), ('maartenbreddels/ipyvolume', 0.5511241555213928, 'jupyter', 1), ('mwouts/jupytext', 0.5492159128189087, 'jupyter', 2), ('mamba-org/gator', 0.5473883152008057, 'jupyter', 1), ('cherrypy/cherrypy', 0.5396081805229187, 'web', 0), ('jupyter-widgets/ipyleaflet', 0.539129376411438, 'gis', 2), ('ipython/ipykernel', 0.5333779454231262, 'util', 1), ('computationalmodelling/nbval', 0.5270730257034302, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.5260722041130066, 'jupyter', 1), ('jupyter/nbviewer', 0.5257112979888916, 'jupyter', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5251054763793945, 'jupyter', 3), ('jupyter/nbformat', 0.5237820744514465, 'jupyter', 0), ('webpy/webpy', 0.5002906918525696, 'web', 0)]
56
5
null
3.04
84
52
34
0
22
493
22
84
156
90
1.9
58
1,013
llm
https://github.com/whitead/paper-qa
[]
null
[]
[]
1
null
null
whitead/paper-qa
paper-qa
3,383
321
43
Python
null
LLM Chain for answering questions from documents with citations
whitead
2024-01-13
2023-02-05
51
65.963788
null
LLM Chain for answering questions from documents with citations
['chatgpt', 'nlp', 'question-answering']
['chatgpt', 'nlp', 'question-answering']
2023-12-07
[('rlancemartin/auto-evaluator', 0.5889334678649902, 'llm', 1), ('princeton-nlp/alce', 0.5843133330345154, 'llm', 0), ('night-chen/toolqa', 0.54909348487854, 'llm', 1), ('explosion/spacy-llm', 0.5373473763465881, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5275523066520691, 'study', 1), ('deepset-ai/haystack', 0.5140941143035889, 'llm', 3)]
12
4
null
3.31
33
17
11
1
75
83
75
33
22
90
0.7
58
1,528
llm
https://github.com/minimaxir/simpleaichat
[]
null
[]
[]
null
null
null
minimaxir/simpleaichat
simpleaichat
3,227
210
34
Python
null
Python package for easily interfacing with chat apps, with robust features and minimal code complexity.
minimaxir
2024-01-12
2023-05-06
38
83.973978
null
Python package for easily interfacing with chat apps, with robust features and minimal code complexity.
['ai', 'chatgpt']
['ai', 'chatgpt']
2024-01-08
[('embedchain/embedchain', 0.7047023773193359, 'llm', 2), ('run-llama/rags', 0.6775078177452087, 'llm', 1), ('togethercomputer/openchatkit', 0.6666284203529358, 'nlp', 0), ('killianlucas/open-interpreter', 0.6259564757347107, 'llm', 1), ('rcgai/simplyretrieve', 0.6199681162834167, 'llm', 0), ('cheshire-cat-ai/core', 0.613688588142395, 'llm', 1), ('prefecthq/marvin', 0.6048039197921753, 'nlp', 1), ('blinkdl/chatrwkv', 0.5946717262268066, 'llm', 1), ('rasahq/rasa', 0.5821955800056458, 'llm', 0), ('krohling/bondai', 0.5760908722877502, 'llm', 0), ('chatarena/chatarena', 0.5708586573600769, 'llm', 2), ('nomic-ai/gpt4all', 0.5681280493736267, 'llm', 0), ('chainlit/chainlit', 0.5655502080917358, 'llm', 1), ('willmcgugan/textual', 0.5615967512130737, 'term', 0), ('deeppavlov/deeppavlov', 0.559428870677948, 'nlp', 1), ('fasteval/fasteval', 0.559170663356781, 'llm', 0), ('microsoft/chatgpt-robot-manipulation-prompts', 0.5525240302085876, 'llm', 0), ('microsoft/autogen', 0.5520246028900146, 'llm', 1), ('openai/gpt-discord-bot', 0.552017331123352, 'llm', 0), ('larsbaunwall/bricky', 0.5494028925895691, 'llm', 1), ('openai/openai-cookbook', 0.5488078594207764, 'ml', 1), ('hoffstadt/dearpygui', 0.5460814237594604, 'gui', 0), ('nvidia/nemo', 0.5450947284698486, 'nlp', 0), ('xtekky/gpt4free', 0.5435710549354553, 'llm', 1), ('pathwaycom/llm-app', 0.5408278703689575, 'llm', 0), ('gunthercox/chatterbot', 0.5406122207641602, 'nlp', 0), ('uberi/speech_recognition', 0.5369465351104736, 'ml', 0), ('langchain-ai/chat-langchain', 0.5350149273872375, 'llm', 0), ('bhaskatripathi/pdfgpt', 0.5324260592460632, 'llm', 0), ('gventuri/pandas-ai', 0.5319541692733765, 'pandas', 1), ('openlmlab/moss', 0.5309569835662842, 'llm', 1), ('hwchase17/langchain', 0.5275580883026123, 'llm', 0), ('pndurette/gtts', 0.526296854019165, 'util', 0), ('lm-sys/fastchat', 0.526286244392395, 'llm', 0), ('masoniteframework/masonite', 0.5257116556167603, 'web', 0), ('mayooear/gpt4-pdf-chatbot-langchain', 0.5190370678901672, 'llm', 0), ('reloadware/reloadium', 0.509559154510498, 'profiling', 2), ('kalliope-project/kalliope', 0.5094994902610779, 'util', 0), ('minimaxir/aitextgen', 0.507713258266449, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5073516964912415, 'nlp', 0), ('eternnoir/pytelegrambotapi', 0.5022081732749939, 'util', 0), ('mnotgod96/appagent', 0.501400351524353, 'llm', 1)]
12
2
null
2.29
28
10
8
0
6
9
6
28
29
90
1
58
1,286
data
https://github.com/docarray/docarray
[]
null
[]
[]
null
null
null
docarray/docarray
docarray
2,620
216
45
Python
https://docs.docarray.org/
Represent, send, store and search multimodal data
docarray
2024-01-14
2021-12-14
111
23.603604
https://avatars.githubusercontent.com/u/117445116?v=4
Represent, send, store and search multimodal data
['cross-modal', 'data-structures', 'dataclass', 'deep-learning', 'docarray', 'elasticsearch', 'fastapi', 'machine-learning', 'multi-modal', 'multimodal', 'nearest-neighbor-search', 'nested-data', 'neural-search', 'protobuf', 'pydantic', 'pytorch', 'qdrant', 'semantic-search', 'weaviate']
['cross-modal', 'data-structures', 'dataclass', 'deep-learning', 'docarray', 'elasticsearch', 'fastapi', 'machine-learning', 'multi-modal', 'multimodal', 'nearest-neighbor-search', 'nested-data', 'neural-search', 'protobuf', 'pydantic', 'pytorch', 'qdrant', 'semantic-search', 'weaviate']
2024-01-02
[('milvus-io/bootcamp', 0.677416205406189, 'data', 1), ('next-gpt/next-gpt', 0.5986325144767761, 'llm', 1), ('thilinarajapakse/simpletransformers', 0.5803972482681274, 'nlp', 0), ('nomic-ai/nomic', 0.5800225734710693, 'nlp', 0), ('activeloopai/deeplake', 0.5793482661247253, 'ml-ops', 3), ('neuml/txtai', 0.5759537816047668, 'nlp', 3), ('marqo-ai/marqo', 0.5685033798217773, 'ml', 4), ('jina-ai/clip-as-service', 0.5395568609237671, 'nlp', 3), ('qdrant/qdrant', 0.5395107865333557, 'data', 3), ('freedmand/semantra', 0.5385406017303467, 'ml', 2), ('explosion/thinc', 0.5351216793060303, 'ml-dl', 3), ('jina-ai/jina', 0.5284995436668396, 'ml', 5), ('jina-ai/finetuner', 0.5270631313323975, 'ml', 1), ('lutzroeder/netron', 0.51971834897995, 'ml', 3), ('paddlepaddle/paddlenlp', 0.517856240272522, 'llm', 1), ('facebookresearch/mmf', 0.516020655632019, 'ml-dl', 3), ('gradio-app/gradio', 0.5143248438835144, 'viz', 2), ('huggingface/datasets', 0.511342465877533, 'nlp', 3), ('huggingface/autotrain-advanced', 0.5089057087898254, 'ml', 2), ('awslabs/autogluon', 0.5075685381889343, 'ml', 3), ('jina-ai/vectordb', 0.5065739154815674, 'data', 1), ('huggingface/transformers', 0.5064188241958618, 'nlp', 3), ('ddbourgin/numpy-ml', 0.5052067637443542, 'ml', 1), ('a-r-j/graphein', 0.5024240612983704, 'sim', 2), ('tensorlayer/tensorlayer', 0.5022443532943726, 'ml-rl', 1), ('intellabs/fastrag', 0.501563549041748, 'nlp', 2)]
72
2
null
8.4
35
21
25
0
17
81
17
35
124
90
3.5
58
1,358
gis
https://github.com/opengeos/segment-geospatial
[]
null
[]
[]
null
null
null
opengeos/segment-geospatial
segment-geospatial
2,478
247
52
Python
https://samgeo.gishub.org
A Python package for segmenting geospatial data with the Segment Anything Model (SAM)
opengeos
2024-01-13
2023-04-19
40
60.65035
https://avatars.githubusercontent.com/u/129896036?v=4
A Python package for segmenting geospatial data with the Segment Anything Model (SAM)
['artificial-intelligence', 'deep-learning', 'geopython', 'geospatial', 'machine-learning', 'segment-anything', 'segmentation']
['artificial-intelligence', 'deep-learning', 'geopython', 'geospatial', 'machine-learning', 'segment-anything', 'segmentation']
2023-12-07
[('earthlab/earthpy', 0.5494171977043152, 'gis', 0), ('sentinel-hub/eo-learn', 0.5391361117362976, 'gis', 1), ('geopandas/geopandas', 0.5388274788856506, 'gis', 1), ('microsoft/torchgeo', 0.5342783331871033, 'gis', 2), ('osgeo/grass', 0.5276463627815247, 'gis', 2), ('residentmario/geoplot', 0.5210736989974976, 'gis', 0), ('fatiando/verde', 0.5204988121986389, 'gis', 2), ('remotesensinglab/raster4ml', 0.5023316144943237, 'gis', 1)]
11
4
null
2.94
22
12
9
1
22
30
22
22
36
90
1.6
58
859
util
https://github.com/dosisod/refurb
[]
null
[]
[]
1
null
null
dosisod/refurb
refurb
2,425
55
16
Python
null
A tool for refurbishing and modernizing Python codebases
dosisod
2024-01-10
2022-07-27
78
30.751812
null
A tool for refurbishing and modernizing Python codebases
['cli', 'gplv3', 'mypy', 'python310', 'testing']
['cli', 'gplv3', 'mypy', 'python310', 'testing']
2024-01-13
[('pypa/hatch', 0.6656979322433472, 'util', 1), ('facebookincubator/bowler', 0.5965598225593567, 'util', 0), ('pypa/pipenv', 0.5785287618637085, 'util', 0), ('rubik/radon', 0.5743918418884277, 'util', 1), ('prompt-toolkit/ptpython', 0.573533296585083, 'util', 1), ('python-rope/rope', 0.5674479007720947, 'util', 0), ('pypy/pypy', 0.5643258094787598, 'util', 0), ('pdm-project/pdm', 0.5603682398796082, 'util', 0), ('jendrikseipp/vulture', 0.5567197203636169, 'util', 0), ('google/jax', 0.5519415736198425, 'ml', 0), ('nedbat/coveragepy', 0.5513451099395752, 'testing', 0), ('pympler/pympler', 0.5501025915145874, 'perf', 0), ('indygreg/pyoxidizer', 0.5480595827102661, 'util', 0), ('amaargiru/pyroad', 0.5455231070518494, 'study', 0), ('sourcery-ai/sourcery', 0.5449427366256714, 'util', 0), ('pyston/pyston', 0.5432273149490356, 'util', 0), ('python/cpython', 0.5401459336280823, 'util', 0), ('microsoft/pycodegpt', 0.5347919464111328, 'llm', 0), ('hhatto/autopep8', 0.5332099795341492, 'util', 0), ('eleutherai/pyfra', 0.5314339399337769, 'ml', 0), ('google/gin-config', 0.5311492085456848, 'util', 0), ('exaloop/codon', 0.5304907560348511, 'perf', 0), ('pytoolz/toolz', 0.5235017538070679, 'util', 0), ('hadialqattan/pycln', 0.5226925611495972, 'util', 0), ('cython/cython', 0.5158920288085938, 'util', 0), ('psf/black', 0.514424204826355, 'util', 0), ('jazzband/pip-tools', 0.5137325525283813, 'util', 0), ('erotemic/ubelt', 0.513725996017456, 'util', 0), ('asottile/reorder-python-imports', 0.5132452249526978, 'util', 0), ('libtcod/python-tcod', 0.5105434060096741, 'gamedev', 0), ('google/yapf', 0.5096585154533386, 'util', 0), ('beeware/briefcase', 0.5095663666725159, 'util', 0), ('landscapeio/prospector', 0.5087876915931702, 'util', 0), ('eugeneyan/python-collab-template', 0.5078116059303284, 'template', 0), ('mkdocstrings/griffe', 0.5076294541358948, 'util', 0), ('samuelcolvin/python-devtools', 0.5065819621086121, 'debug', 0), ('pypa/virtualenv', 0.5063945055007935, 'util', 0), ('willmcgugan/textual', 0.5046628713607788, 'term', 1), ('dgilland/cacheout', 0.5029307007789612, 'perf', 0), ('pypi/warehouse', 0.5017030239105225, 'util', 0)]
16
7
null
2.67
33
28
18
0
20
25
20
33
61
90
1.8
58
1,809
data
https://github.com/lancedb/lancedb
['vectordb']
null
[]
[]
null
null
null
lancedb/lancedb
lancedb
1,903
113
19
Python
https://lancedb.github.io/lancedb/
Developer-friendly, serverless vector database for AI applications. Easily add long-term memory to your LLM apps!
lancedb
2024-01-14
2023-02-28
48
39.645833
https://avatars.githubusercontent.com/u/108903835?v=4
Developer-friendly, serverless vector database for AI applications. Easily add long-term memory to your LLM apps!
['approximate-nearest-neighbor-search', 'image-search', 'nearest-neighbor-search', 'recommender-system', 'search-engine', 'semantic-search', 'similarity-search', 'vector-database']
['approximate-nearest-neighbor-search', 'image-search', 'nearest-neighbor-search', 'recommender-system', 'search-engine', 'semantic-search', 'similarity-search', 'vector-database', 'vectordb']
2024-01-14
[('activeloopai/deeplake', 0.7212356925010681, 'ml-ops', 1), ('qdrant/qdrant', 0.6593559384346008, 'data', 7), ('pathwaycom/llm-app', 0.6573936343193054, 'llm', 1), ('chroma-core/chroma', 0.6137559413909912, 'data', 1), ('jina-ai/vectordb', 0.612372100353241, 'data', 2), ('featureform/embeddinghub', 0.6071080565452576, 'nlp', 1), ('microsoft/semantic-kernel', 0.6036065220832825, 'llm', 0), ('alphasecio/langchain-examples', 0.601751446723938, 'llm', 1), ('superduperdb/superduperdb', 0.6009349226951599, 'data', 1), ('hegelai/prompttools', 0.5837177634239197, 'llm', 0), ('ludwig-ai/ludwig', 0.5785049796104431, 'ml-ops', 0), ('neuml/txtai', 0.574266254901886, 'nlp', 3), ('milvus-io/bootcamp', 0.566419780254364, 'data', 2), ('nebuly-ai/nebullvm', 0.5628674030303955, 'perf', 0), ('dgarnitz/vectorflow', 0.5619788765907288, 'data', 0), ('jerryjliu/llama_index', 0.5558105707168579, 'llm', 1), ('deepset-ai/haystack', 0.5541740655899048, 'llm', 1), ('qdrant/vector-db-benchmark', 0.5436363816261292, 'perf', 1), ('bigscience-workshop/petals', 0.5394517183303833, 'data', 0), ('microsoft/promptflow', 0.5394440293312073, 'llm', 0), ('mindsdb/mindsdb', 0.5393930077552795, 'data', 1), ('cheshire-cat-ai/core', 0.5356892347335815, 'llm', 0), ('tigerlab-ai/tiger', 0.531322181224823, 'llm', 0), ('zilliztech/gptcache', 0.5283774137496948, 'llm', 2), ('feast-dev/feast', 0.5253369808197021, 'ml-ops', 0), ('marqo-ai/marqo', 0.5243335366249084, 'ml', 2), ('llmware-ai/llmware', 0.5239478945732117, 'llm', 1), ('kagisearch/vectordb', 0.5210687518119812, 'data', 1), ('intel/intel-extension-for-transformers', 0.5155736207962036, 'perf', 0), ('paddlepaddle/paddlenlp', 0.5152085423469543, 'llm', 1), ('microsoft/torchscale', 0.5128360390663147, 'llm', 0), ('coleifer/peewee', 0.5083345770835876, 'data', 0), ('qdrant/fastembed', 0.507724940776825, 'ml', 1), ('vllm-project/vllm', 0.5034992694854736, 'llm', 0), ('run-llama/llama-hub', 0.5028201937675476, 'data', 0), ('ml-tooling/opyrator', 0.501854658126831, 'viz', 0)]
39
2
null
11.44
290
201
11
0
68
107
68
289
239
90
0.8
58
1,513
llm
https://github.com/neulab/prompt2model
['language-model', 'deployment']
null
[]
[]
null
null
null
neulab/prompt2model
prompt2model
1,768
152
23
Python
null
prompt2model - Generate Deployable Models from Natural Language Instructions
neulab
2024-01-13
2023-03-27
44
40.05178
https://avatars.githubusercontent.com/u/22324665?v=4
prompt2model - Generate Deployable Models from Natural Language Instructions
[]
['deployment', 'language-model']
2024-01-12
[('hazyresearch/ama_prompting', 0.687862753868103, 'llm', 0), ('keirp/automatic_prompt_engineer', 0.6848369836807251, 'llm', 1), ('1rgs/jsonformer', 0.6683309674263, 'llm', 0), ('guidance-ai/guidance', 0.6568854451179504, 'llm', 1), ('ctlllll/llm-toolmaker', 0.623613178730011, 'llm', 1), ('promptslab/promptify', 0.5863036513328552, 'nlp', 0), ('srush/minichain', 0.5800988674163818, 'llm', 0), ('conceptofmind/toolformer', 0.5687054395675659, 'llm', 1), ('yizhongw/self-instruct', 0.5685259699821472, 'llm', 1), ('agenta-ai/agenta', 0.5488535761833191, 'llm', 0), ('ai21labs/lm-evaluation', 0.5453250408172607, 'llm', 1), ('juncongmoo/pyllama', 0.5409372448921204, 'llm', 0), ('reasoning-machines/pal', 0.5284048318862915, 'llm', 1), ('cg123/mergekit', 0.5275200009346008, 'llm', 0), ('thudm/codegeex', 0.525926411151886, 'llm', 0), ('hannibal046/awesome-llm', 0.525016188621521, 'study', 1), ('bigscience-workshop/promptsource', 0.5239977240562439, 'nlp', 0), ('facebookresearch/shepherd', 0.52313631772995, 'llm', 1), ('lianjiatech/belle', 0.5222576260566711, 'llm', 0), ('lm-sys/fastchat', 0.5152702331542969, 'llm', 1), ('microsoft/autogen', 0.5132074356079102, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5068913102149963, 'llm', 1), ('defog-ai/sqlcoder', 0.5062905550003052, 'llm', 1)]
13
6
null
3.19
33
18
10
0
9
11
9
33
56
90
1.7
58
1,873
llm
https://github.com/llmware-ai/llmware
[]
null
[]
[]
null
null
null
llmware-ai/llmware
llmware
1,744
141
29
Python
https://pypi.org/project/llmware/
Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.
llmware-ai
2024-01-14
2023-09-29
17
99.252033
https://avatars.githubusercontent.com/u/145479774?v=4
Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.
['ai', 'bert', 'embedding-vectors', 'embeddings', 'faiss', 'generative-ai', 'information-retrieval', 'large-language-models', 'machine-learning', 'milvus', 'nlp', 'parsing', 'pytorch', 'question-answering', 'rag', 'retrieval-augmented-generation', 'semantic-search', 'transformers']
['ai', 'bert', 'embedding-vectors', 'embeddings', 'faiss', 'generative-ai', 'information-retrieval', 'large-language-models', 'machine-learning', 'milvus', 'nlp', 'parsing', 'pytorch', 'question-answering', 'rag', 'retrieval-augmented-generation', 'semantic-search', 'transformers']
2024-01-10
[('paddlepaddle/paddlenlp', 0.7560280561447144, 'llm', 4), ('neuml/txtai', 0.7031641602516174, 'nlp', 9), ('deepset-ai/haystack', 0.6901717185974121, 'llm', 11), ('intellabs/fastrag', 0.669150710105896, 'nlp', 6), ('explosion/spacy-llm', 0.6662053465843201, 'llm', 3), ('jina-ai/finetuner', 0.6378600597381592, 'ml', 1), ('night-chen/toolqa', 0.6234237551689148, 'llm', 2), ('argilla-io/argilla', 0.6205747723579407, 'nlp', 3), ('thilinarajapakse/simpletransformers', 0.6119190454483032, 'nlp', 2), ('deepset-ai/farm', 0.6115893721580505, 'nlp', 4), ('cheshire-cat-ai/core', 0.6055431962013245, 'llm', 1), ('mooler0410/llmspracticalguide', 0.6028851270675659, 'study', 2), ('hegelai/prompttools', 0.6007319092750549, 'llm', 3), ('nvidia/deeplearningexamples', 0.5966246128082275, 'ml-dl', 3), ('young-geng/easylm', 0.593721330165863, 'llm', 1), ('alibaba/easynlp', 0.592271625995636, 'nlp', 5), ('lm-sys/fastchat', 0.5916407704353333, 'llm', 0), ('ddangelov/top2vec', 0.5913721323013306, 'nlp', 2), ('microsoft/generative-ai-for-beginners', 0.5911704301834106, 'study', 4), ('rcgai/simplyretrieve', 0.5904434323310852, 'llm', 5), ('huggingface/transformers', 0.5898783206939697, 'nlp', 4), ('jonasgeiping/cramming', 0.5896017551422119, 'nlp', 1), ('eugeneyan/obsidian-copilot', 0.5871189832687378, 'llm', 3), ('nebuly-ai/nebullvm', 0.5862234830856323, 'perf', 2), ('jina-ai/clip-as-service', 0.5855153203010559, 'nlp', 2), ('extreme-bert/extreme-bert', 0.581847071647644, 'llm', 4), ('maartengr/bertopic', 0.5808184742927551, 'nlp', 4), ('confident-ai/deepeval', 0.5799471735954285, 'testing', 0), ('tigerlab-ai/tiger', 0.5777447819709778, 'llm', 2), ('pathwaycom/llm-app', 0.5754697322845459, 'llm', 3), ('lianjiatech/belle', 0.5731709003448486, 'llm', 0), ('chroma-core/chroma', 0.5633347034454346, 'data', 1), ('openbmb/toolbench', 0.5629839301109314, 'llm', 0), ('infinitylogesh/mutate', 0.5625592470169067, 'nlp', 0), ('arize-ai/phoenix', 0.5607779026031494, 'ml-interpretability', 0), ('graykode/nlp-tutorial', 0.559558093547821, 'study', 3), ('rasahq/rasa', 0.5576108694076538, 'llm', 2), ('microsoft/lmops', 0.5573378205299377, 'llm', 1), ('mindsdb/mindsdb', 0.55570387840271, 'data', 3), ('eleutherai/the-pile', 0.5548039078712463, 'data', 0), ('explosion/spacy', 0.5547406077384949, 'nlp', 3), ('explosion/thinc', 0.5531507730484009, 'ml-dl', 4), ('explosion/spacy-models', 0.5522136092185974, 'nlp', 2), ('ludwig-ai/ludwig', 0.5516101717948914, 'ml-ops', 2), ('lucidrains/toolformer-pytorch', 0.5493955016136169, 'llm', 1), ('plasticityai/magnitude', 0.5475419759750366, 'nlp', 3), ('salesforce/xgen', 0.5470395684242249, 'llm', 2), ('deeppavlov/deeppavlov', 0.5467641353607178, 'nlp', 4), ('bentoml/bentoml', 0.5451672673225403, 'ml-ops', 3), ('databrickslabs/dolly', 0.5424628257751465, 'llm', 0), ('flairnlp/flair', 0.5408936738967896, 'nlp', 3), ('huggingface/text-generation-inference', 0.5404112339019775, 'llm', 2), ('mlc-ai/mlc-llm', 0.5390260815620422, 'llm', 0), ('jina-ai/vectordb', 0.5389397740364075, 'data', 0), ('muennighoff/sgpt', 0.5382522940635681, 'llm', 3), ('srush/minichain', 0.5373873114585876, 'llm', 1), ('bigscience-workshop/petals', 0.5363177061080933, 'data', 4), ('openlmlab/moss', 0.5356535911560059, 'llm', 1), ('amansrivastava17/embedding-as-service', 0.5347151756286621, 'nlp', 4), ('salesforce/codet5', 0.5333616733551025, 'nlp', 1), ('keras-team/keras-nlp', 0.5331376194953918, 'nlp', 2), ('ai21labs/lm-evaluation', 0.5320602655410767, 'llm', 0), ('allenai/allennlp', 0.5309963226318359, 'nlp', 2), ('microsoft/promptflow', 0.5309350490570068, 'llm', 1), ('tatsu-lab/stanford_alpaca', 0.5306206345558167, 'llm', 0), ('stanfordnlp/dspy', 0.5297998785972595, 'llm', 0), ('dylanhogg/llmgraph', 0.5296906232833862, 'ml', 0), ('activeloopai/deeplake', 0.529674768447876, 'ml-ops', 4), ('juncongmoo/pyllama', 0.5293798446655273, 'llm', 0), ('hiyouga/llama-factory', 0.5291882157325745, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.5291881561279297, 'llm', 3), ('explosion/spacy-transformers', 0.5283253192901611, 'llm', 4), ('lupantech/chameleon-llm', 0.5269300937652588, 'llm', 1), ('reasoning-machines/pal', 0.5255475640296936, 'llm', 1), ('qdrant/fastembed', 0.5254819989204407, 'ml', 3), ('chancefocus/pixiu', 0.5248722434043884, 'finance', 4), ('nomic-ai/gpt4all', 0.5244438648223877, 'llm', 0), ('lancedb/lancedb', 0.5239478945732117, 'data', 1), ('optimalscale/lmflow', 0.5209429264068604, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5208345055580139, 'llm', 0), ('norskregnesentral/skweak', 0.5207846760749817, 'nlp', 0), ('embedchain/embedchain', 0.5193879008293152, 'llm', 1), ('microsoft/unilm', 0.5189810991287231, 'nlp', 1), ('milvus-io/bootcamp', 0.518172025680542, 'data', 4), ('huggingface/text-embeddings-inference', 0.517711341381073, 'llm', 2), ('microsoft/autogen', 0.5167933702468872, 'llm', 0), ('yueyu1030/attrprompt', 0.5132665038108826, 'llm', 1), ('koaning/embetter', 0.5121687650680542, 'data', 0), ('bigscience-workshop/megatron-deepspeed', 0.5115044116973877, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5115044116973877, 'llm', 0), ('nltk/nltk', 0.5111628770828247, 'nlp', 2), ('paddlepaddle/rocketqa', 0.510935366153717, 'nlp', 3), ('iryna-kondr/scikit-llm', 0.5102970600128174, 'llm', 2), ('giskard-ai/giskard', 0.5087332725524902, 'data', 1), ('qanastek/drbert', 0.5081828832626343, 'llm', 3), ('freedomintelligence/llmzoo', 0.5058205127716064, 'llm', 0), ('hannibal046/awesome-llm', 0.5052445530891418, 'study', 0), ('kagisearch/vectordb', 0.5052314400672913, 'data', 2), ('microsoft/torchscale', 0.5042523741722107, 'llm', 1), ('bobazooba/xllm', 0.503739595413208, 'llm', 2), ('google-research/electra', 0.5037044882774353, 'ml-dl', 1), ('nvidia/nemo', 0.503142237663269, 'nlp', 1), ('ofa-sys/ofa', 0.5022109150886536, 'llm', 0), ('huggingface/datasets', 0.5021990537643433, 'nlp', 3), ('makcedward/nlpaug', 0.5014007091522217, 'nlp', 3), ('koaning/whatlies', 0.501112163066864, 'nlp', 2)]
13
3
null
4.31
229
205
4
0
0
0
0
229
138
90
0.6
58
1,267
perf
https://github.com/intel/intel-extension-for-transformers
[]
null
[]
[]
null
null
null
intel/intel-extension-for-transformers
intel-extension-for-transformers
1,672
166
25
C++
null
⚡ Build your chatbot within minutes on your favorite device; offer SOTA compression techniques for LLMs; run LLMs efficiently on Intel Platforms⚡
intel
2024-01-14
2022-11-11
63
26.301124
https://avatars.githubusercontent.com/u/17888862?v=4
⚡ Build your chatbot within minutes on your favorite device; offer SOTA compression techniques for LLMs; run LLMs efficiently on Intel Platforms⚡
['4-bits', 'attention-sink', 'chatbot', 'chatpdf', 'cpu', 'gaudi2', 'gpu', 'habana', 'intel-optimized-llamacpp', 'large-language-model', 'llm-cpu', 'llm-inference', 'neural-chat', 'neural-chat-7b', 'neurips2023', 'pc', 'speculative-decoding', 'streamingllm', 'xeon']
['4-bits', 'attention-sink', 'chatbot', 'chatpdf', 'cpu', 'gaudi2', 'gpu', 'habana', 'intel-optimized-llamacpp', 'large-language-model', 'llm-cpu', 'llm-inference', 'neural-chat', 'neural-chat-7b', 'neurips2023', 'pc', 'speculative-decoding', 'streamingllm', 'xeon']
2024-01-13
[('bigscience-workshop/petals', 0.7305524945259094, 'data', 1), ('nomic-ai/gpt4all', 0.7130550742149353, 'llm', 2), ('h2oai/h2o-llmstudio', 0.6861023902893066, 'llm', 1), ('pathwaycom/llm-app', 0.6731693148612976, 'llm', 1), ('deep-diver/llm-as-chatbot', 0.6634297966957092, 'llm', 1), ('hwchase17/langchain', 0.662899911403656, 'llm', 1), ('microsoft/promptflow', 0.6592389345169067, 'llm', 0), ('bobazooba/xllm', 0.6433131694793701, 'llm', 0), ('deepset-ai/haystack', 0.6430325508117676, 'llm', 0), ('zilliztech/gptcache', 0.6376039981842041, 'llm', 1), ('microsoft/semantic-kernel', 0.6336042284965515, 'llm', 0), ('run-llama/rags', 0.6312287449836731, 'llm', 1), ('microsoft/autogen', 0.6164318323135376, 'llm', 2), ('microsoft/llmlingua', 0.6135388016700745, 'llm', 0), ('embedchain/embedchain', 0.6132449507713318, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.608906626701355, 'llm', 0), ('hiyouga/llama-factory', 0.6089065670967102, 'llm', 0), ('li-plus/chatglm.cpp', 0.6037748456001282, 'llm', 0), ('thudm/chatglm2-6b', 0.6007229685783386, 'llm', 0), ('vllm-project/vllm', 0.5956281423568726, 'llm', 0), ('fasteval/fasteval', 0.5938782095909119, 'llm', 0), ('bentoml/openllm', 0.5912082195281982, 'ml-ops', 1), ('predibase/lorax', 0.5878379940986633, 'llm', 2), ('young-geng/easylm', 0.5872876048088074, 'llm', 1), ('mlc-ai/web-llm', 0.5826047658920288, 'llm', 0), ('chainlit/chainlit', 0.5824191570281982, 'llm', 0), ('iryna-kondr/scikit-llm', 0.5800312757492065, 'llm', 0), ('salesforce/xgen', 0.5792416334152222, 'llm', 0), ('shishirpatil/gorilla', 0.5774163603782654, 'llm', 0), ('mmabrouk/chatgpt-wrapper', 0.5764015913009644, 'llm', 1), ('tigerlab-ai/tiger', 0.5748347640037537, 'llm', 0), ('lightning-ai/lit-gpt', 0.5745608806610107, 'llm', 0), ('nebuly-ai/nebullvm', 0.5715976357460022, 'perf', 0), ('rcgai/simplyretrieve', 0.5712392330169678, 'llm', 0), ('microsoft/torchscale', 0.570101261138916, 'llm', 0), ('microsoft/promptcraft-robotics', 0.5677699446678162, 'sim', 0), ('paddlepaddle/paddlenlp', 0.5665012001991272, 'llm', 0), ('run-llama/llama-hub', 0.5623946189880371, 'data', 0), ('alpha-vllm/llama2-accessory', 0.5544970035552979, 'llm', 0), ('dylanhogg/llmgraph', 0.5522487163543701, 'ml', 1), ('lightning-ai/lit-llama', 0.5519506335258484, 'llm', 0), ('confident-ai/deepeval', 0.5511168241500854, 'testing', 0), ('chatarena/chatarena', 0.5510158538818359, 'llm', 0), ('eugeneyan/open-llms', 0.5479944944381714, 'study', 0), ('ludwig-ai/ludwig', 0.5449299216270447, 'ml-ops', 0), ('cheshire-cat-ai/core', 0.5444093346595764, 'llm', 1), ('next-gpt/next-gpt', 0.5425037145614624, 'llm', 0), ('agenta-ai/agenta', 0.5398895144462585, 'llm', 0), ('nat/openplayground', 0.5346694588661194, 'llm', 0), ('mlc-ai/mlc-llm', 0.5288311243057251, 'llm', 0), ('salesforce/codet5', 0.5260124802589417, 'nlp', 0), ('jzhang38/tinyllama', 0.5206746459007263, 'llm', 0), ('titanml/takeoff', 0.5163436532020569, 'llm', 0), ('ray-project/ray-llm', 0.5162841081619263, 'llm', 1), ('haotian-liu/llava', 0.5162800550460815, 'llm', 1), ('lancedb/lancedb', 0.5155736207962036, 'data', 0), ('microsoft/jarvis', 0.5154780149459839, 'llm', 0), ('prefecthq/marvin', 0.5106049180030823, 'nlp', 0), ('lm-sys/fastchat', 0.5099033117294312, 'llm', 1), ('xtekky/gpt4free', 0.5091184973716736, 'llm', 1), ('mnotgod96/appagent', 0.5081307888031006, 'llm', 0), ('artidoro/qlora', 0.5075502395629883, 'llm', 0), ('mooler0410/llmspracticalguide', 0.5048488974571228, 'study', 0), ('microsoft/lmops', 0.5034509301185608, 'llm', 0), ('tloen/alpaca-lora', 0.5027761459350586, 'llm', 0), ('explosion/spacy-llm', 0.5016040205955505, 'llm', 0), ('argilla-io/argilla', 0.5005181431770325, 'nlp', 0), ('aws-samples/serverless-pdf-chat', 0.5002910494804382, 'llm', 0)]
91
2
null
24.88
702
650
14
0
8
15
8
702
760
90
1.1
58
1,760
term
https://github.com/tconbeer/harlequin
['tool', 'sql', 'data']
null
[]
[]
1
null
null
tconbeer/harlequin
harlequin
1,637
30
12
Python
https://harlequin.sh
The SQL IDE for Your Terminal.
tconbeer
2024-01-14
2023-05-02
39
41.974359
null
The SQL IDE for Your Terminal.
[]
['data', 'sql', 'tool']
2024-01-12
[('tconbeer/sqlfmt', 0.569164514541626, 'data', 1), ('tiangolo/sqlmodel', 0.569147527217865, 'data', 1), ('sqlalchemy/sqlalchemy', 0.5578516721725464, 'data', 1), ('simonw/sqlite-utils', 0.5377789735794067, 'data', 0), ('saulpw/visidata', 0.5237422585487366, 'term', 0), ('methexis-inc/terminal-copilot', 0.5151594877243042, 'util', 0), ('ibis-project/ibis', 0.5111363530158997, 'data', 1)]
8
6
null
4.44
131
112
9
0
50
68
50
131
88
90
0.7
58
1,123
ml-rl
https://github.com/pytorch/rl
['reinforcement-learning']
null
[]
[]
null
null
null
pytorch/rl
rl
1,621
212
40
Python
https://pytorch.org/rl
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
pytorch
2024-01-13
2022-02-01
104
15.586538
https://avatars.githubusercontent.com/u/21003710?v=4
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
['ai', 'control', 'decision-making', 'distributed-computing', 'machine-learning', 'marl', 'model-based-reinforcement-learning', 'multi-agent-reinforcement-learning', 'pytorch', 'reinforcement-learning', 'rl', 'robotics', 'torch']
['ai', 'control', 'decision-making', 'distributed-computing', 'machine-learning', 'marl', 'model-based-reinforcement-learning', 'multi-agent-reinforcement-learning', 'pytorch', 'reinforcement-learning', 'rl', 'robotics', 'torch']
2024-01-14
[('thu-ml/tianshou', 0.7527033090591431, 'ml-rl', 2), ('denys88/rl_games', 0.7474822402000427, 'ml-rl', 2), ('tensorlayer/tensorlayer', 0.7300659418106079, 'ml-rl', 1), ('humancompatibleai/imitation', 0.6811489462852478, 'ml-rl', 0), ('deepmind/acme', 0.6701556444168091, 'ml-rl', 1), ('pytorch/ignite', 0.6654600501060486, 'ml-dl', 2), ('google/dopamine', 0.6595585942268372, 'ml-rl', 2), ('shangtongzhang/reinforcement-learning-an-introduction', 0.6356885433197021, 'study', 1), ('skorch-dev/skorch', 0.6245636940002441, 'ml-dl', 2), ('facebookresearch/habitat-lab', 0.6235378384590149, 'sim', 3), ('unity-technologies/ml-agents', 0.6213619709014893, 'ml-rl', 2), ('keras-rl/keras-rl', 0.6202392578125, 'ml-rl', 2), ('pettingzoo-team/pettingzoo', 0.6150112748146057, 'ml-rl', 2), ('mrdbourke/pytorch-deep-learning', 0.6149892210960388, 'study', 2), ('arise-initiative/robosuite', 0.6132838129997253, 'ml-rl', 2), ('farama-foundation/gymnasium', 0.6115036010742188, 'ml-rl', 1), ('salesforce/warp-drive', 0.6080675721168518, 'ml-rl', 2), ('intel/intel-extension-for-pytorch', 0.6046189069747925, 'perf', 2), ('ai4finance-foundation/finrl', 0.5981391072273254, 'finance', 1), ('google/trax', 0.5977087020874023, 'ml-dl', 2), ('karpathy/micrograd', 0.5971662402153015, 'study', 0), ('openai/gym', 0.5818626880645752, 'ml-rl', 1), ('huggingface/transformers', 0.5793347954750061, 'nlp', 2), ('pyg-team/pytorch_geometric', 0.5780683755874634, 'ml-dl', 1), ('rasbt/machine-learning-book', 0.5708683729171753, 'study', 2), ('explosion/thinc', 0.5706343650817871, 'ml-dl', 3), ('allenai/allennlp', 0.5637892484664917, 'nlp', 1), ('ray-project/ray', 0.5598548054695129, 'ml-ops', 3), ('nvidia/apex', 0.552091121673584, 'ml-dl', 0), ('lightly-ai/lightly', 0.5465163588523865, 'ml', 2), ('openai/baselines', 0.5460628867149353, 'ml-rl', 0), ('pyro-ppl/pyro', 0.5450016856193542, 'ml-dl', 2), ('nvidia-omniverse/omniisaacgymenvs', 0.5446157455444336, 'sim', 0), ('kornia/kornia', 0.5435752272605896, 'ml-dl', 3), ('kzl/decision-transformer', 0.5421603322029114, 'ml-rl', 0), ('tensorflow/tensor2tensor', 0.539577305316925, 'ml', 2), ('determined-ai/determined', 0.5359745025634766, 'ml-ops', 2), ('projectmesa/mesa', 0.5338829159736633, 'sim', 0), ('facebookresearch/theseus', 0.5316617488861084, 'math', 2), ('nvidia-omniverse/orbit', 0.5298061966896057, 'sim', 1), ('merantix-momentum/squirrel-core', 0.527829647064209, 'ml', 3), ('pytorch/data', 0.5270489454269409, 'data', 0), ('ddbourgin/numpy-ml', 0.5264372229576111, 'ml', 2), ('keras-team/keras', 0.5254106521606445, 'ml-dl', 2), ('ashleve/lightning-hydra-template', 0.5253444314002991, 'util', 1), ('aws/sagemaker-python-sdk', 0.5228525996208191, 'ml', 2), ('inspirai/timechamber', 0.5206745862960815, 'sim', 1), ('lukaszahradnik/pyneuralogic', 0.5153552889823914, 'math', 2), ('probml/pyprobml', 0.514581561088562, 'ml', 2), ('pytorch/captum', 0.5139393210411072, 'ml-interpretability', 0), ('xl0/lovely-tensors', 0.5124273896217346, 'ml-dl', 1), ('intellabs/bayesian-torch', 0.5093467831611633, 'ml', 1), ('tensorflow/tensorflow', 0.508491039276123, 'ml-dl', 1), ('deepmind/dm_control', 0.507379412651062, 'ml-rl', 2), ('operand/agency', 0.5073025822639465, 'llm', 2), ('mlflow/mlflow', 0.5072483420372009, 'ml-ops', 2), ('bulletphysics/bullet3', 0.505810022354126, 'sim', 2), ('huggingface/huggingface_hub', 0.5057786703109741, 'ml', 2), ('google/tf-quant-finance', 0.5055859088897705, 'finance', 0), ('d2l-ai/d2l-en', 0.5053571462631226, 'study', 3), ('facebookresearch/pytorch3d', 0.5044132471084595, 'ml-dl', 0), ('huggingface/accelerate', 0.5024619102478027, 'ml', 0), ('facebookresearch/reagent', 0.5019720196723938, 'ml-rl', 0), ('ggerganov/ggml', 0.5019291043281555, 'ml', 1), ('horovod/horovod', 0.5009804368019104, 'ml-ops', 2)]
130
4
null
11.87
212
172
24
0
8
7
8
212
568
90
2.7
58
193
template
https://github.com/tiangolo/full-stack-fastapi-postgresql
[]
null
[]
[]
null
null
null
tiangolo/full-stack-fastapi-postgresql
full-stack-fastapi-postgresql
14,174
2,531
249
TypeScript
null
Full stack, modern web application generator. Using FastAPI, PostgreSQL as database, Docker, automatic HTTPS and more.
tiangolo
2024-01-14
2019-02-23
257
55.059933
null
Full stack, modern web application generator. Using FastAPI, PostgreSQL as database, Docker, automatic HTTPS and more.
['backend', 'celery', 'cookiecutter', 'docker', 'fastapi', 'frontend', 'json', 'json-schema', 'jwt', 'letsencrypt', 'openapi', 'openapi3', 'pgadmin', 'postgresql', 'swagger', 'traefik', 'vue', 'vuex']
['backend', 'celery', 'cookiecutter', 'docker', 'fastapi', 'frontend', 'json', 'json-schema', 'jwt', 'letsencrypt', 'openapi', 'openapi3', 'pgadmin', 'postgresql', 'swagger', 'traefik', 'vue', 'vuex']
2023-12-27
[('tiangolo/fastapi', 0.6879447102546692, 'web', 6), ('piccolo-orm/piccolo_admin', 0.6423637866973877, 'data', 2), ('vitalik/django-ninja', 0.6353817582130432, 'web', 2), ('rawheel/fastapi-boilerplate', 0.6298112869262695, 'web', 3), ('aeternalis-ingenium/fastapi-backend-template', 0.6168069839477539, 'web', 4), ('hugapi/hug', 0.5920613408088684, 'util', 0), ('starlite-api/starlite', 0.5915384292602539, 'web', 2), ('python-restx/flask-restx', 0.5876633524894714, 'web', 2), ('simonw/datasette', 0.5789318084716797, 'data', 2), ('huge-success/sanic', 0.5729467868804932, 'web', 0), ('airbytehq/airbyte', 0.5710554718971252, 'data', 1), ('zenodo/zenodo', 0.5640177726745605, 'util', 1), ('awtkns/fastapi-crudrouter', 0.5604096055030823, 'web', 2), ('prefecthq/server', 0.5580776333808899, 'util', 0), ('orchest/orchest', 0.5576450228691101, 'ml-ops', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5566263198852539, 'template', 1), ('s3rius/fastapi-template', 0.5562103986740112, 'web', 2), ('coleifer/peewee', 0.5561289191246033, 'data', 0), ('alphasecio/langchain-examples', 0.5519778728485107, 'llm', 0), ('willmcgugan/textual', 0.5517593026161194, 'term', 0), ('falconry/falcon', 0.5487000942230225, 'web', 0), ('dmontagu/fastapi_client', 0.5413647890090942, 'web', 0), ('buuntu/fastapi-react', 0.5327474474906921, 'template', 4), ('avaiga/taipy', 0.5292978286743164, 'data', 0), ('tiangolo/sqlmodel', 0.5256924629211426, 'data', 3), ('shishirpatil/gorilla', 0.5247654914855957, 'llm', 0), ('ajndkr/lanarky', 0.5205399394035339, 'llm', 1), ('pallets/werkzeug', 0.520187497138977, 'web', 0), ('gefyrahq/gefyra', 0.5177972912788391, 'util', 1), ('pallets/flask', 0.5168726444244385, 'web', 0), ('flet-dev/flet', 0.5064703822135925, 'web', 0), ('flyteorg/flyte', 0.5061784386634827, 'ml-ops', 0), ('pyeve/eve', 0.5053060054779053, 'web', 0), ('kestra-io/kestra', 0.501535952091217, 'ml-ops', 0), ('plotly/dash', 0.5003242492675781, 'viz', 0)]
21
4
null
0.52
63
36
60
1
0
1
1
63
79
90
1.3
57
1,716
util
https://github.com/google/yapf
['code-quality']
null
[]
[]
null
null
null
google/yapf
yapf
13,543
958
214
Python
null
A formatter for Python files
google
2024-01-14
2015-03-18
462
29.259568
https://avatars.githubusercontent.com/u/1342004?v=4
A formatter for Python files
['formatter', 'google']
['code-quality', 'formatter', 'google']
2023-11-08
[('grantjenks/blue', 0.749129056930542, 'util', 2), ('hhatto/autopep8', 0.7038267850875854, 'util', 1), ('psf/black', 0.6890390515327454, 'util', 2), ('danielnoord/pydocstringformatter', 0.6070597171783447, 'util', 1), ('astral-sh/ruff', 0.6007269024848938, 'util', 1), ('pycqa/isort', 0.5961623191833496, 'util', 2), ('google/latexify_py', 0.5899499654769897, 'util', 0), ('landscapeio/prospector', 0.5676681995391846, 'util', 0), ('google/pytype', 0.5599178075790405, 'typing', 1), ('pygments/pygments', 0.5552298426628113, 'util', 0), ('python-markdown/markdown', 0.5518056154251099, 'util', 0), ('pycqa/flake8', 0.5436343550682068, 'util', 1), ('rubik/radon', 0.5423753261566162, 'util', 0), ('jendrikseipp/vulture', 0.5393766164779663, 'util', 1), ('pycqa/pyflakes', 0.5379751920700073, 'util', 0), ('nedbat/coveragepy', 0.535642147064209, 'testing', 0), ('imageio/imageio', 0.5354976654052734, 'util', 0), ('pytoolz/toolz', 0.5353810787200928, 'util', 0), ('agronholm/typeguard', 0.5313608050346375, 'typing', 1), ('microsoft/pyright', 0.5311009287834167, 'typing', 1), ('hadialqattan/pycln', 0.5293893218040466, 'util', 0), ('connorferster/handcalcs', 0.5293661952018738, 'jupyter', 0), ('willmcgugan/rich', 0.5237478017807007, 'term', 0), ('dask/fastparquet', 0.5155162811279297, 'data', 0), ('fsspec/filesystem_spec', 0.5129982233047485, 'util', 0), ('instagram/monkeytype', 0.5119272470474243, 'typing', 1), ('dosisod/refurb', 0.5096585154533386, 'util', 0), ('mynameisfiber/high_performance_python_2e', 0.5080813765525818, 'study', 0), ('pyutils/line_profiler', 0.5072764158248901, 'profiling', 0), ('pyfpdf/fpdf2', 0.5062951445579529, 'util', 0), ('pyston/pyston', 0.5001851320266724, 'util', 0)]
151
4
null
2.19
39
14
107
2
0
8
8
39
46
90
1.2
57
1,045
nlp
https://github.com/jina-ai/clip-as-service
[]
null
[]
[]
null
null
null
jina-ai/clip-as-service
clip-as-service
12,043
2,056
217
Python
https://clip-as-service.jina.ai
🏄 Scalable embedding, reasoning, ranking for images and sentences with CLIP
jina-ai
2024-01-13
2018-11-12
272
44.252493
https://avatars.githubusercontent.com/u/60539444?v=4
🏄 Scalable embedding, reasoning, ranking for images and sentences with CLIP
['bert', 'bert-as-service', 'clip-as-service', 'clip-model', 'cross-modal-retrieval', 'cross-modality', 'deep-learning', 'image2vec', 'multi-modality', 'neural-search', 'onnx', 'openai', 'pytorch', 'sentence-encoding', 'sentence2vec']
['bert', 'bert-as-service', 'clip-as-service', 'clip-model', 'cross-modal-retrieval', 'cross-modality', 'deep-learning', 'image2vec', 'multi-modality', 'neural-search', 'onnx', 'openai', 'pytorch', 'sentence-encoding', 'sentence2vec']
2023-12-20
[('jina-ai/finetuner', 0.7554095387458801, 'ml', 2), ('ukplab/sentence-transformers', 0.7321420311927795, 'nlp', 0), ('rom1504/clip-retrieval', 0.6420944929122925, 'ml', 1), ('amansrivastava17/embedding-as-service', 0.6331066489219666, 'nlp', 4), ('openai/clip', 0.6114118695259094, 'ml-dl', 1), ('alibaba/easynlp', 0.6006197333335876, 'nlp', 3), ('paddlepaddle/paddlenlp', 0.5931671261787415, 'llm', 2), ('ddangelov/top2vec', 0.5902553796768188, 'nlp', 1), ('llmware-ai/llmware', 0.5855153203010559, 'llm', 2), ('qdrant/fastembed', 0.584290087223053, 'ml', 1), ('neuml/txtai', 0.5824137330055237, 'nlp', 1), ('extreme-bert/extreme-bert', 0.5639864802360535, 'llm', 3), ('plasticityai/magnitude', 0.5636166334152222, 'nlp', 0), ('intellabs/fastrag', 0.561098039150238, 'nlp', 0), ('nomic-ai/nomic', 0.5556612610816956, 'nlp', 0), ('koaning/whatlies', 0.553788423538208, 'nlp', 0), ('graykode/nlp-tutorial', 0.5440134406089783, 'study', 2), ('chroma-core/chroma', 0.5438365340232849, 'data', 0), ('deepset-ai/farm', 0.5426168441772461, 'nlp', 3), ('muennighoff/sgpt', 0.5414046049118042, 'llm', 1), ('huggingface/transformers', 0.540093183517456, 'nlp', 3), ('docarray/docarray', 0.5395568609237671, 'data', 3), ('lucidrains/imagen-pytorch', 0.5368449091911316, 'ml-dl', 1), ('koaning/embetter', 0.5349407196044922, 'data', 0), ('nvidia/deeplearningexamples', 0.5337973833084106, 'ml-dl', 2), ('jina-ai/vectordb', 0.5312561988830566, 'data', 1), ('facebookresearch/mmf', 0.52168208360672, 'ml-dl', 2), ('explosion/thinc', 0.5208788514137268, 'ml-dl', 2), ('nvlabs/prismer', 0.5206122994422913, 'diffusion', 0), ('milvus-io/bootcamp', 0.5121859312057495, 'data', 1), ('maartengr/bertopic', 0.5079023838043213, 'nlp', 1), ('paddlepaddle/rocketqa', 0.506847620010376, 'nlp', 0), ('deeppavlov/deeppavlov', 0.5053911805152893, 'nlp', 1), ('luodian/otter', 0.5049297213554382, 'llm', 2), ('ofa-sys/ofa', 0.5020403265953064, 'llm', 0), ('huggingface/text-embeddings-inference', 0.5006672143936157, 'llm', 0)]
66
4
null
0.31
16
7
63
1
2
24
2
16
32
90
2
57
598
ml
https://github.com/cleanlab/cleanlab
[]
null
[]
[]
null
null
null
cleanlab/cleanlab
cleanlab
7,697
619
79
Python
https://cleanlab.ai
The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
cleanlab
2024-01-13
2018-05-11
298
25.779426
https://avatars.githubusercontent.com/u/90712480?v=4
The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
['active-learning', 'annotation', 'data-analysis', 'data-centric-ai', 'data-cleaning', 'data-curation', 'data-labeling', 'data-profiling', 'data-quality', 'data-science', 'data-validation', 'dataops', 'dataquality', 'datasets', 'labeling', 'llms', 'noisy-labels', 'out-of-distribution-detection', 'outlier-detection', 'weak-supervision']
['active-learning', 'annotation', 'data-analysis', 'data-centric-ai', 'data-cleaning', 'data-curation', 'data-labeling', 'data-profiling', 'data-quality', 'data-science', 'data-validation', 'dataops', 'dataquality', 'datasets', 'labeling', 'llms', 'noisy-labels', 'out-of-distribution-detection', 'outlier-detection', 'weak-supervision']
2024-01-12
[('ydataai/ydata-quality', 0.583878219127655, 'data', 0), ('whylabs/whylogs', 0.5660983324050903, 'util', 3), ('doccano/doccano', 0.5571958422660828, 'nlp', 2), ('csinva/imodels', 0.5562312602996826, 'ml', 1), ('netflix/metaflow', 0.5494846105575562, 'ml-ops', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5334048867225647, 'study', 0), ('koaning/embetter', 0.5257184505462646, 'data', 1), ('argilla-io/argilla', 0.5151708722114563, 'nlp', 2), ('bentoml/bentoml', 0.5148969292640686, 'ml-ops', 0), ('koaning/bulk', 0.5123386383056641, 'data', 1), ('polyaxon/datatile', 0.5088824033737183, 'pandas', 4), ('makcedward/nlpaug', 0.505994439125061, 'nlp', 1), ('mlflow/mlflow', 0.5033455491065979, 'ml-ops', 0)]
44
3
null
5.56
135
69
69
0
4
2
4
135
157
90
1.2
57
552
ml-dl
https://github.com/arogozhnikov/einops
[]
null
[]
[]
null
null
null
arogozhnikov/einops
einops
7,548
328
69
Python
https://einops.rocks
Flexible and powerful tensor operations for readable and reliable code (for pytorch, jax, TF and others)
arogozhnikov
2024-01-13
2018-09-22
279
27.01227
null
Flexible and powerful tensor operations for readable and reliable code (for pytorch, jax, TF and others)
['chainer', 'cupy', 'deep-learning', 'einops', 'jax', 'keras', 'numpy', 'pytorch', 'tensor', 'tensorflow']
['chainer', 'cupy', 'deep-learning', 'einops', 'jax', 'keras', 'numpy', 'pytorch', 'tensor', 'tensorflow']
2024-01-11
[('tensorly/tensorly', 0.7486700415611267, 'ml-dl', 6), ('ggerganov/ggml', 0.674818754196167, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.6702998876571655, 'perf', 2), ('rafiqhasan/auto-tensorflow', 0.6536889672279358, 'ml-dl', 1), ('huggingface/transformers', 0.6441165804862976, 'nlp', 4), ('patrick-kidger/torchtyping', 0.6377165913581848, 'typing', 1), ('tensorflow/addons', 0.6348954439163208, 'ml', 2), ('pytorch/ignite', 0.6346755027770996, 'ml-dl', 2), ('xl0/lovely-tensors', 0.6286166310310364, 'ml-dl', 2), ('pytorch/pytorch', 0.624183177947998, 'ml-dl', 3), ('nvidia/apex', 0.6182481646537781, 'ml-dl', 0), ('horovod/horovod', 0.6111495494842529, 'ml-ops', 4), ('google/tf-quant-finance', 0.6102033853530884, 'finance', 1), ('tlkh/tf-metal-experiments', 0.6099873781204224, 'perf', 2), ('karpathy/micrograd', 0.600235104560852, 'study', 0), ('skorch-dev/skorch', 0.599236786365509, 'ml-dl', 1), ('tensorflow/similarity', 0.5858622193336487, 'ml-dl', 2), ('rentruewang/koila', 0.5856212973594666, 'ml', 2), ('explosion/thinc', 0.5852126479148865, 'ml-dl', 4), ('google/gin-config', 0.5846500396728516, 'util', 1), ('keras-team/keras', 0.580649197101593, 'ml-dl', 4), ('tensorflow/mesh', 0.5747230052947998, 'ml-dl', 0), ('nvidia/tensorrt-llm', 0.5731545686721802, 'viz', 0), ('nvidia/deeplearningexamples', 0.5647768378257751, 'ml-dl', 3), ('keras-team/keras-nlp', 0.5635877251625061, 'nlp', 3), ('huggingface/accelerate', 0.5633874535560608, 'ml', 0), ('rasbt/machine-learning-book', 0.5617372989654541, 'study', 2), ('mrdbourke/m1-machine-learning-test', 0.556743323802948, 'ml', 1), ('nyandwi/modernconvnets', 0.5543664693832397, 'ml-dl', 2), ('huggingface/exporters', 0.5518941283226013, 'ml', 3), ('google/jax', 0.5517240762710571, 'ml', 2), ('ashleve/lightning-hydra-template', 0.5508671998977661, 'util', 2), ('cupy/cupy', 0.5499424934387207, 'math', 3), ('blackhc/toma', 0.5450114011764526, 'ml-dl', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5417112112045288, 'study', 0), ('neuralmagic/sparseml', 0.5392698645591736, 'ml-dl', 3), ('ageron/handson-ml2', 0.5353853702545166, 'ml', 0), ('facebookresearch/pytorch3d', 0.5348989963531494, 'ml-dl', 0), ('pytorch/data', 0.5333592891693115, 'data', 0), ('google/trax', 0.5327727198600769, 'ml-dl', 3), ('mrdbourke/pytorch-deep-learning', 0.528740644454956, 'study', 2), ('pypy/pypy', 0.5274959206581116, 'util', 0), ('pytorch/captum', 0.524075984954834, 'ml-interpretability', 0), ('pytoolz/toolz', 0.5189169645309448, 'util', 0), ('tensorflow/tensorflow', 0.515922486782074, 'ml-dl', 2), ('ddbourgin/numpy-ml', 0.5156410336494446, 'ml', 0), ('deepmind/dm-haiku', 0.5126287341117859, 'ml-dl', 2), ('microsoft/onnxruntime', 0.5109891295433044, 'ml', 3), ('pyg-team/pytorch_geometric', 0.5090392231941223, 'ml-dl', 2), ('onnx/onnx', 0.5081114172935486, 'ml', 4), ('denys88/rl_games', 0.5077354311943054, 'ml-rl', 2), ('uber/petastorm', 0.5071843862533569, 'data', 3), ('graykode/nlp-tutorial', 0.5046815276145935, 'study', 2), ('tensorflow/lucid', 0.5045328140258789, 'ml-interpretability', 1), ('tensorlayer/tensorlayer', 0.5044419765472412, 'ml-rl', 2), ('nvidia/cuda-python', 0.5039113759994507, 'ml', 0), ('ml-explore/mlx', 0.5031680464744568, 'ml', 2), ('aistream-peelout/flow-forecast', 0.5023390650749207, 'time-series', 2), ('salesforce/deeptime', 0.5012999773025513, 'time-series', 1), ('huggingface/huggingface_hub', 0.5012728571891785, 'ml', 2), ('timdettmers/bitsandbytes', 0.5005117654800415, 'util', 0)]
26
8
null
1.92
16
10
65
0
5
2
5
16
22
90
1.4
57
1,142
util
https://github.com/eternnoir/pytelegrambotapi
[]
null
[]
[]
null
null
null
eternnoir/pytelegrambotapi
pyTelegramBotAPI
7,429
1,975
225
Python
null
Python Telegram bot api.
eternnoir
2024-01-14
2015-06-26
448
16.561465
null
Python Telegram bot api.
['bot-api', 'python-api', 'telegram', 'telegram-bot', 'telegram-bot-api']
['bot-api', 'python-api', 'telegram', 'telegram-bot', 'telegram-bot-api']
2024-01-12
[('mitmproxy/pdoc', 0.5450152158737183, 'util', 0), ('openai/gpt-discord-bot', 0.5340373516082764, 'llm', 0), ('pdoc3/pdoc', 0.5075708031654358, 'util', 0), ('hugapi/hug', 0.507483184337616, 'util', 1), ('freqtrade/freqtrade', 0.5027558207511902, 'crypto', 1), ('minimaxir/simpleaichat', 0.5022081732749939, 'llm', 0), ('vitalik/django-ninja', 0.5017293095588684, 'web', 0), ('togethercomputer/openchatkit', 0.5013675093650818, 'nlp', 0)]
228
2
null
4
66
63
104
0
7
8
7
67
200
90
3
57
409
web
https://github.com/encode/uvicorn
[]
null
[]
[]
null
null
null
encode/uvicorn
uvicorn
7,420
685
91
Python
https://www.uvicorn.org/
An ASGI web server, for Python. 🦄
encode
2024-01-14
2017-05-31
347
21.330595
https://avatars.githubusercontent.com/u/19159390?v=4
An ASGI web server, for Python. 🦄
['asgi', 'asyncio', 'http', 'http-server']
['asgi', 'asyncio', 'http', 'http-server']
2024-01-03
[('neoteroi/blacksheep', 0.8586666584014893, 'web', 4), ('encode/httpx', 0.8501601815223694, 'web', 2), ('pallets/quart', 0.8250173926353455, 'web', 3), ('aio-libs/aiohttp', 0.7939640879631042, 'web', 3), ('encode/starlette', 0.6668508052825928, 'web', 1), ('falconry/falcon', 0.6588360667228699, 'web', 2), ('klen/muffin', 0.6518058180809021, 'web', 2), ('cherrypy/cherrypy', 0.6493438482284546, 'web', 2), ('pylons/waitress', 0.6356403827667236, 'web', 1), ('huge-success/sanic', 0.633416473865509, 'web', 2), ('timofurrer/awesome-asyncio', 0.618058979511261, 'study', 1), ('psf/requests', 0.6152986884117126, 'web', 1), ('starlite-api/starlite', 0.6137245893478394, 'web', 2), ('alirn76/panther', 0.6067794561386108, 'web', 0), ('miguelgrinberg/python-socketio', 0.5958155989646912, 'util', 1), ('pallets/flask', 0.5909908413887024, 'web', 0), ('pallets/werkzeug', 0.5832026600837708, 'web', 1), ('jordaneremieff/mangum', 0.5822369456291199, 'web', 2), ('requests/toolbelt', 0.5721771717071533, 'util', 1), ('webpy/webpy', 0.5704232454299927, 'web', 0), ('reflex-dev/reflex', 0.5666500926017761, 'web', 0), ('masoniteframework/masonite', 0.5623204708099365, 'web', 0), ('pylons/pyramid', 0.5620464086532593, 'web', 0), ('benoitc/gunicorn', 0.5551705360412598, 'web', 2), ('python-trio/trio', 0.5339199304580688, 'perf', 0), ('bottlepy/bottle', 0.5337467193603516, 'web', 0), ('samuelcolvin/aioaws', 0.5331629514694214, 'data', 1), ('simple-salesforce/simple-salesforce', 0.5294420123100281, 'data', 0), ('emmett-framework/emmett', 0.514312207698822, 'web', 2), ('hugapi/hug', 0.5106011629104614, 'util', 2), ('sumerc/yappi', 0.5030171871185303, 'profiling', 2), ('websocket-client/websocket-client', 0.5029712319374084, 'web', 0), ('ets-labs/python-dependency-injector', 0.5008002519607544, 'util', 1)]
174
4
null
2.46
70
45
81
0
9
23
9
70
69
90
1
57
770
util
https://github.com/google/latexify_py
[]
null
[]
[]
null
null
null
google/latexify_py
latexify_py
6,714
366
56
Python
null
A library to generate LaTeX expression from Python code.
google
2024-01-13
2020-07-25
183
36.602804
https://avatars.githubusercontent.com/u/1342004?v=4
A library to generate LaTeX expression from Python code.
[]
[]
2023-12-08
[('connorferster/handcalcs', 0.7623890042304993, 'jupyter', 0), ('pytoolz/toolz', 0.6760282516479492, 'util', 0), ('julienpalard/pipe', 0.5925378799438477, 'util', 0), ('google/yapf', 0.5899499654769897, 'util', 0), ('pyston/pyston', 0.5858403444290161, 'util', 0), ('python/cpython', 0.5829751491546631, 'util', 0), ('pypy/pypy', 0.5807206630706787, 'util', 0), ('hhatto/autopep8', 0.5800272822380066, 'util', 0), ('pyparsing/pyparsing', 0.5657850503921509, 'util', 0), ('sympy/sympy', 0.5628668069839478, 'math', 0), ('pygments/pygments', 0.5412126183509827, 'util', 0), ('pyfpdf/fpdf2', 0.5399512052536011, 'util', 0), ('instagram/libcst', 0.5354775786399841, 'util', 0), ('grantjenks/blue', 0.5342947244644165, 'util', 0), ('python-markdown/markdown', 0.5334113240242004, 'util', 0), ('instagram/monkeytype', 0.5287166237831116, 'typing', 0), ('mnooner256/pyqrcode', 0.527988612651825, 'util', 0), ('python-rope/rope', 0.5269980430603027, 'util', 0), ('msaelices/py2mojo', 0.5220133662223816, 'util', 0), ('mynameisfiber/high_performance_python_2e', 0.518977165222168, 'study', 0), ('pyscf/pyscf', 0.5187242031097412, 'sim', 0), ('brandon-rhodes/python-patterns', 0.5185614824295044, 'util', 0), ('getpelican/pelican', 0.5140236020088196, 'web', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5139066576957703, 'study', 0), ('sqlalchemy/mako', 0.5123310685157776, 'template', 0), ('psf/black', 0.5119499564170837, 'util', 0), ('microsoft/pycodegpt', 0.5082912445068359, 'llm', 0), ('numba/llvmlite', 0.5081674456596375, 'util', 0), ('eleutherai/pyfra', 0.5066225528717041, 'ml', 0), ('pmorissette/ffn', 0.5060634016990662, 'finance', 0), ('gbeced/pyalgotrade', 0.5051184296607971, 'finance', 0), ('has2k1/plotnine', 0.5012533068656921, 'viz', 0), ('nedbat/coveragepy', 0.5010238885879517, 'testing', 0)]
29
5
null
0.27
24
21
42
1
6
4
6
24
55
90
2.3
57
1,451
util
https://github.com/conda/conda
['package-manager', 'packaging']
null
[]
[]
null
null
null
conda/conda
conda
5,923
1,467
197
Python
https://docs.conda.io/projects/conda/
A system-level, binary package and environment manager running on all major operating systems and platforms.
conda
2024-01-14
2012-10-15
589
10.053589
https://avatars.githubusercontent.com/u/6392739?v=4
A system-level, binary package and environment manager running on all major operating systems and platforms.
['conda', 'package-management']
['conda', 'package-management', 'package-manager', 'packaging']
2024-01-12
[('mamba-org/mamba', 0.752036988735199, 'util', 3), ('spack/spack', 0.7269142270088196, 'util', 1), ('pomponchik/instld', 0.6547331809997559, 'util', 1), ('indygreg/pyoxidizer', 0.5986080169677734, 'util', 2), ('conda/conda-build', 0.5913727283477783, 'util', 2), ('mamba-org/quetz', 0.5807616710662842, 'util', 1), ('mitsuhiko/rye', 0.5606615543365479, 'util', 2), ('mamba-org/boa', 0.5487179756164551, 'util', 1), ('pdm-project/pdm', 0.5474826097488403, 'util', 2), ('pypa/hatch', 0.5469714999198914, 'util', 2), ('tiiuae/sbomnix', 0.5382207632064819, 'util', 0), ('pypa/setuptools_scm', 0.532427966594696, 'util', 1), ('conda/conda-pack', 0.5275230407714844, 'util', 1), ('python-poetry/poetry', 0.527414858341217, 'util', 2), ('ofek/pyapp', 0.5070095658302307, 'util', 1)]
448
3
null
14.12
767
573
137
0
14
26
14
767
832
90
1.1
57
1,889
ml
https://github.com/kevinmusgrave/pytorch-metric-learning
['pytorch', 'embeddings']
null
[]
[]
null
null
null
kevinmusgrave/pytorch-metric-learning
pytorch-metric-learning
5,618
646
65
Python
https://kevinmusgrave.github.io/pytorch-metric-learning/
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
kevinmusgrave
2024-01-14
2019-10-23
222
25.208974
null
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
['computer-vision', 'contrastive-learning', 'deep-learning', 'deep-metric-learning', 'embeddings', 'image-retrieval', 'machine-learning', 'metric-learning', 'pytorch', 'self-supervised-learning']
['computer-vision', 'contrastive-learning', 'deep-learning', 'deep-metric-learning', 'embeddings', 'image-retrieval', 'machine-learning', 'metric-learning', 'pytorch', 'self-supervised-learning']
2023-12-16
[('oml-team/open-metric-learning', 0.7173192501068115, 'ml', 5), ('roboflow/supervision', 0.6149064302444458, 'ml', 4), ('scikit-learn-contrib/metric-learn', 0.5882241129875183, 'ml', 2), ('qdrant/quaterion', 0.584888219833374, 'ml', 5), ('lightly-ai/lightly', 0.581474244594574, 'ml', 7), ('tensorflow/tensorflow', 0.5597424507141113, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5495540499687195, 'ml-dl', 3), ('huggingface/datasets', 0.5495465993881226, 'nlp', 4), ('pytorch/ignite', 0.5479029417037964, 'ml-dl', 3), ('gradio-app/gradio', 0.5473379492759705, 'viz', 2), ('mosaicml/composer', 0.5446270108222961, 'ml-dl', 3), ('keras-team/keras', 0.5415274500846863, 'ml-dl', 3), ('azavea/raster-vision', 0.5324239134788513, 'gis', 4), ('ddbourgin/numpy-ml', 0.5313518643379211, 'ml', 1), ('tensorflow/similarity', 0.5301912426948547, 'ml-dl', 4), ('onnx/onnx', 0.5226200222969055, 'ml', 3), ('datasystemslab/geotorch', 0.5219647884368896, 'gis', 1), ('huggingface/transformers', 0.5175970792770386, 'nlp', 3), ('kornia/kornia', 0.5158526301383972, 'ml-dl', 4), ('aiqc/aiqc', 0.5146724581718445, 'ml-ops', 0), ('awslabs/autogluon', 0.5119850635528564, 'ml', 4), ('nvlabs/gcvit', 0.5083329081535339, 'diffusion', 1), ('uber/petastorm', 0.5072482824325562, 'data', 3), ('albumentations-team/albumentations', 0.5062373876571655, 'ml-dl', 2), ('aleju/imgaug', 0.506173312664032, 'ml', 2), ('determined-ai/determined', 0.5060969591140747, 'ml-ops', 3), ('microsoft/nni', 0.5050148367881775, 'ml', 3), ('pytorch/torchrec', 0.5045345425605774, 'ml-dl', 2), ('ml-tooling/opyrator', 0.502253532409668, 'viz', 1), ('lutzroeder/netron', 0.5019212365150452, 'ml', 3), ('pyg-team/pytorch_geometric', 0.501497745513916, 'ml-dl', 2)]
40
6
null
2.56
24
18
51
1
13
12
13
24
54
90
2.2
57
354
ml-ops
https://github.com/feast-dev/feast
[]
null
[]
[]
null
null
null
feast-dev/feast
feast
5,029
896
69
Python
https://feast.dev
Feature Store for Machine Learning
feast-dev
2024-01-14
2018-12-10
268
18.754928
https://avatars.githubusercontent.com/u/57027613?v=4
Feature Store for Machine Learning
['big-data', 'data-engineering', 'data-quality', 'data-science', 'feature-store', 'features', 'machine-learning', 'ml', 'mlops']
['big-data', 'data-engineering', 'data-quality', 'data-science', 'feature-store', 'features', 'machine-learning', 'ml', 'mlops']
2024-01-13
[('featureform/embeddinghub', 0.7385993599891663, 'nlp', 6), ('polyaxon/polyaxon', 0.6851301193237305, 'ml-ops', 4), ('netflix/metaflow', 0.6503940224647522, 'ml-ops', 4), ('firmai/industry-machine-learning', 0.6406149864196777, 'study', 2), ('kubeflow/pipelines', 0.6390533447265625, 'ml-ops', 3), ('onnx/onnx', 0.6326718330383301, 'ml', 2), ('mlflow/mlflow', 0.6303765773773193, 'ml-ops', 2), ('bentoml/bentoml', 0.6025741696357727, 'ml-ops', 2), ('huggingface/datasets', 0.5980408191680908, 'nlp', 1), ('googlecloudplatform/vertex-ai-samples', 0.595111072063446, 'ml', 3), ('hpcaitech/colossalai', 0.585966944694519, 'llm', 0), ('xplainable/xplainable', 0.5823587775230408, 'ml-interpretability', 2), ('activeloopai/deeplake', 0.5807369947433472, 'ml-ops', 4), ('polyaxon/datatile', 0.570514976978302, 'pandas', 3), ('tensorflow/tensorflow', 0.5688017010688782, 'ml-dl', 2), ('microsoft/nni', 0.5683546662330627, 'ml', 3), ('mage-ai/mage-ai', 0.5513089299201965, 'ml-ops', 3), ('alirezadir/machine-learning-interview-enlightener', 0.5510007739067078, 'study', 1), ('whylabs/whylogs', 0.5498430132865906, 'util', 4), ('fatiando/verde', 0.5436317324638367, 'gis', 1), ('sktime/sktime', 0.5417338609695435, 'time-series', 2), ('winedarksea/autots', 0.5365046262741089, 'time-series', 1), ('mosaicml/composer', 0.535942554473877, 'ml-dl', 1), ('online-ml/river', 0.5350134372711182, 'ml', 2), ('ploomber/ploomber', 0.5336986780166626, 'ml-ops', 4), ('superduperdb/superduperdb', 0.530910313129425, 'data', 2), ('bodywork-ml/bodywork-core', 0.5267590284347534, 'ml-ops', 3), ('lancedb/lancedb', 0.5253369808197021, 'data', 0), ('great-expectations/great_expectations', 0.5238198041915894, 'ml-ops', 4), ('milvus-io/bootcamp', 0.5231591463088989, 'data', 0), ('keras-team/keras', 0.5223841071128845, 'ml-dl', 2), ('scikit-learn/scikit-learn', 0.5212818384170532, 'ml', 2), ('avaiga/taipy', 0.5180974006652832, 'data', 2), ('google/mediapipe', 0.5142419338226318, 'ml', 1), ('qdrant/qdrant', 0.5136101245880127, 'data', 2), ('ml-tooling/opyrator', 0.5118728876113892, 'viz', 1), ('iterative/dvc', 0.5111587047576904, 'ml-ops', 2), ('giskard-ai/giskard', 0.507591962814331, 'data', 2), ('gradio-app/gradio', 0.5052893757820129, 'viz', 2), ('google-research/google-research', 0.5038433074951172, 'ml', 1), ('krzjoa/awesome-python-data-science', 0.5033879280090332, 'study', 2), ('explosion/thinc', 0.5021685361862183, 'ml-dl', 1), ('nccr-itmo/fedot', 0.5015140175819397, 'ml-ops', 1), ('mindsdb/mindsdb', 0.5014446973800659, 'data', 2)]
222
4
null
3.38
118
52
62
0
13
27
13
117
126
90
1.1
57
227
ml
https://github.com/online-ml/river
[]
null
[]
[]
1
null
null
online-ml/river
river
4,605
551
85
Python
https://riverml.xyz
🌊 Online machine learning in Python
online-ml
2024-01-13
2019-01-24
261
17.595524
https://avatars.githubusercontent.com/u/47002673?v=4
🌊 Online machine learning in Python
['concept-drift', 'data-science', 'incremental-learning', 'machine-learning', 'online-learning', 'online-machine-learning', 'online-statistics', 'real-time-processing', 'stream-processing', 'streaming', 'streaming-data']
['concept-drift', 'data-science', 'incremental-learning', 'machine-learning', 'online-learning', 'online-machine-learning', 'online-statistics', 'real-time-processing', 'stream-processing', 'streaming', 'streaming-data']
2024-01-01
[('scikit-learn/scikit-learn', 0.6860164403915405, 'ml', 2), ('jeshraghian/snntorch', 0.615203320980072, 'ml-dl', 1), ('gradio-app/gradio', 0.6122671961784363, 'viz', 2), ('ddbourgin/numpy-ml', 0.6021139025688171, 'ml', 1), ('xplainable/xplainable', 0.584074079990387, 'ml-interpretability', 2), ('pycaret/pycaret', 0.5788997411727905, 'ml', 2), ('ml-tooling/opyrator', 0.574630618095398, 'viz', 1), ('rasbt/mlxtend', 0.5713738799095154, 'ml', 2), ('polyaxon/datatile', 0.5639887452125549, 'pandas', 1), ('awslabs/gluonts', 0.5579661130905151, 'time-series', 2), ('tensorly/tensorly', 0.5535548329353333, 'ml-dl', 1), ('jovianml/opendatasets', 0.5532159209251404, 'data', 2), ('merantix-momentum/squirrel-core', 0.5505257248878479, 'ml', 2), ('google/mediapipe', 0.541152834892273, 'ml', 2), ('firmai/atspy', 0.5391773581504822, 'time-series', 0), ('mlflow/mlflow', 0.5388703346252441, 'ml-ops', 1), ('pathwaycom/pathway', 0.5360531210899353, 'data', 1), ('tensorflow/tensorflow', 0.5353706479072571, 'ml-dl', 1), ('feast-dev/feast', 0.5350134372711182, 'ml-ops', 2), ('clips/pattern', 0.5316668152809143, 'nlp', 1), ('featurelabs/featuretools', 0.5314729809761047, 'ml', 2), ('fatiando/verde', 0.531051754951477, 'gis', 1), ('sktime/sktime', 0.5300047993659973, 'time-series', 2), ('statsmodels/statsmodels', 0.5298870205879211, 'ml', 1), ('firmai/industry-machine-learning', 0.5276996493339539, 'study', 2), ('thealgorithms/python', 0.5223714709281921, 'study', 0), ('automl/auto-sklearn', 0.5197332501411438, 'ml', 0), ('scikit-mobility/scikit-mobility', 0.5196621417999268, 'gis', 1), ('nccr-itmo/fedot', 0.5161853432655334, 'ml-ops', 1), ('dylanhogg/awesome-python', 0.5161080360412598, 'study', 2), ('reloadware/reloadium', 0.5157492160797119, 'profiling', 0), ('sentinel-hub/eo-learn', 0.5141457915306091, 'gis', 1), ('probml/pyprobml', 0.5124793648719788, 'ml', 1), ('scikit-learn-contrib/imbalanced-learn', 0.5116428732872009, 'ml', 2), ('quantconnect/lean', 0.511631429195404, 'finance', 0), ('ai4finance-foundation/finrl', 0.5111426711082458, 'finance', 0), ('epistasislab/tpot', 0.5093849897384644, 'ml', 2), ('crflynn/stochastic', 0.507440447807312, 'sim', 0), ('google/trax', 0.5071595311164856, 'ml-dl', 1), ('eventual-inc/daft', 0.506720244884491, 'pandas', 2), ('googlecloudplatform/vertex-ai-samples', 0.505128800868988, 'ml', 1), ('google/temporian', 0.5042147040367126, 'time-series', 0), ('ranaroussi/quantstats', 0.5004301071166992, 'finance', 0)]
108
6
null
5.67
137
31
61
0
7
7
7
137
161
90
1.2
57
887
time-series
https://github.com/awslabs/gluonts
[]
null
[]
[]
null
null
null
awslabs/gluonts
gluonts
4,008
758
74
Python
https://ts.gluon.ai
Probabilistic time series modeling in Python
awslabs
2024-01-12
2019-05-15
245
16.30215
https://avatars.githubusercontent.com/u/3299148?v=4
Probabilistic time series modeling in Python
['artificial-intelligence', 'aws', 'data-science', 'deep-learning', 'forecasting', 'machine-learning', 'mxnet', 'neural-networks', 'pytorch', 'sagemaker', 'time-series', 'time-series-forecasting', 'time-series-prediction', 'timeseries', 'torch']
['artificial-intelligence', 'aws', 'data-science', 'deep-learning', 'forecasting', 'machine-learning', 'mxnet', 'neural-networks', 'pytorch', 'sagemaker', 'time-series', 'time-series-forecasting', 'time-series-prediction', 'timeseries', 'torch']
2024-01-10
[('firmai/atspy', 0.695907711982727, 'time-series', 2), ('alkaline-ml/pmdarima', 0.6824057102203369, 'time-series', 3), ('unit8co/darts', 0.6495864987373352, 'time-series', 5), ('uber/orbit', 0.6446792483329773, 'time-series', 4), ('rjt1990/pyflux', 0.623365581035614, 'time-series', 1), ('scikit-learn/scikit-learn', 0.6101686358451843, 'ml', 2), ('crflynn/stochastic', 0.5971387624740601, 'sim', 0), ('pymc-devs/pymc3', 0.593370795249939, 'ml', 0), ('probml/pyprobml', 0.5823290348052979, 'ml', 2), ('aistream-peelout/flow-forecast', 0.5800959467887878, 'time-series', 5), ('salesforce/deeptime', 0.5721127390861511, 'time-series', 4), ('pycaret/pycaret', 0.5713929533958435, 'ml', 3), ('statsmodels/statsmodels', 0.5710023641586304, 'ml', 2), ('ddbourgin/numpy-ml', 0.5705474615097046, 'ml', 2), ('google/temporian', 0.5661502480506897, 'time-series', 1), ('ourownstory/neural_prophet', 0.5649511814117432, 'ml', 7), ('winedarksea/autots', 0.5618434548377991, 'time-series', 4), ('sktime/sktime', 0.5607674717903137, 'time-series', 4), ('online-ml/river', 0.5579661130905151, 'ml', 2), ('tdameritrade/stumpy', 0.5509535074234009, 'time-series', 1), ('pyro-ppl/pyro', 0.5475439429283142, 'ml-dl', 3), ('salesforce/merlion', 0.5388320684432983, 'time-series', 3), ('microprediction/microprediction', 0.5331199765205383, 'time-series', 2), ('bashtage/arch', 0.5267676115036011, 'time-series', 2), ('jeshraghian/snntorch', 0.5149070620536804, 'ml-dl', 3), ('nixtla/statsforecast', 0.5115534067153931, 'time-series', 4), ('gradio-app/gradio', 0.5049344301223755, 'viz', 3), ('opengeos/earthformer', 0.502416729927063, 'gis', 2)]
110
5
null
5.29
96
63
57
0
34
23
34
96
130
90
1.4
57
1,608
llm
https://github.com/openbmb/toolbench
['instruction-tuning', 'evaluation']
null
[]
[]
null
null
null
openbmb/toolbench
ToolBench
3,959
336
49
Python
https://openbmb.github.io/ToolBench/
An open platform for training, serving, and evaluating large language model for tool learning.
openbmb
2024-01-14
2023-05-28
35
112.198381
https://avatars.githubusercontent.com/u/89920203?v=4
An open platform for training, serving, and evaluating large language model for tool learning.
[]
['evaluation', 'instruction-tuning']
2023-11-22
[('lm-sys/fastchat', 0.7016268968582153, 'llm', 1), ('ai21labs/lm-evaluation', 0.6778345704078674, 'llm', 0), ('conceptofmind/toolformer', 0.6644108891487122, 'llm', 0), ('ctlllll/llm-toolmaker', 0.6306527853012085, 'llm', 0), ('night-chen/toolqa', 0.6098852753639221, 'llm', 0), ('lucidrains/toolformer-pytorch', 0.5833466649055481, 'llm', 0), ('bigscience-workshop/biomedical', 0.5767196416854858, 'data', 0), ('argilla-io/argilla', 0.5743700265884399, 'nlp', 0), ('lianjiatech/belle', 0.5728527903556824, 'llm', 0), ('openlmlab/leval', 0.5642274022102356, 'llm', 1), ('llmware-ai/llmware', 0.5629839301109314, 'llm', 0), ('optimalscale/lmflow', 0.5591222643852234, 'llm', 0), ('juncongmoo/pyllama', 0.5528221130371094, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5517364740371704, 'llm', 1), ('young-geng/easylm', 0.5505062341690063, 'llm', 0), ('hannibal046/awesome-llm', 0.5423779487609863, 'study', 0), ('yizhongw/self-instruct', 0.542241096496582, 'llm', 1), ('hegelai/prompttools', 0.5396706461906433, 'llm', 0), ('hiyouga/llama-factory', 0.5351808667182922, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5351806879043579, 'llm', 1), ('databrickslabs/dolly', 0.5324987173080444, 'llm', 0), ('freedomintelligence/llmzoo', 0.5291275978088379, 'llm', 0), ('openlmlab/moss', 0.5276908278465271, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5260429382324219, 'llm', 0), ('huggingface/evaluate', 0.5237149000167847, 'ml', 1), ('agenta-ai/agenta', 0.5236167907714844, 'llm', 0), ('jonasgeiping/cramming', 0.521796703338623, 'nlp', 0), ('luohongyin/sail', 0.5190768241882324, 'llm', 0), ('airi-institute/probing_framework', 0.5175856351852417, 'nlp', 0), ('alpha-vllm/llama2-accessory', 0.5172504186630249, 'llm', 0), ('cg123/mergekit', 0.5107592344284058, 'llm', 0), ('keirp/automatic_prompt_engineer', 0.5084372758865356, 'llm', 0), ('salesforce/codet5', 0.5070496201515198, 'nlp', 0), ('confident-ai/deepeval', 0.5041009783744812, 'testing', 1), ('next-gpt/next-gpt', 0.5017238259315491, 'llm', 1), ('guidance-ai/guidance', 0.5015900135040283, 'llm', 0), ('tigerlab-ai/tiger', 0.5014435052871704, 'llm', 0), ('huggingface/text-generation-inference', 0.5014093518257141, 'llm', 0), ('microsoft/unilm', 0.5009614825248718, 'nlp', 0)]
16
3
null
2.83
63
24
8
2
0
0
0
63
63
90
1
57
1,770
typing
https://github.com/python/typeshed
['code-quality']
null
[]
[]
null
null
null
python/typeshed
typeshed
3,908
1,680
78
Python
null
Collection of library stubs for Python, with static types
python
2024-01-13
2015-03-05
464
8.409468
https://avatars.githubusercontent.com/u/1525981?v=4
Collection of library stubs for Python, with static types
['stub', 'types', 'typing']
['code-quality', 'stub', 'types', 'typing']
2024-01-12
[('instagram/monkeytype', 0.723702609539032, 'typing', 1), ('google/pytype', 0.7091848254203796, 'typing', 3), ('python/mypy', 0.6911789178848267, 'typing', 3), ('microsoft/pyright', 0.6651108264923096, 'typing', 1), ('pytoolz/toolz', 0.5580030083656311, 'util', 0), ('facebook/pyre-check', 0.5521007180213928, 'typing', 1), ('agronholm/typeguard', 0.5519527792930603, 'typing', 1), ('astral-sh/ruff', 0.5103850364685059, 'util', 1), ('landscapeio/prospector', 0.509270191192627, 'util', 0)]
1,367
5
null
22.35
463
365
108
0
0
0
0
463
1,257
90
2.7
57
269
web
https://github.com/strawberry-graphql/strawberry
[]
null
[]
[]
null
null
null
strawberry-graphql/strawberry
strawberry
3,613
484
44
Python
https://strawberry.rocks
A GraphQL library for Python that leverages type annotations 🍓
strawberry-graphql
2024-01-13
2018-12-21
266
13.553591
https://avatars.githubusercontent.com/u/48071860?v=4
A GraphQL library for Python that leverages type annotations 🍓
['asgi', 'asyncio', 'django', 'graphql', 'graphql-library', 'graphql-schema', 'graphql-server', 'mypy', 'starlette', 'strawberry']
['asgi', 'asyncio', 'django', 'graphql', 'graphql-library', 'graphql-schema', 'graphql-server', 'mypy', 'starlette', 'strawberry']
2024-01-07
[('instagram/monkeytype', 0.6149357557296753, 'typing', 0), ('patrick-kidger/torchtyping', 0.5875641703605652, 'typing', 0), ('facebook/pyre-check', 0.5584018230438232, 'typing', 0), ('accenture/ampligraph', 0.5520169734954834, 'data', 0), ('tiangolo/sqlmodel', 0.5469264984130859, 'data', 0), ('jsonpickle/jsonpickle', 0.5452963709831238, 'data', 0), ('sqlalchemy/sqlalchemy', 0.5367457866668701, 'data', 0), ('pytoolz/toolz', 0.5352164506912231, 'util', 0), ('plotly/plotly.py', 0.5247325897216797, 'viz', 0), ('tobymao/sqlglot', 0.5215062499046326, 'data', 0), ('marshmallow-code/marshmallow', 0.5134101510047913, 'util', 0), ('mcfunley/pugsql', 0.5126366019248962, 'data', 0), ('typesense/typesense-python', 0.5120099782943726, 'data', 0), ('ibis-project/ibis', 0.5083762407302856, 'data', 0), ('aws/graph-notebook', 0.5056154131889343, 'jupyter', 0), ('s3rius/fastapi-template', 0.5046817064285278, 'web', 2), ('pydantic/pydantic', 0.5045525431632996, 'util', 0), ('nicolas-hbt/pygraft', 0.5039038062095642, 'ml', 0)]
237
5
null
9.63
643
186
62
0
164
131
164
643
664
90
1
57
1,092
llm
https://github.com/eleutherai/lm-evaluation-harness
['benchmark', 'evaluation', 'language-model']
null
[]
[]
null
null
null
eleutherai/lm-evaluation-harness
lm-evaluation-harness
3,589
921
34
Python
https://www.eleuther.ai
A framework for few-shot evaluation of language models.
eleutherai
2024-01-14
2020-08-28
178
20.0984
https://avatars.githubusercontent.com/u/68924597?v=4
A framework for few-shot evaluation of language models.
['evaluation-framework', 'language-model', 'transformer']
['benchmark', 'evaluation', 'evaluation-framework', 'language-model', 'transformer']
2024-01-12
[('ai21labs/lm-evaluation', 0.7471644282341003, 'llm', 2), ('huggingface/setfit', 0.6814461350440979, 'nlp', 0), ('freedomintelligence/llmzoo', 0.6675116419792175, 'llm', 1), ('openlmlab/leval', 0.6121481657028198, 'llm', 2), ('juncongmoo/pyllama', 0.6021994948387146, 'llm', 0), ('lm-sys/fastchat', 0.6016319394111633, 'llm', 2), ('reasoning-machines/pal', 0.5877846479415894, 'llm', 1), ('cg123/mergekit', 0.5827073454856873, 'llm', 0), ('hannibal046/awesome-llm', 0.5770836472511292, 'study', 1), ('jonasgeiping/cramming', 0.5666804909706116, 'nlp', 1), ('nvlabs/prismer', 0.5629435777664185, 'diffusion', 1), ('anthropics/evals', 0.5547993183135986, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5522134304046631, 'llm', 1), ('openbmb/toolbench', 0.5517364740371704, 'llm', 1), ('bigscience-workshop/biomedical', 0.5494688153266907, 'data', 0), ('lianjiatech/belle', 0.5487149953842163, 'llm', 0), ('srush/minichain', 0.542423665523529, 'llm', 0), ('huggingface/evaluate', 0.5417475700378418, 'ml', 1), ('yueyu1030/attrprompt', 0.5361191034317017, 'llm', 0), ('fasteval/fasteval', 0.5358782410621643, 'llm', 2), ('mit-han-lab/streaming-llm', 0.5352895259857178, 'llm', 0), ('ofa-sys/ofa', 0.5323944091796875, 'llm', 0), ('salesforce/blip', 0.5254507064819336, 'diffusion', 0), ('microsoft/lora', 0.5240524411201477, 'llm', 1), ('ai21labs/in-context-ralm', 0.5203155875205994, 'llm', 1), ('alibaba/easynlp', 0.520174503326416, 'nlp', 0), ('explosion/spacy-models', 0.5173574686050415, 'nlp', 0), ('yizhongw/self-instruct', 0.513164758682251, 'llm', 1), ('young-geng/easylm', 0.5126963257789612, 'llm', 2), ('jina-ai/finetuner', 0.5112559199333191, 'ml', 0), ('conceptofmind/toolformer', 0.5054224729537964, 'llm', 1), ('next-gpt/next-gpt', 0.5040009617805481, 'llm', 0)]
103
2
null
29.67
484
372
41
0
1
1
1
484
1,016
90
2.1
57
486
util
https://github.com/pydata/xarray
[]
null
[]
[]
null
null
null
pydata/xarray
xarray
3,318
996
109
Python
https://xarray.dev
N-D labeled arrays and datasets in Python
pydata
2024-01-13
2013-09-30
539
6.154213
https://avatars.githubusercontent.com/u/1284191?v=4
N-D labeled arrays and datasets in Python
['dask', 'netcdf', 'numpy', 'pandas', 'xarray']
['dask', 'netcdf', 'numpy', 'pandas', 'xarray']
2024-01-08
[('holoviz/hvplot', 0.5328260064125061, 'pandas', 0), ('zarr-developers/zarr-python', 0.5044090151786804, 'data', 0)]
465
6
null
9.1
425
283
125
0
15
9
15
425
1,167
90
2.7
57
1,298
ml-ops
https://github.com/determined-ai/determined
[]
null
[]
[]
null
null
null
determined-ai/determined
determined
2,696
338
75
Go
https://determined.ai
Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning, experiment tracking, and resource management. Works with PyTorch and TensorFlow.
determined-ai
2024-01-13
2020-04-07
199
13.547739
https://avatars.githubusercontent.com/u/26636771?v=4
Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning, experiment tracking, and resource management. Works with PyTorch and TensorFlow.
['data-science', 'deep-learning', 'distributed-training', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'keras', 'kubernetes', 'machine-learning', 'ml-infrastructure', 'ml-platform', 'mlops', 'pytorch', 'tensorflow']
['data-science', 'deep-learning', 'distributed-training', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'keras', 'kubernetes', 'machine-learning', 'ml-infrastructure', 'ml-platform', 'mlops', 'pytorch', 'tensorflow']
2024-01-12
[('tensorflow/tensorflow', 0.7361361384391785, 'ml-dl', 3), ('horovod/horovod', 0.6985735297203064, 'ml-ops', 5), ('microsoft/deepspeed', 0.6881573796272278, 'ml-dl', 3), ('mlflow/mlflow', 0.6798075437545776, 'ml-ops', 1), ('wandb/client', 0.6777682900428772, 'ml', 11), ('polyaxon/polyaxon', 0.6687636971473694, 'ml-ops', 9), ('microsoft/nni', 0.6512665748596191, 'ml', 8), ('microsoft/onnxruntime', 0.643320620059967, 'ml', 4), ('rasbt/machine-learning-book', 0.6383908987045288, 'study', 3), ('ray-project/ray', 0.6333746314048767, 'ml-ops', 7), ('intel/intel-extension-for-pytorch', 0.6318769454956055, 'perf', 3), ('google/vizier', 0.6237358450889587, 'ml', 4), ('optuna/optuna', 0.6228476166725159, 'ml', 2), ('ashleve/lightning-hydra-template', 0.6221935153007507, 'util', 3), ('aimhubio/aim', 0.614514172077179, 'ml-ops', 5), ('pytorch/ignite', 0.6104621291160583, 'ml-dl', 3), ('uber/petastorm', 0.6062763929367065, 'data', 4), ('paddlepaddle/paddle', 0.6040452122688293, 'ml-dl', 3), ('automl/auto-sklearn', 0.6021798253059387, 'ml', 3), ('huggingface/datasets', 0.599459171295166, 'nlp', 4), ('merantix-momentum/squirrel-core', 0.5961888432502747, 'ml', 5), ('aws/sagemaker-python-sdk', 0.5937497019767761, 'ml', 3), ('kubeflow-kale/kale', 0.5921743512153625, 'ml-ops', 1), ('onnx/onnx', 0.5901457667350769, 'ml', 5), ('tensorflow/tensor2tensor', 0.5887267589569092, 'ml', 2), ('kubeflow/katib', 0.5883219242095947, 'ml', 0), ('tlkh/tf-metal-experiments', 0.5877756476402283, 'perf', 2), ('googlecloudplatform/vertex-ai-samples', 0.5860880613327026, 'ml', 2), ('adap/flower', 0.5839700698852539, 'ml-ops', 4), ('ageron/handson-ml2', 0.5803431868553162, 'ml', 0), ('firmai/industry-machine-learning', 0.574253261089325, 'study', 2), ('alpa-projects/alpa', 0.571927547454834, 'ml-dl', 3), ('microsoft/flaml', 0.5710462927818298, 'ml', 4), ('nvidia/deeplearningexamples', 0.5695421099662781, 'ml-dl', 3), ('eleutherai/oslo', 0.56780606508255, 'ml', 0), ('epistasislab/tpot', 0.5670955777168274, 'ml', 3), ('tensorlayer/tensorlayer', 0.5628274083137512, 'ml-rl', 2), ('deepchecks/deepchecks', 0.5619574189186096, 'data', 5), ('ddbourgin/numpy-ml', 0.5607567429542542, 'ml', 1), ('nevronai/metisfl', 0.5598009824752808, 'ml', 2), ('uber/fiber', 0.5588817596435547, 'data', 1), ('keras-rl/keras-rl', 0.5585846900939941, 'ml-rl', 3), ('nccr-itmo/fedot', 0.5581679940223694, 'ml-ops', 2), ('nvidia/apex', 0.5580594539642334, 'ml-dl', 0), ('huggingface/transformers', 0.5561276078224182, 'nlp', 4), ('keras-team/keras', 0.5539653301239014, 'ml-dl', 5), ('pytorchlightning/pytorch-lightning', 0.55375736951828, 'ml-dl', 4), ('gradio-app/gradio', 0.5533111095428467, 'viz', 3), ('mosaicml/composer', 0.5523366332054138, 'ml-dl', 3), ('lutzroeder/netron', 0.5507928729057312, 'ml', 5), ('aiqc/aiqc', 0.5507001280784607, 'ml-ops', 0), ('bigscience-workshop/petals', 0.5506836771965027, 'data', 3), ('apache/incubator-mxnet', 0.5505608320236206, 'ml-dl', 0), ('neuralmagic/deepsparse', 0.5497815608978271, 'nlp', 0), ('google/trax', 0.5475213527679443, 'ml-dl', 2), ('google/tf-quant-finance', 0.5471197366714478, 'finance', 1), ('unity-technologies/ml-agents', 0.5427035689353943, 'ml-rl', 2), ('skorch-dev/skorch', 0.5415751338005066, 'ml-dl', 2), ('titanml/takeoff', 0.5414642691612244, 'llm', 0), ('hyperopt/hyperopt', 0.5405532121658325, 'ml', 0), ('denys88/rl_games', 0.5401771664619446, 'ml-rl', 2), ('kubeflow/pipelines', 0.5401206016540527, 'ml-ops', 4), ('salesforce/warp-drive', 0.5399549603462219, 'ml-rl', 2), ('bentoml/bentoml', 0.5386102795600891, 'ml-ops', 5), ('microsoft/jarvis', 0.5367454290390015, 'llm', 2), ('pytorch/rl', 0.5359745025634766, 'ml-rl', 2), ('huggingface/evaluate', 0.5355773568153381, 'ml', 1), ('koaning/human-learn', 0.5347359776496887, 'data', 1), ('karpathy/micrograd', 0.5347241163253784, 'study', 0), ('intel/scikit-learn-intelex', 0.534125566482544, 'perf', 1), ('tigerlab-ai/tiger', 0.5315389633178711, 'llm', 0), ('deepmind/dm_control', 0.5311621427536011, 'ml-rl', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5306956768035889, 'study', 2), ('activeloopai/deeplake', 0.5291877388954163, 'ml-ops', 6), ('pycaret/pycaret', 0.5283660888671875, 'ml', 2), ('skypilot-org/skypilot', 0.5281897783279419, 'llm', 7), ('dask/dask-ml', 0.5248952507972717, 'ml', 0), ('ml-tooling/opyrator', 0.5243386626243591, 'viz', 1), ('plasma-umass/scalene', 0.524320125579834, 'profiling', 0), ('dmlc/xgboost', 0.5239108800888062, 'ml', 1), ('catboost/catboost', 0.5235607028007507, 'ml', 2), ('kubeflow/fairing', 0.5216547846794128, 'ml-ops', 0), ('google/gin-config', 0.520888090133667, 'util', 1), ('nyandwi/modernconvnets', 0.5204993486404419, 'ml-dl', 2), ('doccano/doccano', 0.5204253196716309, 'nlp', 1), ('ray-project/tune-sklearn', 0.5187373161315918, 'ml', 1), ('mlc-ai/mlc-llm', 0.5185369253158569, 'llm', 0), ('polyaxon/datatile', 0.516498863697052, 'pandas', 4), ('csinva/imodels', 0.5160141587257385, 'ml', 2), ('eventual-inc/daft', 0.5144329071044922, 'pandas', 3), ('nebuly-ai/nebullvm', 0.5143813490867615, 'perf', 0), ('mrdbourke/m1-machine-learning-test', 0.5143718719482422, 'ml', 2), ('jina-ai/jina', 0.5140607953071594, 'ml', 4), ('explosion/thinc', 0.5116865038871765, 'ml-dl', 4), ('mrdbourke/pytorch-deep-learning', 0.5115607380867004, 'study', 3), ('districtdatalabs/yellowbrick', 0.5109866857528687, 'ml', 1), ('rasbt/deeplearning-models', 0.5105359554290771, 'ml-dl', 0), ('truera/trulens', 0.510200023651123, 'llm', 1), ('tensorflow/addons', 0.5096710920333862, 'ml', 3), ('argilla-io/argilla', 0.5085978507995605, 'nlp', 2), ('ludwig-ai/ludwig', 0.5082186460494995, 'ml-ops', 4), ('iterative/dvc', 0.5081852674484253, 'ml-ops', 2), ('osgeo/grass', 0.5073267817497253, 'gis', 2), ('ggerganov/ggml', 0.5071011185646057, 'ml', 1), ('kevinmusgrave/pytorch-metric-learning', 0.5060969591140747, 'ml', 3), ('bentoml/openllm', 0.5048798322677612, 'ml-ops', 1), ('pytorch/glow', 0.5047574639320374, 'ml', 0), ('zenml-io/zenml', 0.5032854676246643, 'ml-ops', 6), ('iryna-kondr/scikit-llm', 0.5017955303192139, 'llm', 2), ('d2l-ai/d2l-en', 0.5009527802467346, 'study', 7)]
108
2
null
44.23
661
550
46
0
27
131
27
660
1,066
90
1.6
57
1,570
llm
https://github.com/tairov/llama2.mojo
['mojo']
null
[]
[]
null
null
null
tairov/llama2.mojo
llama2.mojo
1,773
111
23
Python
https://www.modular.com/blog/community-spotlight-how-i-built-llama2-by-aydyn-tairov
Inference Llama 2 in one file of pure 🔥
tairov
2024-01-12
2023-09-10
20
87.401408
null
Inference Llama 2 in one file of pure 🔥
['inference', 'llama', 'llama2', 'modular', 'mojo', 'parallelize', 'performance', 'simd', 'tensor', 'transformer-architecture', 'vectorization']
['inference', 'llama', 'llama2', 'modular', 'mojo', 'parallelize', 'performance', 'simd', 'tensor', 'transformer-architecture', 'vectorization']
2023-12-06
[('karpathy/llama2.c', 0.8035979270935059, 'llm', 1), ('facebookresearch/llama', 0.7085148692131042, 'llm', 1), ('facebookresearch/llama-recipes', 0.6153814792633057, 'llm', 1), ('microsoft/llama-2-onnx', 0.6118836998939514, 'llm', 1), ('facebookresearch/codellama', 0.599827229976654, 'llm', 1), ('vllm-project/vllm', 0.5809930562973022, 'llm', 2), ('mshumer/gpt-llm-trainer', 0.5809900760650635, 'llm', 0), ('bentoml/openllm', 0.5740443468093872, 'ml-ops', 2), ('predibase/lorax', 0.568372368812561, 'llm', 1), ('bigscience-workshop/petals', 0.537801206111908, 'data', 2), ('jzhang38/tinyllama', 0.5322071313858032, 'llm', 1), ('bobazooba/xllm', 0.5215964913368225, 'llm', 2), ('titanml/takeoff', 0.5167184472084045, 'llm', 2), ('openlm-research/open_llama', 0.5117022395133972, 'llm', 1), ('run-llama/llama-lab', 0.5075839757919312, 'llm', 1), ('tloen/alpaca-lora', 0.5015569925308228, 'llm', 1), ('lightning-ai/lit-llama', 0.501312792301178, 'llm', 1)]
12
4
null
1.98
31
16
4
1
0
0
0
31
83
90
2.7
57
430
study
https://github.com/jakevdp/pythondatasciencehandbook
[]
null
[]
[]
null
null
null
jakevdp/pythondatasciencehandbook
PythonDataScienceHandbook
40,567
17,512
1,772
Jupyter Notebook
http://jakevdp.github.io/PythonDataScienceHandbook
Python Data Science Handbook: full text in Jupyter Notebooks
jakevdp
2024-01-14
2016-08-10
389
104.056064
null
Python Data Science Handbook: full text in Jupyter Notebooks
['jupyter-notebook', 'matplotlib', 'numpy', 'pandas', 'scikit-learn']
['jupyter-notebook', 'matplotlib', 'numpy', 'pandas', 'scikit-learn']
2023-05-05
[('wesm/pydata-book', 0.7202770709991455, 'study', 0), ('jupyter/nbformat', 0.6972000598907471, 'jupyter', 0), ('ageron/handson-ml2', 0.6813152432441711, 'ml', 0), ('tkrabel/bamboolib', 0.6585032939910889, 'pandas', 2), ('fchollet/deep-learning-with-python-notebooks', 0.6521231532096863, 'study', 0), ('mwaskom/seaborn', 0.6520794630050659, 'viz', 2), ('quantopian/qgrid', 0.6440531611442566, 'jupyter', 0), ('man-group/dtale', 0.6342079639434814, 'viz', 2), ('holoviz/panel', 0.6207575798034668, 'viz', 1), ('cohere-ai/notebooks', 0.6190292835235596, 'llm', 0), ('vizzuhq/ipyvizzu', 0.6107296943664551, 'jupyter', 1), ('lux-org/lux', 0.5983377695083618, 'viz', 1), ('jupyter/nbconvert', 0.5953406095504761, 'jupyter', 0), ('ipython/ipyparallel', 0.5817736983299255, 'perf', 0), ('ipython/ipykernel', 0.5796281099319458, 'util', 1), ('jupyterlab/jupyterlab', 0.5746160745620728, 'jupyter', 0), ('numpy/numpy', 0.5711981654167175, 'math', 1), ('matplotlib/matplotlib', 0.5707853436470032, 'viz', 1), ('jupyter-widgets/ipywidgets', 0.5679361820220947, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5677738189697266, 'jupyter', 1), ('jupyter/notebook', 0.5674871206283569, 'jupyter', 1), ('eleutherai/pyfra', 0.5671376585960388, 'ml', 0), ('holoviz/hvplot', 0.5669666528701782, 'pandas', 0), ('opengeos/leafmap', 0.5667238235473633, 'gis', 1), ('altair-viz/altair', 0.5655259490013123, 'viz', 0), ('pyqtgraph/pyqtgraph', 0.5645138621330261, 'viz', 1), ('kanaries/pygwalker', 0.5599751472473145, 'pandas', 2), ('aws/graph-notebook', 0.559874951839447, 'jupyter', 1), ('residentmario/geoplot', 0.5592259168624878, 'gis', 1), ('holoviz/holoviz', 0.5567380785942078, 'viz', 0), ('koaning/drawdata', 0.5549478530883789, 'jupyter', 0), ('jupyterlab/jupyterlab-desktop', 0.5509034395217896, 'jupyter', 1), ('mynameisfiber/high_performance_python_2e', 0.5477574467658997, 'study', 0), ('mito-ds/monorepo', 0.5431113243103027, 'jupyter', 1), ('vaexio/vaex', 0.5422857999801636, 'perf', 0), ('plotly/plotly.py', 0.5420818328857422, 'viz', 1), ('blaze/blaze', 0.5417280793190002, 'pandas', 0), ('mwouts/jupytext', 0.5404434204101562, 'jupyter', 1), ('enthought/mayavi', 0.5390788912773132, 'viz', 0), ('python/cpython', 0.5353503823280334, 'util', 0), ('goldmansachs/gs-quant', 0.533323347568512, 'finance', 0), ('realpython/python-guide', 0.5322774648666382, 'study', 0), ('geopandas/geopandas', 0.531819760799408, 'gis', 1), ('contextlab/hypertools', 0.5308850407600403, 'ml', 0), ('scipy/scipy', 0.5299432873725891, 'math', 0), ('scitools/cartopy', 0.5279793739318848, 'gis', 1), ('bloomberg/ipydatagrid', 0.5277616381645203, 'jupyter', 0), ('jupyter/nbdime', 0.5264706611633301, 'jupyter', 1), ('bokeh/bokeh', 0.5242840051651001, 'viz', 0), ('pandas-dev/pandas', 0.5242447853088379, 'pandas', 1), ('marcomusy/vedo', 0.5232061743736267, 'viz', 1), ('has2k1/plotnine', 0.5220550894737244, 'viz', 0), ('roban/cosmolopy', 0.5194147229194641, 'sim', 0), ('plotly/dash', 0.5179597735404968, 'viz', 0), ('voila-dashboards/voila', 0.5165765881538391, 'jupyter', 1), ('krzjoa/awesome-python-data-science', 0.5150753259658813, 'study', 1), ('jupyter/nbgrader', 0.5142012238502502, 'jupyter', 1), ('amaargiru/pyroad', 0.5113055109977722, 'study', 0), ('cmudig/autoprofiler', 0.5069370865821838, 'jupyter', 1), ('mementum/bta-lib', 0.5062484741210938, 'finance', 0), ('rasbt/mlxtend', 0.5061179399490356, 'ml', 0), ('cuemacro/chartpy', 0.5052139759063721, 'viz', 1), ('scitools/iris', 0.5051771402359009, 'gis', 0), ('jazzband/tablib', 0.5034573078155518, 'data', 0), ('scikit-learn-contrib/sklearn-pandas', 0.5033451914787292, 'pandas', 0), ('jupyter-widgets/ipyleaflet', 0.5016043186187744, 'gis', 0)]
17
7
null
0.02
8
1
90
8
0
0
0
8
3
90
0.4
56
128
ml
https://github.com/microsoft/nni
[]
null
[]
[]
null
null
null
microsoft/nni
nni
13,495
1,829
284
Python
https://nni.readthedocs.io
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
microsoft
2024-01-13
2018-06-01
295
45.657322
https://avatars.githubusercontent.com/u/6154722?v=4
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
['automated-machine-learning', 'automl', 'bayesian-optimization', 'data-science', 'deep-learning', 'deep-neural-network', 'distributed', 'feature-engineering', 'hyperparameter-optimization', 'hyperparameter-tuning', 'machine-learning', 'machine-learning-algorithms', 'mlops', 'model-compression', 'nas', 'neural-architecture-search', 'neural-network', 'pytorch', 'tensorflow']
['automated-machine-learning', 'automl', 'bayesian-optimization', 'data-science', 'deep-learning', 'deep-neural-network', 'distributed', 'feature-engineering', 'hyperparameter-optimization', 'hyperparameter-tuning', 'machine-learning', 'machine-learning-algorithms', 'mlops', 'model-compression', 'nas', 'neural-architecture-search', 'neural-network', 'pytorch', 'tensorflow']
2023-10-26
[('keras-team/autokeras', 0.8086925148963928, 'ml-dl', 6), ('microsoft/flaml', 0.7865293025970459, 'ml', 6), ('automl/auto-sklearn', 0.7624291777610779, 'ml', 5), ('awslabs/autogluon', 0.7000966668128967, 'ml', 7), ('nccr-itmo/fedot', 0.6999444365501404, 'ml-ops', 4), ('mlflow/mlflow', 0.6970524191856384, 'ml-ops', 1), ('mljar/mljar-supervised', 0.6952623724937439, 'ml', 7), ('polyaxon/polyaxon', 0.6834843754768372, 'ml-ops', 7), ('winedarksea/autots', 0.6789240837097168, 'time-series', 4), ('featurelabs/featuretools', 0.6769810914993286, 'ml', 5), ('tensorflow/tensorflow', 0.6535964608192444, 'ml-dl', 5), ('determined-ai/determined', 0.6512665748596191, 'ml-ops', 8), ('epistasislab/tpot', 0.6485167741775513, 'ml', 6), ('alpa-projects/alpa', 0.6484193205833435, 'ml-dl', 2), ('onnx/onnx', 0.6350607872009277, 'ml', 5), ('huggingface/datasets', 0.6315370798110962, 'nlp', 4), ('rafiqhasan/auto-tensorflow', 0.6200402975082397, 'ml-dl', 3), ('xplainable/xplainable', 0.6121291518211365, 'ml-interpretability', 3), ('ray-project/ray', 0.6101014018058777, 'ml-ops', 8), ('rasbt/machine-learning-book', 0.603572428226471, 'study', 3), ('karpathy/micrograd', 0.6010633111000061, 'study', 0), ('huggingface/transformers', 0.595805287361145, 'nlp', 4), ('google/vizier', 0.5949028134346008, 'ml', 5), ('mosaicml/composer', 0.5946601629257202, 'ml-dl', 4), ('apple/coremltools', 0.5904099345207214, 'ml', 3), ('wandb/client', 0.5891596674919128, 'ml', 8), ('patchy631/machine-learning', 0.5835422873497009, 'ml', 0), ('ml-tooling/opyrator', 0.5824997425079346, 'viz', 1), ('districtdatalabs/yellowbrick', 0.5821363925933838, 'ml', 1), ('bentoml/bentoml', 0.5809151530265808, 'ml-ops', 3), ('ray-project/tune-sklearn', 0.580021321773529, 'ml', 3), ('shankarpandala/lazypredict', 0.5795509815216064, 'ml', 2), ('zenml-io/zenml', 0.5792359113693237, 'ml-ops', 7), ('nvidia/deeplearningexamples', 0.5766809582710266, 'ml-dl', 3), ('alirezadir/machine-learning-interview-enlightener', 0.5761905312538147, 'study', 3), ('huggingface/autotrain-advanced', 0.5753588080406189, 'ml', 2), ('doccano/doccano', 0.573647141456604, 'nlp', 1), ('explosion/thinc', 0.5728657841682434, 'ml-dl', 4), ('microsoft/deepspeed', 0.5704576373100281, 'ml-dl', 3), ('feast-dev/feast', 0.5683546662330627, 'ml-ops', 3), ('googlecloudplatform/vertex-ai-samples', 0.5683177709579468, 'ml', 2), ('neuralmagic/sparseml', 0.565841555595398, 'ml-dl', 3), ('ludwig-ai/ludwig', 0.5615371465682983, 'ml-ops', 5), ('selfexplainml/piml-toolbox', 0.5612987279891968, 'ml-interpretability', 0), ('tensorflow/tensor2tensor', 0.5608126521110535, 'ml', 2), ('tigerlab-ai/tiger', 0.5559183359146118, 'llm', 0), ('aws/sagemaker-python-sdk', 0.5550652146339417, 'ml', 3), ('titanml/takeoff', 0.5543978214263916, 'llm', 0), ('unionai-oss/unionml', 0.5530210137367249, 'ml-ops', 2), ('merantix-momentum/squirrel-core', 0.5516149401664734, 'ml', 6), ('ddbourgin/numpy-ml', 0.5512529015541077, 'ml', 1), ('ourownstory/neural_prophet', 0.5511186718940735, 'ml', 4), ('kubeflow/fairing', 0.5502640008926392, 'ml-ops', 0), ('unity-technologies/ml-agents', 0.5489663481712341, 'ml-rl', 2), ('gradio-app/gradio', 0.5471741557121277, 'viz', 3), ('huggingface/evaluate', 0.5446441173553467, 'ml', 1), ('ashleve/lightning-hydra-template', 0.5410720109939575, 'util', 3), ('microsoft/onnxruntime', 0.5409425497055054, 'ml', 4), ('ggerganov/ggml', 0.5407408475875854, 'ml', 1), ('deepchecks/deepchecks', 0.5397449731826782, 'data', 5), ('kubeflow/pipelines', 0.5366452932357788, 'ml-ops', 3), ('activeloopai/deeplake', 0.5356760025024414, 'ml-ops', 6), ('teamhg-memex/eli5', 0.5334489941596985, 'ml', 2), ('allegroai/clearml', 0.5334336757659912, 'ml-ops', 3), ('pan-ml/panml', 0.532913088798523, 'llm', 1), ('lucidrains/toolformer-pytorch', 0.531758725643158, 'llm', 1), ('sktime/sktime', 0.5316794514656067, 'time-series', 2), ('lutzroeder/netron', 0.5304214954376221, 'ml', 5), ('firmai/industry-machine-learning', 0.528578519821167, 'study', 2), ('qdrant/qdrant', 0.526932418346405, 'data', 3), ('mlc-ai/mlc-llm', 0.5266501307487488, 'llm', 0), ('csinva/imodels', 0.524517297744751, 'ml', 2), ('google/pyglove', 0.5230394005775452, 'util', 2), ('tensorlayer/tensorlayer', 0.5219287872314453, 'ml-rl', 3), ('pytorchlightning/pytorch-lightning', 0.52174973487854, 'ml-dl', 4), ('keras-team/keras', 0.5200637578964233, 'ml-dl', 5), ('google/trax', 0.5194593071937561, 'ml-dl', 2), ('deepmind/dm-haiku', 0.5166778564453125, 'ml-dl', 2), ('polyaxon/datatile', 0.5166768431663513, 'pandas', 4), ('microsoft/olive', 0.5166267156600952, 'ml', 0), ('koaning/human-learn', 0.5157192349433899, 'data', 1), ('eugeneyan/testing-ml', 0.5123538374900818, 'testing', 1), ('whylabs/whylogs', 0.5119295120239258, 'util', 3), ('intel/intel-extension-for-pytorch', 0.5098321437835693, 'perf', 4), ('hegelai/prompttools', 0.5096408128738403, 'llm', 2), ('rasahq/rasa', 0.5092196464538574, 'llm', 1), ('huggingface/exporters', 0.5089559555053711, 'ml', 4), ('optuna/optuna', 0.5085669159889221, 'ml', 3), ('uber/petastorm', 0.508219301700592, 'data', 4), ('oegedijk/explainerdashboard', 0.507343053817749, 'ml-interpretability', 0), ('google/temporian', 0.5072931051254272, 'time-series', 1), ('fmind/mlops-python-package', 0.5072845816612244, 'template', 1), ('oml-team/open-metric-learning', 0.5069662928581238, 'ml', 3), ('towhee-io/towhee', 0.5067926049232483, 'ml-ops', 1), ('kubeflow/katib', 0.5062976479530334, 'ml', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5050148367881775, 'ml', 3), ('mindsdb/mindsdb', 0.5044615864753723, 'data', 1), ('salesforce/merlion', 0.503190279006958, 'time-series', 2), ('intel/scikit-learn-intelex', 0.5030348300933838, 'perf', 2), ('skops-dev/skops', 0.5024822950363159, 'ml-ops', 2), ('horovod/horovod', 0.5024771094322205, 'ml-ops', 4), ('aiqc/aiqc', 0.5022141337394714, 'ml-ops', 0), ('google-research/language', 0.5012085437774658, 'nlp', 1), ('pycaret/pycaret', 0.5001939535140991, 'ml', 2)]
192
3
null
2.71
46
7
68
3
2
9
2
46
29
90
0.6
56
106
nlp
https://github.com/nltk/nltk
[]
null
[]
[]
null
null
null
nltk/nltk
nltk
12,688
2,824
468
Python
https://www.nltk.org
NLTK Source
nltk
2024-01-13
2009-09-07
751
16.891594
https://avatars.githubusercontent.com/u/124114?v=4
NLTK Source
['machine-learning', 'natural-language-processing', 'nlp', 'nltk']
['machine-learning', 'natural-language-processing', 'nlp', 'nltk']
2023-12-24
[('allenai/allennlp', 0.6935926675796509, 'nlp', 2), ('flairnlp/flair', 0.6725092530250549, 'nlp', 3), ('explosion/spacy-models', 0.6720556020736694, 'nlp', 3), ('explosion/spacy', 0.6628869771957397, 'nlp', 3), ('sloria/textblob', 0.6578431129455566, 'nlp', 3), ('lexpredict/lexpredict-lexnlp', 0.6562715172767639, 'nlp', 1), ('rasahq/rasa', 0.6307575106620789, 'llm', 3), ('keras-team/keras-nlp', 0.6287647485733032, 'nlp', 3), ('alibaba/easynlp', 0.6162857413291931, 'nlp', 2), ('explosion/spacy-llm', 0.6157956123352051, 'llm', 3), ('norskregnesentral/skweak', 0.608248770236969, 'nlp', 1), ('graykode/nlp-tutorial', 0.5764945149421692, 'study', 2), ('makcedward/nlpaug', 0.5745749473571777, 'nlp', 3), ('bigscience-workshop/promptsource', 0.5687624216079712, 'nlp', 3), ('argilla-io/argilla', 0.5657547116279602, 'nlp', 3), ('paddlepaddle/paddlenlp', 0.5588723421096802, 'llm', 1), ('jbesomi/texthero', 0.5517333149909973, 'nlp', 2), ('huggingface/transformers', 0.5491923689842224, 'nlp', 3), ('vi3k6i5/flashtext', 0.5405317544937134, 'data', 1), ('infinitylogesh/mutate', 0.5343964695930481, 'nlp', 0), ('explosion/spacy-streamlit', 0.5315085053443909, 'nlp', 3), ('databrickslabs/dolly', 0.5305935144424438, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5303866267204285, 'nlp', 0), ('thilinarajapakse/simpletransformers', 0.5254354476928711, 'nlp', 0), ('yueyu1030/attrprompt', 0.5240321755409241, 'llm', 1), ('doccano/doccano', 0.5226835608482361, 'nlp', 2), ('mooler0410/llmspracticalguide', 0.5214924812316895, 'study', 2), ('nvidia/nemo', 0.5199841260910034, 'nlp', 1), ('google-research/language', 0.5192822217941284, 'nlp', 2), ('killianlucas/open-interpreter', 0.5141381621360779, 'llm', 0), ('llmware-ai/llmware', 0.5111628770828247, 'llm', 2), ('huggingface/text-generation-inference', 0.5107032060623169, 'llm', 1), ('franck-dernoncourt/neuroner', 0.5021610856056213, 'nlp', 2), ('rasbt/machine-learning-book', 0.5020496249198914, 'study', 1), ('deepset-ai/farm', 0.5018087029457092, 'nlp', 1), ('explosion/thinc', 0.5009826421737671, 'ml-dl', 3)]
452
6
null
1.58
82
46
175
1
0
3
3
82
125
90
1.5
56
1,336
llm
https://github.com/blinkdl/rwkv-lm
[]
null
[]
[]
null
null
null
blinkdl/rwkv-lm
RWKV-LM
10,652
753
129
Python
null
RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
blinkdl
2024-01-14
2021-08-08
129
82.39116
null
RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
['attention-mechanism', 'chatgpt', 'deep-learning', 'gpt', 'gpt-2', 'gpt-3', 'language-model', 'linear-attention', 'lstm', 'pytorch', 'rnn', 'rwkv', 'transformer', 'transformers']
['attention-mechanism', 'chatgpt', 'deep-learning', 'gpt', 'gpt-2', 'gpt-3', 'language-model', 'linear-attention', 'lstm', 'pytorch', 'rnn', 'rwkv', 'transformer', 'transformers']
2023-12-28
[('blinkdl/chatrwkv', 0.6400032043457031, 'llm', 5), ('bytedance/lightseq', 0.5059091448783875, 'nlp', 2)]
5
1
null
3.77
34
13
30
1
1
2
1
34
48
90
1.4
56
366
ml
https://github.com/megvii-basedetection/yolox
[]
null
[]
[]
null
null
null
megvii-basedetection/yolox
YOLOX
8,778
2,096
74
Python
null
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
megvii-basedetection
2024-01-12
2021-07-17
132
66.28479
https://avatars.githubusercontent.com/u/67775453?v=4
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
['deep-learning', 'megengine', 'ncnn', 'object-detection', 'onnx', 'openvino', 'pytorch', 'tensorrt', 'yolo', 'yolov3', 'yolox']
['deep-learning', 'megengine', 'ncnn', 'object-detection', 'onnx', 'openvino', 'pytorch', 'tensorrt', 'yolo', 'yolov3', 'yolox']
2023-05-23
[('microsoft/onnxruntime', 0.5817757844924927, 'ml', 3), ('deci-ai/super-gradients', 0.5785552859306335, 'ml-dl', 3), ('open-mmlab/mmdetection', 0.545394778251648, 'ml', 3), ('horovod/horovod', 0.5106202363967896, 'ml-ops', 2), ('neuralmagic/deepsparse', 0.5051378607749939, 'nlp', 2), ('roboflow/supervision', 0.5012127161026001, 'ml', 4)]
74
5
null
0.15
49
13
30
8
0
2
2
49
46
90
0.9
56
456
perf
https://github.com/nebuly-ai/nebullvm
[]
null
[]
[]
null
null
null
nebuly-ai/nebullvm
nebuly
8,331
662
96
Python
https://www.nebuly.com/
The user analytics platform for LLMs
nebuly-ai
2024-01-14
2022-02-12
102
81.334728
https://avatars.githubusercontent.com/u/83510798?v=4
The user analytics platform for LLMs
['ai', 'analytics', 'artificial-intelligence', 'deeplearning', 'large-language-models', 'llm']
['ai', 'analytics', 'artificial-intelligence', 'deeplearning', 'large-language-models', 'llm']
2023-10-28
[('pathwaycom/llm-app', 0.6677808165550232, 'llm', 1), ('microsoft/semantic-kernel', 0.6294217705726624, 'llm', 3), ('deepset-ai/haystack', 0.6285997033119202, 'llm', 2), ('tigerlab-ai/tiger', 0.6134838461875916, 'llm', 2), ('mlc-ai/mlc-llm', 0.6126720309257507, 'llm', 1), ('nomic-ai/gpt4all', 0.6061845421791077, 'llm', 0), ('argilla-io/argilla', 0.6039616465568542, 'nlp', 2), ('microsoft/promptflow', 0.5947597622871399, 'llm', 2), ('llmware-ai/llmware', 0.5862234830856323, 'llm', 2), ('microsoft/lmops', 0.5789636373519897, 'llm', 1), ('hegelai/prompttools', 0.5767601132392883, 'llm', 1), ('bigscience-workshop/petals', 0.5763605237007141, 'data', 1), ('night-chen/toolqa', 0.5734456181526184, 'llm', 1), ('intel/intel-extension-for-transformers', 0.5715976357460022, 'perf', 0), ('activeloopai/deeplake', 0.5655378103256226, 'ml-ops', 3), ('iryna-kondr/scikit-llm', 0.5629363059997559, 'llm', 1), ('lancedb/lancedb', 0.5628674030303955, 'data', 0), ('young-geng/easylm', 0.5627244114875793, 'llm', 1), ('microsoft/jarvis', 0.5589395761489868, 'llm', 0), ('paddlepaddle/paddlenlp', 0.556330144405365, 'llm', 1), ('vllm-project/vllm', 0.5560014247894287, 'llm', 1), ('microsoft/autogen', 0.554498553276062, 'llm', 0), ('embedchain/embedchain', 0.5530699491500854, 'llm', 2), ('aimhubio/aim', 0.5485852360725403, 'ml-ops', 1), ('aiwaves-cn/agents', 0.5476635098457336, 'nlp', 1), ('mooler0410/llmspracticalguide', 0.5461376905441284, 'study', 1), ('salesforce/codet5', 0.5400938987731934, 'nlp', 1), ('microsoft/torchscale', 0.5394699573516846, 'llm', 0), ('salesforce/xgen', 0.5392612814903259, 'llm', 2), ('ray-project/ray-llm', 0.5362703800201416, 'llm', 2), ('alphasecio/langchain-examples', 0.5353783369064331, 'llm', 1), ('cheshire-cat-ai/core', 0.5341480374336243, 'llm', 2), ('bobazooba/xllm', 0.5337145328521729, 'llm', 2), ('agenta-ai/agenta', 0.5309828519821167, 'llm', 2), ('explosion/spacy-llm', 0.5306288003921509, 'llm', 2), ('bentoml/openllm', 0.5305408835411072, 'ml-ops', 2), ('mindsdb/mindsdb', 0.529395341873169, 'data', 3), ('titanml/takeoff', 0.5286065936088562, 'llm', 1), ('chatarena/chatarena', 0.5283238887786865, 'llm', 3), ('eleutherai/the-pile', 0.528251588344574, 'data', 1), ('dylanhogg/llmgraph', 0.527693510055542, 'ml', 1), ('ludwig-ai/ludwig', 0.5271685123443604, 'ml-ops', 2), ('confident-ai/deepeval', 0.5270206928253174, 'testing', 1), ('lm-sys/fastchat', 0.5269201993942261, 'llm', 0), ('jina-ai/thinkgpt', 0.5268137454986572, 'llm', 0), ('h2oai/h2o-llmstudio', 0.5265906453132629, 'llm', 2), ('alpha-vllm/llama2-accessory', 0.5258677005767822, 'llm', 0), ('sweepai/sweep', 0.5257266163825989, 'llm', 2), ('eugeneyan/open-llms', 0.5213199257850647, 'study', 2), ('databrickslabs/dolly', 0.5198688507080078, 'llm', 0), ('mlflow/mlflow', 0.5198503136634827, 'ml-ops', 1), ('jerryjliu/llama_index', 0.518968403339386, 'llm', 1), ('determined-ai/determined', 0.5143813490867615, 'ml-ops', 0), ('truera/trulens', 0.5128412842750549, 'llm', 1), ('shishirpatil/gorilla', 0.512731671333313, 'llm', 1), ('salesforce/logai', 0.5123262405395508, 'util', 1), ('googlecloudplatform/vertex-ai-samples', 0.5115224719047546, 'ml', 1), ('superduperdb/superduperdb', 0.5111740827560425, 'data', 1), ('chancefocus/pixiu', 0.5107274651527405, 'finance', 2), ('operand/agency', 0.5101591348648071, 'llm', 3), ('rasahq/rasa', 0.5099035501480103, 'llm', 0), ('arize-ai/phoenix', 0.5097155570983887, 'ml-interpretability', 0), ('nvidia/deeplearningexamples', 0.5064698457717896, 'ml-dl', 1), ('rcgai/simplyretrieve', 0.5062447786331177, 'llm', 2), ('infinitylogesh/mutate', 0.5052860379219055, 'nlp', 0), ('huggingface/datasets', 0.5037619471549988, 'nlp', 0), ('modularml/mojo', 0.5025712847709656, 'util', 1), ('deep-diver/llm-as-chatbot', 0.5001731514930725, 'llm', 0)]
40
5
null
8.1
0
0
23
3
5
13
5
0
0
90
0
56
1,034
finance
https://github.com/quantconnect/lean
[]
null
[]
[]
null
null
null
quantconnect/lean
Lean
8,317
3,085
415
C#
https://lean.io
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
quantconnect
2024-01-14
2014-11-28
478
17.378806
https://avatars.githubusercontent.com/u/3912814?v=4
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
['algorithm', 'algorithmic-trading-engine', 'c-sharp', 'finance', 'forex', 'lean-engine', 'options', 'quantconnect', 'stock-indicators', 'trading', 'trading-algorithms', 'trading-bot', 'trading-platform', 'trading-strategies']
['algorithm', 'algorithmic-trading-engine', 'c-sharp', 'finance', 'forex', 'lean-engine', 'options', 'quantconnect', 'stock-indicators', 'trading', 'trading-algorithms', 'trading-bot', 'trading-platform', 'trading-strategies']
2024-01-11
[('gbeced/pyalgotrade', 0.7084618806838989, 'finance', 0), ('quantopian/zipline', 0.6676159501075745, 'finance', 0), ('ranaroussi/quantstats', 0.6603469848632812, 'finance', 1), ('polakowo/vectorbt', 0.6572080254554749, 'finance', 3), ('goldmansachs/gs-quant', 0.6400971412658691, 'finance', 1), ('zvtvz/zvt', 0.6376045942306519, 'finance', 3), ('gbeced/basana', 0.6268382668495178, 'finance', 1), ('robcarver17/pysystemtrade', 0.6064723134040833, 'finance', 0), ('kernc/backtesting.py', 0.5955772995948792, 'finance', 5), ('idanya/algo-trader', 0.5937037467956543, 'finance', 2), ('freqtrade/freqtrade', 0.5934526324272156, 'crypto', 1), ('polyaxon/datatile', 0.590923011302948, 'pandas', 0), ('cuemacro/finmarketpy', 0.588824987411499, 'finance', 1), ('willmcgugan/textual', 0.5675188899040222, 'term', 0), ('ccxt/ccxt', 0.5551174879074097, 'crypto', 1), ('ai4finance-foundation/finrl', 0.5530506372451782, 'finance', 1), ('ta-lib/ta-lib-python', 0.5490601062774658, 'finance', 1), ('hydrosquall/tiingo-python', 0.5375146865844727, 'finance', 1), ('blankly-finance/blankly', 0.5336184501647949, 'finance', 3), ('plotly/dash', 0.529013454914093, 'viz', 1), ('thealgorithms/python', 0.5260835886001587, 'study', 1), ('google/tf-quant-finance', 0.5243059992790222, 'finance', 1), ('microsoft/qlib', 0.5189212560653687, 'finance', 1), ('kitao/pyxel', 0.5179747343063354, 'gamedev', 0), ('gradio-app/gradio', 0.5162667632102966, 'viz', 0), ('keon/algorithms', 0.512477457523346, 'util', 1), ('online-ml/river', 0.511631429195404, 'ml', 0), ('clips/pattern', 0.5098506808280945, 'nlp', 0), ('1200wd/bitcoinlib', 0.5076516270637512, 'crypto', 0), ('numerai/example-scripts', 0.5045038461685181, 'finance', 0), ('panda3d/panda3d', 0.5038788318634033, 'gamedev', 0), ('explosion/spacy', 0.5002435445785522, 'nlp', 0)]
198
2
null
10.94
236
170
111
0
0
331
331
236
127
90
0.5
56
420
ml-dl
https://github.com/pyro-ppl/pyro
[]
null
[]
[]
null
null
null
pyro-ppl/pyro
pyro
8,243
985
204
Python
http://pyro.ai
Deep universal probabilistic programming with Python and PyTorch
pyro-ppl
2024-01-13
2017-06-16
345
23.853245
https://avatars.githubusercontent.com/u/46794900?v=4
Deep universal probabilistic programming with Python and PyTorch
['bayesian', 'bayesian-inference', 'deep-learning', 'machine-learning', 'probabilistic-modeling', 'probabilistic-programming', 'pytorch', 'variational-inference']
['bayesian', 'bayesian-inference', 'deep-learning', 'machine-learning', 'probabilistic-modeling', 'probabilistic-programming', 'pytorch', 'variational-inference']
2024-01-14
[('pymc-devs/pymc3', 0.6964523792266846, 'ml', 3), ('intellabs/bayesian-torch', 0.6956607699394226, 'ml', 3), ('probml/pyprobml', 0.6461431980133057, 'ml', 3), ('pytorch/botorch', 0.6212801933288574, 'ml-dl', 0), ('thu-ml/tianshou', 0.5777061581611633, 'ml-rl', 1), ('huggingface/transformers', 0.5731987953186035, 'nlp', 3), ('rasbt/machine-learning-book', 0.5722088813781738, 'study', 3), ('mrdbourke/pytorch-deep-learning', 0.5717006325721741, 'study', 3), ('denys88/rl_games', 0.558512806892395, 'ml-rl', 2), ('pytorch/ignite', 0.5561047196388245, 'ml-dl', 3), ('keras-team/keras', 0.5552471876144409, 'ml-dl', 3), ('awslabs/gluonts', 0.5475439429283142, 'time-series', 3), ('pytorch/rl', 0.5450016856193542, 'ml-rl', 2), ('ddbourgin/numpy-ml', 0.5446068644523621, 'ml', 2), ('google/trax', 0.539913535118103, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.538422167301178, 'perf', 3), ('tensorlayer/tensorlayer', 0.5288735628128052, 'ml-rl', 1), ('ageron/handson-ml2', 0.522969663143158, 'ml', 0), ('bayesianmodelingandcomputationinpython/bookcode_edition1', 0.5214691162109375, 'study', 0), ('nvidia/deeplearningexamples', 0.5212848782539368, 'ml-dl', 2), ('lukaszahradnik/pyneuralogic', 0.5193347930908203, 'math', 3), ('keras-rl/keras-rl', 0.5166857242584229, 'ml-rl', 1), ('scikit-optimize/scikit-optimize', 0.5141356587409973, 'ml', 1), ('microsoft/deepspeed', 0.5087716579437256, 'ml-dl', 3), ('karpathy/micrograd', 0.5077245831489563, 'study', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5035637617111206, 'study', 0), ('pyg-team/pytorch_geometric', 0.5015919208526611, 'ml-dl', 2), ('uber/orbit', 0.5006424188613892, 'time-series', 4)]
148
5
null
1.27
39
26
80
0
2
5
2
39
51
90
1.3
56
1,260
llm
https://github.com/microsoft/lora
[]
null
[]
[]
null
null
null
microsoft/lora
LoRA
7,851
476
58
Python
https://arxiv.org/abs/2106.09685
Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
microsoft
2024-01-14
2021-06-18
136
57.486402
https://avatars.githubusercontent.com/u/6154722?v=4
Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
['adaptation', 'deberta', 'deep-learning', 'gpt-2', 'gpt-3', 'language-model', 'lora', 'low-rank', 'pytorch', 'roberta']
['adaptation', 'deberta', 'deep-learning', 'gpt-2', 'gpt-3', 'language-model', 'lora', 'low-rank', 'pytorch', 'roberta']
2024-01-09
[('hannibal046/awesome-llm', 0.6244948506355286, 'study', 1), ('next-gpt/next-gpt', 0.6170973181724548, 'llm', 0), ('lianjiatech/belle', 0.5939985513687134, 'llm', 1), ('bobazooba/xllm', 0.5789094567298889, 'llm', 2), ('microsoft/autogen', 0.5736963152885437, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5733075141906738, 'llm', 2), ('hiyouga/llama-factory', 0.5733075141906738, 'llm', 2), ('yueyu1030/attrprompt', 0.5668091177940369, 'llm', 0), ('togethercomputer/redpajama-data', 0.5614542365074158, 'llm', 0), ('cg123/mergekit', 0.5608856678009033, 'llm', 0), ('ai21labs/lm-evaluation', 0.55837482213974, 'llm', 1), ('infinitylogesh/mutate', 0.5570184588432312, 'nlp', 1), ('freedomintelligence/llmzoo', 0.5567244291305542, 'llm', 1), ('lm-sys/fastchat', 0.5482615828514099, 'llm', 1), ('baichuan-inc/baichuan-13b', 0.5445288419723511, 'llm', 0), ('bigscience-workshop/megatron-deepspeed', 0.5398515462875366, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5398515462875366, 'llm', 0), ('huggingface/text-generation-inference', 0.5352991223335266, 'llm', 2), ('extreme-bert/extreme-bert', 0.5327245593070984, 'llm', 3), ('salesforce/blip', 0.52529376745224, 'diffusion', 0), ('eleutherai/lm-evaluation-harness', 0.5240524411201477, 'llm', 1), ('fasteval/fasteval', 0.5221768021583557, 'llm', 0), ('lupantech/chameleon-llm', 0.5212894082069397, 'llm', 1), ('openai/finetune-transformer-lm', 0.520248532295227, 'llm', 0), ('young-geng/easylm', 0.519779622554779, 'llm', 2), ('databrickslabs/dolly', 0.5188591480255127, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5186458230018616, 'llm', 0), ('juncongmoo/pyllama', 0.5170261263847351, 'llm', 0), ('nvlabs/prismer', 0.5161336064338684, 'diffusion', 1), ('oobabooga/text-generation-webui', 0.5137597918510437, 'llm', 1), ('lightning-ai/lit-llama', 0.5121870040893555, 'llm', 1), ('huggingface/transformers', 0.5106838941574097, 'nlp', 3), ('xtekky/gpt4free', 0.5105166435241699, 'llm', 2), ('thudm/chatglm2-6b', 0.5071834921836853, 'llm', 0), ('ggerganov/ggml', 0.5070888996124268, 'ml', 0), ('bytedance/lightseq', 0.5001585483551025, 'nlp', 0)]
12
3
null
0.37
26
7
31
0
0
2
2
26
31
90
1.2
56
469
gui
https://github.com/parthjadhav/tkinter-designer
[]
null
[]
[]
null
null
null
parthjadhav/tkinter-designer
Tkinter-Designer
7,773
742
78
Python
null
An easy and fast way to create a Python GUI 🐍
parthjadhav
2024-01-14
2021-05-18
141
55.12766
null
An easy and fast way to create a Python GUI 🐍
['automatic', 'collaborate', 'drag-and-drop', 'easy', 'easy-to-use', 'fast', 'figma', 'gui', 'gui-application', 'learn', 'python-script', 'tkinter', 'tkinter-designer', 'tkinter-graphic-interface', 'tkinter-gui', 'tkinter-python', 'tkinter-widgets']
['automatic', 'collaborate', 'drag-and-drop', 'easy', 'easy-to-use', 'fast', 'figma', 'gui', 'gui-application', 'learn', 'python-script', 'tkinter', 'tkinter-designer', 'tkinter-graphic-interface', 'tkinter-gui', 'tkinter-python', 'tkinter-widgets']
2024-01-04
[('pysimplegui/pysimplegui', 0.7242632508277893, 'gui', 4), ('hoffstadt/dearpygui', 0.6940200924873352, 'gui', 1), ('r0x0r/pywebview', 0.6899272799491882, 'gui', 1), ('beeware/toga', 0.6891065239906311, 'gui', 1), ('willmcgugan/textual', 0.5848771333694458, 'term', 0), ('wxwidgets/phoenix', 0.58327716588974, 'gui', 1), ('holoviz/panel', 0.5603848099708557, 'viz', 1), ('kivy/kivy', 0.554401695728302, 'util', 0), ('urwid/urwid', 0.5480352640151978, 'term', 0), ('adamerose/pandasgui', 0.5451450943946838, 'pandas', 1), ('holoviz/holoviz', 0.5346206426620483, 'viz', 0), ('pyglet/pyglet', 0.5310909748077393, 'gamedev', 0), ('jquast/blessed', 0.5266092419624329, 'term', 0), ('tkrabel/bamboolib', 0.5206194519996643, 'pandas', 0), ('matplotlib/matplotlib', 0.5160230398178101, 'viz', 0), ('bokeh/bokeh', 0.5127165913581848, 'viz', 0), ('pypy/pypy', 0.5007215738296509, 'util', 0)]
45
2
null
0.23
39
10
32
0
1
3
1
39
59
90
1.5
56
923
ml-rl
https://github.com/lucidrains/palm-rlhf-pytorch
[]
null
[]
[]
null
null
null
lucidrains/palm-rlhf-pytorch
PaLM-rlhf-pytorch
7,494
649
139
Python
null
Implementation of RLHF (Reinforcement Learning with Human Feedback) on top of the PaLM architecture. Basically ChatGPT but with PaLM
lucidrains
2024-01-12
2022-12-09
59
125.798561
null
Implementation of RLHF (Reinforcement Learning with Human Feedback) on top of the PaLM architecture. Basically ChatGPT but with PaLM
['artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'human-feedback', 'reinforcement-learning', 'transformers']
['artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'human-feedback', 'reinforcement-learning', 'transformers']
2023-04-05
[('denys88/rl_games', 0.5653679370880127, 'ml-rl', 2), ('deepmind/android_env', 0.5164604187011719, 'ml-dl', 1)]
5
3
null
0.58
4
2
13
9
15
65
15
4
4
90
1
56
960
ml-rl
https://github.com/thu-ml/tianshou
[]
null
[]
[]
null
null
null
thu-ml/tianshou
tianshou
7,086
1,071
90
Python
https://tianshou.readthedocs.io
An elegant PyTorch deep reinforcement learning library.
thu-ml
2024-01-12
2018-04-16
302
23.452482
https://avatars.githubusercontent.com/u/19198992?v=4
An elegant PyTorch deep reinforcement learning library.
['a2c', 'atari', 'bcq', 'benchmark', 'cql', 'ddpg', 'double-dqn', 'dqn', 'drl', 'imitation-learning', 'mujoco', 'npg', 'policy-gradient', 'ppo', 'pytorch', 'rl', 'sac', 'td3', 'trpo']
['a2c', 'atari', 'bcq', 'benchmark', 'cql', 'ddpg', 'double-dqn', 'dqn', 'drl', 'imitation-learning', 'mujoco', 'npg', 'policy-gradient', 'ppo', 'pytorch', 'rl', 'sac', 'td3', 'trpo']
2024-01-12
[('denys88/rl_games', 0.7549825310707092, 'ml-rl', 1), ('pytorch/rl', 0.7527033090591431, 'ml-rl', 2), ('humancompatibleai/imitation', 0.7333576679229736, 'ml-rl', 1), ('openai/baselines', 0.6823237538337708, 'ml-rl', 0), ('salesforce/warp-drive', 0.6808977723121643, 'ml-rl', 1), ('tensorlayer/tensorlayer', 0.6603164076805115, 'ml-rl', 1), ('keras-rl/keras-rl', 0.6519415378570557, 'ml-rl', 0), ('kzl/decision-transformer', 0.6393781900405884, 'ml-rl', 1), ('google/trax', 0.625861406326294, 'ml-dl', 0), ('google/dopamine', 0.6199951171875, 'ml-rl', 1), ('pytorch/ignite', 0.6126653552055359, 'ml-dl', 1), ('mrdbourke/pytorch-deep-learning', 0.5997803211212158, 'study', 1), ('unity-technologies/ml-agents', 0.598300576210022, 'ml-rl', 0), ('openai/spinningup', 0.5972070097923279, 'study', 0), ('karpathy/micrograd', 0.5894965529441833, 'study', 0), ('deepmind/acme', 0.5823108553886414, 'ml-rl', 0), ('pyro-ppl/pyro', 0.5777061581611633, 'ml-dl', 1), ('openai/gym', 0.5749742984771729, 'ml-rl', 0), ('ai4finance-foundation/finrl', 0.5749337673187256, 'finance', 0), ('inspirai/timechamber', 0.5735207796096802, 'sim', 0), ('farama-foundation/gymnasium', 0.57296222448349, 'ml-rl', 0), ('tensorflow/tensor2tensor', 0.5683255791664124, 'ml', 0), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5635957717895508, 'study', 0), ('facebookresearch/habitat-lab', 0.5616220831871033, 'sim', 0), ('pettingzoo-team/pettingzoo', 0.556010365486145, 'ml-rl', 0), ('intel/intel-extension-for-pytorch', 0.5456005930900574, 'perf', 1), ('skorch-dev/skorch', 0.5379747152328491, 'ml-dl', 1), ('nvidia-omniverse/isaacgymenvs', 0.5374286770820618, 'sim', 0), ('facebookresearch/reagent', 0.5355173945426941, 'ml-rl', 0), ('intellabs/bayesian-torch', 0.5311893820762634, 'ml', 1), ('deepmind/dm_control', 0.5307285189628601, 'ml-rl', 1), ('nvidia-omniverse/omniisaacgymenvs', 0.5271867513656616, 'sim', 0), ('arise-initiative/robosuite', 0.5250179171562195, 'ml-rl', 0), ('facebookresearch/pytorch3d', 0.5248837471008301, 'ml-dl', 0), ('nvidia/apex', 0.5245383381843567, 'ml-dl', 0), ('facebookresearch/theseus', 0.5228813886642456, 'math', 1), ('rasbt/machine-learning-book', 0.5220516920089722, 'study', 1), ('pyg-team/pytorch_geometric', 0.5205722451210022, 'ml-dl', 1), ('d2l-ai/d2l-en', 0.5155929923057556, 'study', 1), ('huggingface/transformers', 0.5113345980644226, 'nlp', 1), ('allenai/allennlp', 0.5055130124092102, 'nlp', 1), ('huggingface/deep-rl-class', 0.5006495714187622, 'study', 0)]
65
4
null
4.12
77
37
70
0
1
5
1
77
155
90
2
56
717
ml
https://github.com/py-why/dowhy
[]
null
[]
[]
null
null
null
py-why/dowhy
dowhy
6,454
883
137
Python
https://www.pywhy.org/dowhy
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
py-why
2024-01-13
2018-05-31
295
21.825121
https://avatars.githubusercontent.com/u/101266056?v=4
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
['bayesian-networks', 'causal-inference', 'causal-machine-learning', 'causal-models', 'causality', 'data-science', 'do-calculus', 'graphical-models', 'machine-learning', 'treatment-effects']
['bayesian-networks', 'causal-inference', 'causal-machine-learning', 'causal-models', 'causality', 'data-science', 'do-calculus', 'graphical-models', 'machine-learning', 'treatment-effects']
2024-01-08
[('mckinsey/causalnex', 0.7358757853507996, 'math', 5), ('willianfuks/tfcausalimpact', 0.6020914912223816, 'math', 1), ('py-why/econml', 0.5789477229118347, 'ml', 4), ('eleutherai/pyfra', 0.5379133820533752, 'ml', 0), ('quantecon/quantecon.py', 0.513481080532074, 'sim', 0)]
82
5
null
3.46
119
107
68
0
4
3
4
119
102
90
0.9
56
278
jupyter
https://github.com/nteract/papermill
[]
null
[]
[]
null
null
null
nteract/papermill
papermill
5,497
409
93
Python
http://papermill.readthedocs.io/en/latest/
📚 Parameterize, execute, and analyze notebooks
nteract
2024-01-14
2017-07-06
342
16.0396
https://avatars.githubusercontent.com/u/12401040?v=4
📚 Parameterize, execute, and analyze notebooks
['julia', 'jupyter', 'notebook', 'notebook-generator', 'notebooks', 'nteract', 'pipeline', 'publishing', 'r', 'scala']
['julia', 'jupyter', 'notebook', 'notebook-generator', 'notebooks', 'nteract', 'pipeline', 'publishing', 'r', 'scala']
2024-01-01
[('mwouts/jupytext', 0.632023811340332, 'jupyter', 1), ('jupyter/nbformat', 0.618989109992981, 'jupyter', 0), ('cohere-ai/notebooks', 0.5747708082199097, 'llm', 1), ('jupyter/notebook', 0.5524148344993591, 'jupyter', 2), ('aws/graph-notebook', 0.5402319431304932, 'jupyter', 1), ('linealabs/lineapy', 0.5371261835098267, 'jupyter', 0), ('ploomber/ploomber', 0.5353273153305054, 'ml-ops', 2), ('jupyter/nbgrader', 0.532752513885498, 'jupyter', 1), ('jupyter/nbconvert', 0.5243469476699829, 'jupyter', 0), ('quantopian/qgrid', 0.516223669052124, 'jupyter', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5121607780456543, 'study', 0), ('malloydata/malloy-py', 0.5121511220932007, 'data', 0), ('jupyter/nbdime', 0.5114229917526245, 'jupyter', 1), ('pytoolz/toolz', 0.5096691250801086, 'util', 0), ('jupyter-widgets/ipywidgets', 0.5082428455352783, 'jupyter', 0), ('fluentpython/example-code-2e', 0.5064553022384644, 'study', 0), ('kellyjonbrazil/jc', 0.5040388703346252, 'util', 0), ('fastai/fastcore', 0.5034418106079102, 'util', 0), ('jupyter-lsp/jupyterlab-lsp', 0.5029893517494202, 'jupyter', 3)]
114
7
null
0.69
51
40
79
0
0
12
12
51
86
90
1.7
56
361
ml-ops
https://github.com/allegroai/clearml
[]
null
[]
[]
null
null
null
allegroai/clearml
clearml
4,979
626
91
Python
https://clear.ml/docs
ClearML - Auto-Magical CI/CD to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
allegroai
2024-01-14
2019-06-10
242
20.562242
https://avatars.githubusercontent.com/u/38647316?v=4
ClearML - Auto-Magical CI/CD to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
['ai', 'clearml', 'control', 'deep-learning', 'deeplearning', 'devops', 'experiment', 'experiment-manager', 'k8s', 'machine-learning', 'machinelearning', 'mlops', 'trains', 'trainsai', 'version', 'version-control']
['ai', 'clearml', 'control', 'deep-learning', 'deeplearning', 'devops', 'experiment', 'experiment-manager', 'k8s', 'machine-learning', 'machinelearning', 'mlops', 'trains', 'trainsai', 'version', 'version-control']
2024-01-12
[('zenml-io/zenml', 0.66759192943573, 'ml-ops', 4), ('polyaxon/polyaxon', 0.6574744582176208, 'ml-ops', 4), ('iterative/dvc', 0.618588924407959, 'ml-ops', 2), ('bodywork-ml/bodywork-core', 0.6049355268478394, 'ml-ops', 3), ('netflix/metaflow', 0.5861303210258484, 'ml-ops', 3), ('fmind/mlops-python-package', 0.5833768844604492, 'template', 2), ('getindata/kedro-kubeflow', 0.5791431069374084, 'ml-ops', 2), ('bentoml/bentoml', 0.5609636902809143, 'ml-ops', 4), ('kubeflow/pipelines', 0.5604597330093384, 'ml-ops', 2), ('orchest/orchest', 0.5581900477409363, 'ml-ops', 1), ('ploomber/ploomber', 0.5556386113166809, 'ml-ops', 2), ('avaiga/taipy', 0.5540127158164978, 'data', 1), ('flyteorg/flyte', 0.5446012616157532, 'ml-ops', 2), ('tox-dev/tox', 0.5439307689666748, 'testing', 0), ('mage-ai/mage-ai', 0.5418257713317871, 'ml-ops', 1), ('kestra-io/kestra', 0.5374925136566162, 'ml-ops', 0), ('unionai-oss/unionml', 0.536503255367279, 'ml-ops', 2), ('microsoft/nni', 0.5334336757659912, 'ml', 3), ('lastmile-ai/aiconfig', 0.5247846841812134, 'util', 1), ('wandb/client', 0.5239328742027283, 'ml', 3), ('prefecthq/prefect', 0.5174835324287415, 'ml-ops', 0)]
88
3
null
2.83
74
21
56
0
18
34
18
74
141
90
1.9
56
1,371
llm
https://github.com/minedojo/voyager
[]
null
[]
[]
null
null
null
minedojo/voyager
Voyager
4,708
445
60
JavaScript
https://voyager.minedojo.org/
An Open-Ended Embodied Agent with Large Language Models
minedojo
2024-01-14
2023-05-25
35
131.824
https://avatars.githubusercontent.com/u/98871221?v=4
An Open-Ended Embodied Agent with Large Language Models
['embodied-learning', 'large-language-models', 'minecraft', 'open-ended-learning']
['embodied-learning', 'large-language-models', 'minecraft', 'open-ended-learning']
2023-07-27
[('facebookresearch/droidlet', 0.6723781228065491, 'sim', 0), ('facebookresearch/habitat-lab', 0.6467283964157104, 'sim', 0), ('aiwaves-cn/agents', 0.5751522183418274, 'nlp', 0), ('jina-ai/thinkgpt', 0.5710037350654602, 'llm', 0), ('humanoidagents/humanoidagents', 0.56615149974823, 'sim', 0), ('lm-sys/fastchat', 0.5574104189872742, 'llm', 0), ('luodian/otter', 0.5513647794723511, 'llm', 0), ('inspirai/timechamber', 0.5301423072814941, 'sim', 0), ('lupantech/chameleon-llm', 0.5282621383666992, 'llm', 0), ('operand/agency', 0.516743540763855, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5137326121330261, 'llm', 0), ('next-gpt/next-gpt', 0.509900689125061, 'llm', 1)]
13
4
null
0.42
23
16
8
6
0
0
0
23
25
90
1.1
56
375
util
https://github.com/spotify/pedalboard
[]
null
[]
[]
null
null
null
spotify/pedalboard
pedalboard
4,677
219
56
C++
https://spotify.github.io/pedalboard/
🎛 🔊 A Python library for working with audio.
spotify
2024-01-13
2021-07-06
134
34.902985
https://avatars.githubusercontent.com/u/251374?v=4
🎛 🔊 A Python library for working with audio.
['audio', 'audio-processing', 'audio-production', 'audio-research', 'audio-unit', 'juce', 'pybind11', 'tensorflow', 'vst3', 'vst3-host']
['audio', 'audio-processing', 'audio-production', 'audio-research', 'audio-unit', 'juce', 'pybind11', 'tensorflow', 'vst3', 'vst3-host']
2023-12-14
[('bastibe/python-soundfile', 0.7314440608024597, 'util', 0), ('irmen/pyminiaudio', 0.7280553579330444, 'util', 0), ('uberi/speech_recognition', 0.6759282946586609, 'ml', 1), ('taylorsmarks/playsound', 0.6269357204437256, 'util', 0), ('libaudioflux/audioflux', 0.5974409580230713, 'util', 2), ('speechbrain/speechbrain', 0.5878923535346985, 'nlp', 2), ('quodlibet/mutagen', 0.5746901035308838, 'util', 0), ('nateshmbhat/pyttsx3', 0.5451530814170837, 'util', 0), ('pndurette/gtts', 0.5376996994018555, 'util', 0), ('pytoolz/toolz', 0.5321218371391296, 'util', 0), ('jamesturk/jellyfish', 0.5257704854011536, 'nlp', 0), ('facebookresearch/audiocraft', 0.5256170034408569, 'util', 1), ('espnet/espnet', 0.5202059745788574, 'nlp', 0), ('pypy/pypy', 0.5107285976409912, 'util', 0), ('googleapis/python-speech', 0.5077892541885376, 'ml', 0)]
27
5
null
2.19
35
13
31
1
20
22
20
35
42
90
1.2
56
1,452
util
https://github.com/conda-forge/miniforge
[]
null
[]
[]
null
null
null
conda-forge/miniforge
miniforge
4,654
266
50
Shell
https://conda-forge.org/miniforge
A conda-forge distribution.
conda-forge
2024-01-14
2019-11-14
219
21.182055
https://avatars.githubusercontent.com/u/11897326?v=4
A conda-forge distribution.
[]
[]
2023-12-21
[('conda/conda-pack', 0.5824256539344788, 'util', 0), ('mamba-org/quetz', 0.5642527341842651, 'util', 0), ('conda-forge/feedstocks', 0.5309390425682068, 'util', 0), ('mamba-org/boa', 0.5230752825737, 'util', 0)]
37
5
null
1.42
59
30
51
1
15
19
15
59
143
90
2.4
56
347
ml-ops
https://github.com/evidentlyai/evidently
[]
null
[]
[]
null
null
null
evidentlyai/evidently
evidently
4,312
477
43
Jupyter Notebook
null
Evaluate and monitor ML models from validation to production. Join our Discord: https://discord.com/invite/xZjKRaNp8b
evidentlyai
2024-01-12
2020-11-25
165
25.998277
https://avatars.githubusercontent.com/u/75031056?v=4
Evaluate and monitor ML models from validation to production. Join our Discord: https://discord.com/invite/xZjKRaNp8b
['data-drift', 'data-science', 'html-report', 'jupyter-notebook', 'machine-learning', 'machine-learning-operations', 'mlops', 'model-monitoring', 'pandas-dataframe', 'production-machine-learning']
['data-drift', 'data-science', 'html-report', 'jupyter-notebook', 'machine-learning', 'machine-learning-operations', 'mlops', 'model-monitoring', 'pandas-dataframe', 'production-machine-learning']
2024-01-12
[('deepchecks/deepchecks', 0.6157994866371155, 'data', 8), ('fmind/mlops-python-package', 0.5556315779685974, 'template', 1), ('selfexplainml/piml-toolbox', 0.5544941425323486, 'ml-interpretability', 0), ('huggingface/evaluate', 0.5467391014099121, 'ml', 1), ('kubeflow/fairing', 0.531782329082489, 'ml-ops', 0), ('districtdatalabs/yellowbrick', 0.531039834022522, 'ml', 1), ('polyaxon/polyaxon', 0.5295282006263733, 'ml-ops', 3), ('arize-ai/phoenix', 0.5009012818336487, 'ml-interpretability', 2)]
57
3
null
6.9
148
121
38
0
25
21
25
148
76
90
0.5
56
826
util
https://github.com/adafruit/circuitpython
[]
null
[]
[]
null
null
null
adafruit/circuitpython
circuitpython
3,787
1,073
128
C
https://circuitpython.org
CircuitPython - a Python implementation for teaching coding with microcontrollers
adafruit
2024-01-13
2016-08-20
388
9.74954
https://avatars.githubusercontent.com/u/181069?v=4
CircuitPython - a Python implementation for teaching coding with microcontrollers
['beginner', 'circuitpython', 'cpython', 'education', 'embedded', 'microcontroller', 'micropython']
['beginner', 'circuitpython', 'cpython', 'education', 'embedded', 'microcontroller', 'micropython']
2024-01-13
[('micropython/micropython', 0.7091054916381836, 'util', 3), ('python/cpython', 0.6647933125495911, 'util', 1), ('fchollet/deep-learning-with-python-notebooks', 0.6453861594200134, 'study', 0), ('pypy/pypy', 0.6234596371650696, 'util', 1), ('pyston/pyston', 0.5873665809631348, 'util', 0), ('norvig/pytudes', 0.5722380876541138, 'util', 0), ('ipython/ipyparallel', 0.5501038432121277, 'perf', 0), ('sympy/sympy', 0.5332902669906616, 'math', 0), ('cohere-ai/notebooks', 0.5329226851463318, 'llm', 0), ('jeshraghian/snntorch', 0.5297858119010925, 'ml-dl', 0), ('masoniteframework/masonite', 0.5271365642547607, 'web', 0), ('ageron/handson-ml2', 0.5219725966453552, 'ml', 0), ('cython/cython', 0.5219005346298218, 'util', 1), ('1200wd/bitcoinlib', 0.519145131111145, 'crypto', 0), ('primal100/pybitcointools', 0.518639862537384, 'crypto', 0), ('intel/intel-extension-for-pytorch', 0.5163028240203857, 'perf', 0), ('r0x0r/pywebview', 0.5162983536720276, 'gui', 0), ('brandtbucher/specialist', 0.5155614018440247, 'perf', 1), ('eleutherai/pyfra', 0.5133049488067627, 'ml', 0), ('hoffstadt/dearpygui', 0.511806309223175, 'gui', 0), ('imageio/imageio', 0.506452739238739, 'util', 0), ('faster-cpython/tools', 0.5050845742225647, 'perf', 1), ('rasbt/machine-learning-book', 0.5035032033920288, 'study', 0), ('fastai/fastcore', 0.5033023953437805, 'util', 0), ('mynameisfiber/high_performance_python_2e', 0.5031493902206421, 'study', 0), ('joblib/joblib', 0.5005473494529724, 'util', 0)]
1,121
4
null
0
538
356
90
0
30
37
30
537
1,228
90
2.3
56
918
study
https://github.com/roboflow/notebooks
[]
null
[]
[]
null
null
null
roboflow/notebooks
notebooks
3,584
553
54
Jupyter Notebook
https://roboflow.com/models
Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.
roboflow
2024-01-13
2022-11-18
62
57.278539
https://avatars.githubusercontent.com/u/53104118?v=4
Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.
['amazon-sagemaker-lab', 'automatic-labeling-system', 'computer-vision', 'deep-learning', 'deep-neural-networks', 'google-colab', 'image-classification', 'image-segmentation', 'machine-learning', 'object-detection', 'open-vocabulary-detection', 'open-vocabulary-segmentation', 'pytorch', 'tutorial', 'yolov5', 'yolov6', 'yolov7', 'yolov8', 'zero-shot-classification', 'zero-shot-detection']
['amazon-sagemaker-lab', 'automatic-labeling-system', 'computer-vision', 'deep-learning', 'deep-neural-networks', 'google-colab', 'image-classification', 'image-segmentation', 'machine-learning', 'object-detection', 'open-vocabulary-detection', 'open-vocabulary-segmentation', 'pytorch', 'tutorial', 'yolov5', 'yolov6', 'yolov7', 'yolov8', 'zero-shot-classification', 'zero-shot-detection']
2024-01-10
[('deci-ai/super-gradients', 0.8082399368286133, 'ml-dl', 5), ('roboflow/supervision', 0.6496574878692627, 'ml', 5), ('lucidrains/vit-pytorch', 0.6355553865432739, 'ml-dl', 2), ('idea-research/grounded-segment-anything', 0.6104524731636047, 'llm', 3), ('google-research/maxvit', 0.5931783318519592, 'ml', 2), ('facebookresearch/vissl', 0.5875295996665955, 'ml', 0), ('idea-research/groundingdino', 0.5870379209518433, 'diffusion', 1), ('nvlabs/gcvit', 0.5799825191497803, 'diffusion', 2), ('blakeblackshear/frigate', 0.5778411626815796, 'util', 1), ('rwightman/pytorch-image-models', 0.5683378577232361, 'ml-dl', 1), ('open-mmlab/mmdetection', 0.5606690049171448, 'ml', 2), ('matterport/mask_rcnn', 0.5560668706893921, 'ml-dl', 1), ('microsoft/torchgeo', 0.5472760200500488, 'gis', 3), ('ludwig-ai/ludwig', 0.5439817309379578, 'ml-ops', 4), ('christoschristofidis/awesome-deep-learning', 0.5378063917160034, 'study', 2), ('kornia/kornia', 0.5266382098197937, 'ml-dl', 4), ('salesforce/blip', 0.523171603679657, 'diffusion', 0), ('nyandwi/modernconvnets', 0.5212321877479553, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5195624828338623, 'ml-dl', 3), ('open-mmlab/mmediting', 0.5162927508354187, 'ml', 3), ('datasystemslab/geotorch', 0.5124086141586304, 'gis', 2), ('towhee-io/towhee', 0.511427640914917, 'ml-ops', 2), ('facebookresearch/segment-anything', 0.51060950756073, 'ml-dl', 1), ('sanster/lama-cleaner', 0.5101523995399475, 'ml-dl', 1), ('mosaicml/composer', 0.5099112391471863, 'ml-dl', 3)]
21
3
null
2.79
33
16
14
0
0
1
1
32
33
90
1
56
878
study
https://github.com/huggingface/deep-rl-class
[]
null
[]
[]
null
null
null
huggingface/deep-rl-class
deep-rl-class
3,426
510
86
MDX
null
This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
huggingface
2024-01-13
2022-04-21
92
36.952234
https://avatars.githubusercontent.com/u/25720743?v=4
This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
['deep-learning', 'deep-reinforcement-learning', 'reinforcement-learning', 'reinforcement-learning-excercises']
['deep-learning', 'deep-reinforcement-learning', 'reinforcement-learning', 'reinforcement-learning-excercises']
2024-01-02
[('openai/spinningup', 0.5750541090965271, 'study', 0), ('huggingface/huggingface_hub', 0.5541204810142517, 'ml', 1), ('huggingface/diffusion-models-class', 0.551882803440094, 'study', 0), ('tensorlayer/tensorlayer', 0.5484325885772705, 'ml-rl', 2), ('farama-foundation/gymnasium', 0.5383160710334778, 'ml-rl', 1), ('nvidia-omniverse/isaacgymenvs', 0.534843921661377, 'sim', 0), ('keras-rl/keras-rl', 0.5257301926612854, 'ml-rl', 1), ('pettingzoo-team/pettingzoo', 0.5236347317695618, 'ml-rl', 1), ('facebookresearch/habitat-lab', 0.5081996917724609, 'sim', 3), ('thu-ml/tianshou', 0.5006495714187622, 'ml-rl', 0)]
86
3
null
6.08
64
37
21
0
0
0
0
64
122
90
1.9
56
362
ml-ops
https://github.com/kubeflow/pipelines
[]
null
[]
[]
null
null
null
kubeflow/pipelines
pipelines
3,364
1,513
104
Python
https://www.kubeflow.org/docs/components/pipelines/
Machine Learning Pipelines for Kubeflow
kubeflow
2024-01-13
2018-05-12
298
11.272379
https://avatars.githubusercontent.com/u/33164907?v=4
Machine Learning Pipelines for Kubeflow
['data-science', 'kubeflow', 'kubeflow-pipelines', 'kubernetes', 'machine-learning', 'mlops', 'pipeline']
['data-science', 'kubeflow', 'kubeflow-pipelines', 'kubernetes', 'machine-learning', 'mlops', 'pipeline']
2024-01-12
[('bodywork-ml/bodywork-core', 0.8104010820388794, 'ml-ops', 5), ('getindata/kedro-kubeflow', 0.7283107042312622, 'ml-ops', 3), ('polyaxon/polyaxon', 0.7241019010543823, 'ml-ops', 4), ('kubeflow-kale/kale', 0.692866325378418, 'ml-ops', 3), ('orchest/orchest', 0.6418040990829468, 'ml-ops', 3), ('feast-dev/feast', 0.6390533447265625, 'ml-ops', 3), ('flyteorg/flyte', 0.6268972754478455, 'ml-ops', 4), ('mage-ai/mage-ai', 0.622243344783783, 'ml-ops', 3), ('bentoml/bentoml', 0.6110785603523254, 'ml-ops', 3), ('unionai-oss/unionml', 0.6105091571807861, 'ml-ops', 2), ('netflix/metaflow', 0.5999767184257507, 'ml-ops', 4), ('mlflow/mlflow', 0.5984587669372559, 'ml-ops', 1), ('onnx/onnx', 0.5777002573013306, 'ml', 1), ('ploomber/ploomber', 0.568588137626648, 'ml-ops', 3), ('allegroai/clearml', 0.5604597330093384, 'ml-ops', 2), ('determined-ai/determined', 0.5401206016540527, 'ml-ops', 4), ('koaning/scikit-lego', 0.539598822593689, 'ml', 1), ('microsoft/nni', 0.5366452932357788, 'ml', 3), ('dgarnitz/vectorflow', 0.5347921252250671, 'data', 1), ('zenml-io/zenml', 0.5281010866165161, 'ml-ops', 3), ('tensorflow/tensorflow', 0.5275462865829468, 'ml-dl', 1), ('keras-team/keras-nlp', 0.5210731625556946, 'nlp', 1), ('firmai/industry-machine-learning', 0.5197041034698486, 'study', 2), ('automl/auto-sklearn', 0.5186381936073303, 'ml', 0), ('googlecloudplatform/vertex-ai-samples', 0.5168536901473999, 'ml', 2), ('apache/airflow', 0.5132193565368652, 'ml-ops', 3), ('huggingface/datasets', 0.511340856552124, 'nlp', 1), ('whylabs/whylogs', 0.5075204372406006, 'util', 3), ('gefyrahq/gefyra', 0.5056382417678833, 'util', 1), ('nccr-itmo/fedot', 0.5040023922920227, 'ml-ops', 1), ('xplainable/xplainable', 0.5017673969268799, 'ml-interpretability', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5008544921875, 'study', 1)]
386
1
null
18.08
597
336
69
0
31
28
31
596
1,212
90
2
56
728
data
https://github.com/ibis-project/ibis
[]
null
[]
[]
1
null
null
ibis-project/ibis
ibis
3,364
466
80
Python
https://ibis-project.org
The flexibility of Python with the scale and performance of modern SQL.
ibis-project
2024-01-14
2015-04-17
458
7.335826
https://avatars.githubusercontent.com/u/27442526?v=4
The flexibility of Python with the scale and performance of modern SQL.
['bigquery', 'clickhouse', 'dask', 'database', 'datafusion', 'duckdb', 'impala', 'mssql', 'mysql', 'pandas', 'polars', 'postgresql', 'pyarrow', 'pyspark', 'snowflake', 'sql', 'sqlalchemy', 'sqlite', 'trino']
['bigquery', 'clickhouse', 'dask', 'database', 'datafusion', 'duckdb', 'impala', 'mssql', 'mysql', 'pandas', 'polars', 'postgresql', 'pyarrow', 'pyspark', 'snowflake', 'sql', 'sqlalchemy', 'sqlite', 'trino']
2024-01-13
[('tiangolo/sqlmodel', 0.8095237612724304, 'data', 2), ('tobymao/sqlglot', 0.7856696248054504, 'data', 8), ('sqlalchemy/sqlalchemy', 0.741746723651886, 'data', 2), ('kayak/pypika', 0.6313249468803406, 'data', 1), ('machow/siuba', 0.6308576464653015, 'pandas', 2), ('mcfunley/pugsql', 0.6264197826385498, 'data', 1), ('macbre/sql-metadata', 0.6164320707321167, 'data', 2), ('vaexio/vaex', 0.6082955598831177, 'perf', 1), ('andialbrecht/sqlparse', 0.6058615446090698, 'data', 0), ('fugue-project/fugue', 0.5997548699378967, 'pandas', 4), ('malloydata/malloy-py', 0.5992289185523987, 'data', 1), ('datafold/data-diff', 0.5967792272567749, 'data', 6), ('coleifer/peewee', 0.5938148498535156, 'data', 1), ('pytables/pytables', 0.5871632695198059, 'data', 0), ('sfu-db/connector-x', 0.5806707143783569, 'data', 2), ('krzjoa/awesome-python-data-science', 0.5760530233383179, 'study', 0), ('pandas-dev/pandas', 0.5663455724716187, 'pandas', 1), ('fastai/fastcore', 0.566156804561615, 'util', 0), ('aws/aws-sdk-pandas', 0.563861608505249, 'pandas', 2), ('plotly/dash', 0.5618459582328796, 'viz', 0), ('cython/cython', 0.553461492061615, 'util', 0), ('eleutherai/pyfra', 0.5528563857078552, 'ml', 0), ('sqlalchemy/alembic', 0.5510525107383728, 'data', 2), ('pola-rs/polars', 0.5494480729103088, 'pandas', 1), ('airbytehq/airbyte', 0.5454192161560059, 'data', 5), ('collerek/ormar', 0.5441567301750183, 'data', 1), ('simonw/sqlite-utils', 0.540537416934967, 'data', 1), ('dylanhogg/awesome-python', 0.5329792499542236, 'study', 1), ('holoviz/panel', 0.5315485596656799, 'viz', 0), ('apache/spark', 0.5312047004699707, 'data', 1), ('falconry/falcon', 0.5278680324554443, 'web', 0), ('unionai-oss/pandera', 0.525162398815155, 'pandas', 1), ('pyston/pyston', 0.5222876667976379, 'util', 0), ('jina-ai/vectordb', 0.5219907760620117, 'data', 0), ('saulpw/visidata', 0.5209618210792542, 'term', 2), ('hi-primus/optimus', 0.5208921432495117, 'ml-ops', 2), ('googleapis/python-bigquery', 0.5185703635215759, 'data', 0), ('aminalaee/sqladmin', 0.512384831905365, 'data', 1), ('pytoolz/toolz', 0.5118052363395691, 'util', 0), ('python-cachier/cachier', 0.5115165710449219, 'perf', 0), ('aio-libs/aiopg', 0.5114596486091614, 'data', 2), ('aio-libs/aiomysql', 0.5113950967788696, 'data', 2), ('tconbeer/harlequin', 0.5111363530158997, 'term', 1), ('mause/duckdb_engine', 0.5086135864257812, 'data', 3), ('strawberry-graphql/strawberry', 0.5083762407302856, 'web', 0), ('dagworks-inc/hamilton', 0.5063190460205078, 'ml-ops', 1), ('rawheel/fastapi-boilerplate', 0.502396821975708, 'web', 2), ('geopandas/geopandas', 0.5019082427024841, 'gis', 1), ('pyparsing/pyparsing', 0.5017038583755493, 'util', 0), ('klen/muffin', 0.5011864900588989, 'web', 0), ('pypy/pypy', 0.5000938177108765, 'util', 0)]
165
4
null
55.63
674
586
106
0
9
5
9
673
1,004
90
1.5
56
870
time-series
https://github.com/nixtla/statsforecast
[]
null
[]
[]
null
null
null
nixtla/statsforecast
statsforecast
3,316
223
31
Python
https://nixtlaverse.nixtla.io/statsforecast
Lightning ⚡️ fast forecasting with statistical and econometric models.
nixtla
2024-01-14
2021-11-24
113
29.124216
https://avatars.githubusercontent.com/u/79945230?v=4
Lightning ⚡️ fast forecasting with statistical and econometric models.
['arima', 'automl', 'baselines', 'data-science', 'econometrics', 'ets', 'exponential-smoothing', 'fbprophet', 'forecasting', 'machine-learning', 'mstl', 'naive', 'neuralprophet', 'predictions', 'prophet', 'seasonal-naive', 'statistics', 'theta', 'time-series']
['arima', 'automl', 'baselines', 'data-science', 'econometrics', 'ets', 'exponential-smoothing', 'fbprophet', 'forecasting', 'machine-learning', 'mstl', 'naive', 'neuralprophet', 'predictions', 'prophet', 'seasonal-naive', 'statistics', 'theta', 'time-series']
2024-01-12
[('ourownstory/neural_prophet', 0.6677179336547852, 'ml', 6), ('winedarksea/autots', 0.6360719799995422, 'time-series', 4), ('linkedin/greykite', 0.5983828902244568, 'ml', 0), ('facebook/prophet', 0.586733341217041, 'time-series', 2), ('alkaline-ml/pmdarima', 0.5763822197914124, 'time-series', 5), ('firmai/atspy', 0.5731773972511292, 'time-series', 2), ('autoviml/auto_ts', 0.5572653412818909, 'time-series', 4), ('sktime/sktime', 0.5418822169303894, 'time-series', 4), ('awslabs/autogluon', 0.5410817265510559, 'ml', 5), ('salesforce/merlion', 0.5316644906997681, 'time-series', 4), ('uber/orbit', 0.5311532020568848, 'time-series', 5), ('salesforce/deeptime', 0.5292312502861023, 'time-series', 2), ('microsoft/flaml', 0.5162665843963623, 'ml', 3), ('awslabs/gluonts', 0.5115534067153931, 'time-series', 4), ('aistream-peelout/flow-forecast', 0.506076991558075, 'time-series', 2)]
35
3
null
3.21
126
102
26
0
4
14
4
126
183
90
1.5
56
595
gis
https://github.com/giswqs/geemap
[]
null
[]
[]
null
null
null
giswqs/geemap
geemap
3,049
1,042
116
Python
https://geemap.org
A Python package for interactive geospaital analysis and visualization with Google Earth Engine.
giswqs
2024-01-14
2020-03-08
203
14.998595
https://avatars.githubusercontent.com/u/26841718?v=4
A Python package for interactive geospaital analysis and visualization with Google Earth Engine.
['colab', 'data-science', 'dataviz', 'earth-engine', 'earthengine', 'folium', 'geospatial', 'gis', 'google-earth-engine', 'image-processing', 'ipyleaflet', 'ipywidgets', 'jupyter', 'jupyter-notebook', 'landsat', 'mapping', 'remote-sensing', 'streamlit', 'streamlit-webapp']
['colab', 'data-science', 'dataviz', 'earth-engine', 'earthengine', 'folium', 'geospatial', 'gis', 'google-earth-engine', 'image-processing', 'ipyleaflet', 'ipywidgets', 'jupyter', 'jupyter-notebook', 'landsat', 'mapping', 'remote-sensing', 'streamlit', 'streamlit-webapp']
2024-01-12
[('opengeos/leafmap', 0.7121515274047852, 'gis', 11), ('scitools/iris', 0.6783716082572937, 'gis', 0), ('residentmario/geoplot', 0.6778126358985901, 'gis', 0), ('raphaelquast/eomaps', 0.6554696559906006, 'gis', 3), ('holoviz/holoviz', 0.6438645124435425, 'viz', 0), ('bokeh/bokeh', 0.6420087218284607, 'viz', 1), ('holoviz/panel', 0.6401718258857727, 'viz', 2), ('gregorhd/mapcompare', 0.6100561022758484, 'gis', 0), ('visgl/deck.gl', 0.6095970869064331, 'viz', 0), ('plotly/dash', 0.6076993346214294, 'viz', 2), ('plotly/plotly.py', 0.5846720933914185, 'viz', 1), ('holoviz/geoviews', 0.5793654918670654, 'gis', 0), ('altair-viz/altair', 0.5686102509498596, 'viz', 0), ('geopandas/geopandas', 0.5684166550636292, 'gis', 2), ('sentinel-hub/eo-learn', 0.5640432834625244, 'gis', 0), ('maartenbreddels/ipyvolume', 0.5499334931373596, 'jupyter', 3), ('google/earthengine-api', 0.5498977899551392, 'gis', 0), ('osgeo/grass', 0.5491253137588501, 'gis', 6), ('earthlab/earthpy', 0.5480675101280212, 'gis', 0), ('vispy/vispy', 0.5475439429283142, 'viz', 0), ('python-visualization/folium', 0.5445337295532227, 'gis', 1), ('man-group/dtale', 0.5396121144294739, 'viz', 2), ('googleapis/google-api-python-client', 0.5369963645935059, 'util', 0), ('gradio-app/gradio', 0.534578800201416, 'viz', 1), ('kanaries/pygwalker', 0.5327471494674683, 'pandas', 0), ('has2k1/plotnine', 0.5272516012191772, 'viz', 0), ('vizzuhq/ipyvizzu', 0.5243290066719055, 'jupyter', 3), ('polyaxon/datatile', 0.5178652405738831, 'pandas', 1), ('imageio/imageio', 0.505904495716095, 'util', 0), ('radiantearth/radiant-mlhub', 0.5028256773948669, 'gis', 0), ('pytroll/satpy', 0.5017055869102478, 'gis', 0), ('mwaskom/seaborn', 0.5008442401885986, 'viz', 1)]
52
5
null
5.27
83
79
47
0
45
46
45
83
168
90
2
56
549
ml-dl
https://github.com/pytorch/botorch
[]
null
[]
[]
null
null
null
pytorch/botorch
botorch
2,871
359
53
Jupyter Notebook
https://botorch.org/
Bayesian optimization in PyTorch
pytorch
2024-01-14
2018-07-30
287
9.998507
https://avatars.githubusercontent.com/u/21003710?v=4
Bayesian optimization in PyTorch
[]
[]
2024-01-12
[('pyro-ppl/pyro', 0.6212801933288574, 'ml-dl', 0), ('intellabs/bayesian-torch', 0.6108170747756958, 'ml', 0), ('bayesianmodelingandcomputationinpython/bookcode_edition1', 0.5796522498130798, 'study', 0), ('pytorch/ignite', 0.5717622637748718, 'ml-dl', 0), ('nvidia/apex', 0.5640817880630493, 'ml-dl', 0), ('laekov/fastmoe', 0.5626605749130249, 'ml', 0), ('deepmind/kfac-jax', 0.55311119556427, 'math', 0), ('scikit-optimize/scikit-optimize', 0.5391286611557007, 'ml', 0), ('davidmrau/mixture-of-experts', 0.5366146564483643, 'ml', 0), ('pymc-devs/pymc3', 0.5349946618080139, 'ml', 0), ('tanelp/tiny-diffusion', 0.5327487587928772, 'diffusion', 0), ('mrdbourke/pytorch-deep-learning', 0.5209388136863708, 'study', 0), ('pytorch/captum', 0.509192168712616, 'ml-interpretability', 0), ('kshitij12345/torchnnprofiler', 0.5020992159843445, 'profiling', 0), ('skorch-dev/skorch', 0.5020517110824585, 'ml-dl', 0)]
108
4
null
6.67
131
111
66
0
10
8
10
131
512
90
3.9
56
436
gis
https://github.com/opengeos/leafmap
[]
null
[]
[]
null
null
null
opengeos/leafmap
leafmap
2,809
326
52
Python
https://leafmap.org
A Python package for interactive mapping and geospatial analysis with minimal coding in a Jupyter environment
opengeos
2024-01-13
2021-03-10
150
18.620265
https://avatars.githubusercontent.com/u/129896036?v=4
A Python package for interactive mapping and geospatial analysis with minimal coding in a Jupyter environment
['data-science', 'dataviz', 'folium', 'geoparquet', 'geopython', 'geospatial', 'geospatial-analysis', 'gis', 'ipyleaflet', 'jupyter', 'jupyter-notebook', 'leafmap', 'mapping', 'plotly', 'streamlit', 'streamlit-webapp', 'whiteboxtools']
['data-science', 'dataviz', 'folium', 'geoparquet', 'geopython', 'geospatial', 'geospatial-analysis', 'gis', 'ipyleaflet', 'jupyter', 'jupyter-notebook', 'leafmap', 'mapping', 'plotly', 'streamlit', 'streamlit-webapp', 'whiteboxtools']
2024-01-11
[('giswqs/geemap', 0.7121515274047852, 'gis', 11), ('residentmario/geoplot', 0.6929628252983093, 'gis', 0), ('raphaelquast/eomaps', 0.6778762936592102, 'gis', 3), ('geopandas/geopandas', 0.671466052532196, 'gis', 3), ('vizzuhq/ipyvizzu', 0.6331526637077332, 'jupyter', 3), ('holoviz/panel', 0.6154477596282959, 'viz', 3), ('artelys/geonetworkx', 0.6138547658920288, 'gis', 0), ('holoviz/geoviews', 0.6069517135620117, 'gis', 0), ('holoviz/holoviz', 0.6019681692123413, 'viz', 0), ('gregorhd/mapcompare', 0.6006041169166565, 'gis', 0), ('plotly/plotly.py', 0.5990200638771057, 'viz', 2), ('bokeh/bokeh', 0.5971899032592773, 'viz', 1), ('giswqs/mapwidget', 0.5904461741447449, 'gis', 4), ('wesm/pydata-book', 0.5878331065177917, 'study', 0), ('scitools/iris', 0.5820508003234863, 'gis', 0), ('ipython/ipyparallel', 0.580319344997406, 'perf', 1), ('quantopian/qgrid', 0.5799870491027832, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5771999359130859, 'jupyter', 3), ('geopandas/contextily', 0.5741623044013977, 'gis', 1), ('earthlab/earthpy', 0.572256863117218, 'gis', 0), ('jakevdp/pythondatasciencehandbook', 0.5667238235473633, 'study', 1), ('pysal/pysal', 0.5648621320724487, 'gis', 0), ('darribas/gds_env', 0.563289999961853, 'gis', 0), ('plotly/dash', 0.5570528507232666, 'viz', 3), ('scitools/cartopy', 0.5553449988365173, 'gis', 0), ('has2k1/plotnine', 0.5541620254516602, 'viz', 0), ('man-group/dtale', 0.5516546368598938, 'viz', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5463659763336182, 'study', 0), ('cohere-ai/notebooks', 0.546214759349823, 'llm', 0), ('altair-viz/altair', 0.5457186698913574, 'viz', 0), ('marceloprates/prettymaps', 0.5452340841293335, 'viz', 1), ('pyston/pyston', 0.5413333773612976, 'util', 0), ('toblerity/rtree', 0.5405087471008301, 'gis', 0), ('pypy/pypy', 0.5401880741119385, 'util', 0), ('python-visualization/folium', 0.5398542284965515, 'gis', 1), ('aws/graph-notebook', 0.5389112830162048, 'jupyter', 2), ('jupyter-widgets/ipyleaflet', 0.5388780832290649, 'gis', 1), ('kanaries/pygwalker', 0.5377007722854614, 'pandas', 1), ('pyproj4/pyproj', 0.5364670157432556, 'gis', 1), ('pytoolz/toolz', 0.5356908440589905, 'util', 0), ('python/cpython', 0.5353587865829468, 'util', 0), ('jupyter-lsp/jupyterlab-lsp', 0.5345747470855713, 'jupyter', 2), ('makepath/xarray-spatial', 0.5318371057510376, 'gis', 0), ('openeventdata/mordecai', 0.5265222191810608, 'gis', 0), ('eleutherai/pyfra', 0.525818407535553, 'ml', 0), ('jalammar/ecco', 0.5254456996917725, 'ml-interpretability', 0), ('voila-dashboards/voila', 0.5204005241394043, 'jupyter', 2), ('pandas-dev/pandas', 0.5185487866401672, 'pandas', 1), ('pyglet/pyglet', 0.5158253312110901, 'gamedev', 0), ('osgeo/grass', 0.5151031017303467, 'gis', 5), ('uber/h3-py', 0.5105132460594177, 'gis', 2), ('cloudsen12/easystac', 0.5067197680473328, 'gis', 1), ('bitcraft/pytmx', 0.5061635375022888, 'gamedev', 0), ('scikit-mobility/scikit-mobility', 0.5058870911598206, 'gis', 1), ('amaargiru/pyroad', 0.503073513507843, 'study', 0)]
29
6
null
5.35
77
74
35
0
58
43
58
77
104
90
1.4
56
806
data
https://github.com/datafold/data-diff
[]
null
[]
[]
null
null
null
datafold/data-diff
data-diff
2,686
189
21
Python
https://docs.datafold.com
Compare tables within or across databases
datafold
2024-01-14
2022-03-07
99
27.092219
https://avatars.githubusercontent.com/u/63129412?v=4
Compare tables within or across databases
['data', 'data-diffing', 'data-engineering', 'data-quality', 'data-quality-monitoring', 'data-science', 'database', 'databricks-sql', 'dataengineering', 'dataquality', 'dbt', 'mysql', 'oracle-database', 'postgres', 'postgresql', 'rdbms', 'snowflake', 'sql', 'trino']
['data', 'data-diffing', 'data-engineering', 'data-quality', 'data-quality-monitoring', 'data-science', 'database', 'databricks-sql', 'dataengineering', 'dataquality', 'dbt', 'mysql', 'oracle-database', 'postgres', 'postgresql', 'rdbms', 'snowflake', 'sql', 'trino']
2024-01-12
[('ibis-project/ibis', 0.5967792272567749, 'data', 6), ('tobymao/sqlglot', 0.5574495196342468, 'data', 5), ('tiangolo/sqlmodel', 0.5563005805015564, 'data', 1), ('dbt-labs/dbt-core', 0.550411581993103, 'ml-ops', 0), ('great-expectations/great_expectations', 0.5429127216339111, 'ml-ops', 4), ('unionai-oss/pandera', 0.5363107919692993, 'pandas', 0)]
53
2
null
11.88
133
98
23
0
48
32
48
133
120
90
0.9
56
1,628
llm
https://github.com/next-gpt/next-gpt
[]
null
[]
[]
null
null
null
next-gpt/next-gpt
NExT-GPT
2,579
266
57
Python
https://next-gpt.github.io/
Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model
next-gpt
2024-01-13
2023-08-30
21
117.993464
null
Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model
['chatgpt', 'foundation-models', 'gpt-4', 'instruction-tuning', 'large-language-models', 'llm', 'multi-modal-chatgpt', 'multimodal', 'visual-language-learning']
['chatgpt', 'foundation-models', 'gpt-4', 'instruction-tuning', 'large-language-models', 'llm', 'multi-modal-chatgpt', 'multimodal', 'visual-language-learning']
2024-01-09
[('microsoft/autogen', 0.7022780776023865, 'llm', 2), ('hannibal046/awesome-llm', 0.6860809922218323, 'study', 0), ('lianjiatech/belle', 0.6763371229171753, 'llm', 0), ('mlc-ai/web-llm', 0.6524577140808105, 'llm', 2), ('xtekky/gpt4free', 0.6495850086212158, 'llm', 2), ('guidance-ai/guidance', 0.6470729112625122, 'llm', 1), ('hiyouga/llama-factory', 0.6337036490440369, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.6337035894393921, 'llm', 3), ('thudm/chatglm2-6b', 0.6282567381858826, 'llm', 2), ('lm-sys/fastchat', 0.6228191256523132, 'llm', 0), ('openlmlab/moss', 0.6183462738990784, 'llm', 2), ('microsoft/lora', 0.6170973181724548, 'llm', 0), ('haotian-liu/llava', 0.6144143342971802, 'llm', 6), ('bobazooba/xllm', 0.61397784948349, 'llm', 4), ('baichuan-inc/baichuan-13b', 0.6081295013427734, 'llm', 3), ('lupantech/chameleon-llm', 0.6010711193084717, 'llm', 3), ('docarray/docarray', 0.5986325144767761, 'data', 1), ('optimalscale/lmflow', 0.5973320603370667, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5953162908554077, 'llm', 0), ('freedomintelligence/llmzoo', 0.5918599963188171, 'llm', 0), ('ai21labs/lm-evaluation', 0.5911809802055359, 'llm', 0), ('li-plus/chatglm.cpp', 0.5851370096206665, 'llm', 1), ('microsoft/torchscale', 0.582415759563446, 'llm', 1), ('sjtu-ipads/powerinfer', 0.5799466967582703, 'llm', 2), ('blinkdl/chatrwkv', 0.5798339247703552, 'llm', 1), ('fasteval/fasteval', 0.57789546251297, 'llm', 1), ('young-geng/easylm', 0.5767945647239685, 'llm', 1), ('nomic-ai/gpt4all', 0.5750716328620911, 'llm', 0), ('nvlabs/prismer', 0.5736103057861328, 'diffusion', 0), ('eth-sri/lmql', 0.5689839124679565, 'llm', 1), ('oobabooga/text-generation-webui', 0.5688201785087585, 'llm', 0), ('bigscience-workshop/megatron-deepspeed', 0.5671409964561462, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5671409964561462, 'llm', 0), ('salesforce/xgen', 0.5664035081863403, 'llm', 2), ('cg123/mergekit', 0.5641329884529114, 'llm', 1), ('lightning-ai/lit-llama', 0.5547515153884888, 'llm', 0), ('mnotgod96/appagent', 0.5528967976570129, 'llm', 2), ('run-llama/rags', 0.5521267652511597, 'llm', 2), ('huggingface/text-generation-inference', 0.5511967539787292, 'llm', 0), ('togethercomputer/redpajama-data', 0.5498401522636414, 'llm', 0), ('salesforce/blip', 0.5469942092895508, 'diffusion', 0), ('infinitylogesh/mutate', 0.5463948845863342, 'nlp', 0), ('juncongmoo/pyllama', 0.5461319088935852, 'llm', 0), ('killianlucas/open-interpreter', 0.5455114841461182, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5425037145614624, 'perf', 0), ('dylanhogg/llmgraph', 0.5404556393623352, 'ml', 2), ('bigscience-workshop/petals', 0.5393829941749573, 'data', 1), ('confident-ai/deepeval', 0.5388375520706177, 'testing', 2), ('ofa-sys/ofa', 0.538471519947052, 'llm', 1), ('hwchase17/langchain', 0.5355835556983948, 'llm', 0), ('nvidia/tensorrt-llm', 0.5343412160873413, 'viz', 0), ('facebookresearch/seamless_communication', 0.5332794785499573, 'nlp', 0), ('guardrails-ai/guardrails', 0.5325504541397095, 'llm', 1), ('reasoning-machines/pal', 0.532139778137207, 'llm', 1), ('yueyu1030/attrprompt', 0.5283357501029968, 'llm', 1), ('salesforce/codet5', 0.5271520614624023, 'nlp', 1), ('microsoft/unilm', 0.5269091129302979, 'nlp', 3), ('embedchain/embedchain', 0.5254507064819336, 'llm', 2), ('keirp/automatic_prompt_engineer', 0.525351881980896, 'llm', 0), ('openai/gpt-2', 0.5251544713973999, 'llm', 0), ('cstankonrad/long_llama', 0.5235233306884766, 'llm', 0), ('zhudotexe/kani', 0.5206196904182434, 'llm', 3), ('databrickslabs/dolly', 0.5201497077941895, 'llm', 0), ('mooler0410/llmspracticalguide', 0.5197857022285461, 'study', 1), ('whu-zqh/chatgpt-vs.-bert', 0.515221357345581, 'llm', 1), ('salesforce/codegen', 0.5129567384719849, 'nlp', 1), ('ray-project/ray-llm', 0.5125154256820679, 'llm', 2), ('lucidrains/toolformer-pytorch', 0.5125038027763367, 'llm', 0), ('ludwig-ai/ludwig', 0.5110254287719727, 'ml-ops', 1), ('explosion/spacy-llm', 0.5109996199607849, 'llm', 3), ('eleutherai/gpt-neo', 0.5107851624488831, 'llm', 0), ('langchain-ai/langgraph', 0.5100759863853455, 'llm', 0), ('minedojo/voyager', 0.509900689125061, 'llm', 1), ('huawei-noah/pretrained-language-model', 0.5096499919891357, 'nlp', 0), ('srush/minichain', 0.5092249512672424, 'llm', 0), ('h2oai/h2o-llmstudio', 0.5090202689170837, 'llm', 2), ('conceptofmind/toolformer', 0.5089335441589355, 'llm', 0), ('lingjzhu/charsiug2p', 0.5078827738761902, 'nlp', 0), ('epfllm/meditron', 0.5075371265411377, 'llm', 0), ('deepset-ai/haystack', 0.5068576335906982, 'llm', 2), ('eleutherai/lm-evaluation-harness', 0.5040009617805481, 'llm', 0), ('agenta-ai/agenta', 0.503362774848938, 'llm', 2), ('microsoft/generative-ai-for-beginners', 0.5027459859848022, 'study', 1), ('moymix/taskmatrix', 0.5018583536148071, 'llm', 1), ('openbmb/toolbench', 0.5017238259315491, 'llm', 1), ('luodian/otter', 0.501610517501831, 'llm', 5), ('thilinarajapakse/simpletransformers', 0.5003290772438049, 'nlp', 0)]
4
2
null
4.06
58
21
5
0
0
0
0
58
30
90
0.5
56
835
ml
https://github.com/aws/sagemaker-python-sdk
[]
null
[]
[]
null
null
null
aws/sagemaker-python-sdk
sagemaker-python-sdk
1,995
1,104
132
Python
https://sagemaker.readthedocs.io/
A library for training and deploying machine learning models on Amazon SageMaker
aws
2024-01-12
2017-11-14
324
6.157407
https://avatars.githubusercontent.com/u/2232217?v=4
A library for training and deploying machine learning models on Amazon SageMaker
['aws', 'huggingface', 'machine-learning', 'mxnet', 'pytorch', 'sagemaker', 'tensorflow']
['aws', 'huggingface', 'machine-learning', 'mxnet', 'pytorch', 'sagemaker', 'tensorflow']
2024-01-11
[('aws-samples/sagemaker-ssh-helper', 0.671806812286377, 'util', 3), ('huggingface/huggingface_hub', 0.6623826026916504, 'ml', 2), ('mlflow/mlflow', 0.6176590919494629, 'ml-ops', 1), ('ashleve/lightning-hydra-template', 0.6082078814506531, 'util', 1), ('kubeflow/fairing', 0.5987374186515808, 'ml-ops', 0), ('merantix-momentum/squirrel-core', 0.5961750149726868, 'ml', 3), ('horovod/horovod', 0.5958705544471741, 'ml-ops', 4), ('determined-ai/determined', 0.5937497019767761, 'ml-ops', 3), ('rasbt/machine-learning-book', 0.586579442024231, 'study', 2), ('huggingface/exporters', 0.5837609171867371, 'ml', 3), ('huggingface/datasets', 0.5822443962097168, 'nlp', 3), ('tensorflow/tensorflow', 0.578117311000824, 'ml-dl', 2), ('skorch-dev/skorch', 0.5779036283493042, 'ml-dl', 3), ('uber/petastorm', 0.5683594346046448, 'data', 3), ('huggingface/transformers', 0.5665184855461121, 'nlp', 3), ('pytorch/ignite', 0.5633373856544495, 'ml-dl', 2), ('tensorlayer/tensorlayer', 0.5589292645454407, 'ml-rl', 1), ('gradio-app/gradio', 0.5586919188499451, 'viz', 1), ('ggerganov/ggml', 0.5583137273788452, 'ml', 1), ('titanml/takeoff', 0.5581379532814026, 'llm', 0), ('intel/intel-extension-for-pytorch', 0.5577678680419922, 'perf', 2), ('microsoft/nni', 0.5550652146339417, 'ml', 3), ('google/tf-quant-finance', 0.5465176105499268, 'finance', 1), ('radiantearth/radiant-mlhub', 0.5445782542228699, 'gis', 1), ('ml-tooling/opyrator', 0.5434074401855469, 'viz', 1), ('firmai/industry-machine-learning', 0.5424572229385376, 'study', 1), ('wandb/client', 0.5404186248779297, 'ml', 3), ('polyaxon/polyaxon', 0.5382318496704102, 'ml-ops', 4), ('ageron/handson-ml2', 0.5365365743637085, 'ml', 0), ('karpathy/micrograd', 0.5261572003364563, 'study', 0), ('keras-team/autokeras', 0.5244501233100891, 'ml-dl', 2), ('eventual-inc/daft', 0.5235341787338257, 'pandas', 1), ('pytorch/rl', 0.5228525996208191, 'ml-rl', 2), ('activeloopai/deeplake', 0.5221602320671082, 'ml-ops', 3), ('tlkh/tf-metal-experiments', 0.5217053890228271, 'perf', 1), ('microsoft/flaml', 0.5215294361114502, 'ml', 1), ('oml-team/open-metric-learning', 0.5199127197265625, 'ml', 1), ('dylanhogg/awesome-python', 0.5184698104858398, 'study', 1), ('nvidia/deeplearningexamples', 0.5177861452102661, 'ml-dl', 3), ('tensorflow/tensor2tensor', 0.5145456790924072, 'ml', 1), ('microsoft/onnxruntime', 0.513953447341919, 'ml', 3), ('rafiqhasan/auto-tensorflow', 0.512946367263794, 'ml-dl', 2), ('googlecloudplatform/vertex-ai-samples', 0.5073953866958618, 'ml', 0), ('pycaret/pycaret', 0.5068821310997009, 'ml', 1), ('adap/flower', 0.506871223449707, 'ml-ops', 3), ('ray-project/ray', 0.5026758909225464, 'ml-ops', 3), ('lightly-ai/lightly', 0.5022170543670654, 'ml', 2), ('dmlc/xgboost', 0.5017920732498169, 'ml', 1)]
417
2
null
12.08
465
368
75
0
88
91
88
465
2,810
90
6
56
1,242
ml-interpretability
https://github.com/arize-ai/phoenix
[]
null
[]
[]
null
null
null
arize-ai/phoenix
phoenix
1,906
128
23
Jupyter Notebook
https://docs.arize.com/phoenix
AI Observability & Evaluation - Evaluate, troubleshoot, and fine tune your LLM, CV, and NLP models in a notebook.
arize-ai
2024-01-13
2022-11-09
63
29.847875
https://avatars.githubusercontent.com/u/59858760?v=4
AI Observability & Evaluation - Evaluate, troubleshoot, and fine tune your LLM, CV, and NLP models in a notebook.
['ai-monitoring', 'ai-observability', 'ai-roi', 'clustering', 'llm-eval', 'llmops', 'ml-monitoring', 'ml-observability', 'mlops', 'model-monitoring', 'model-observability', 'umap']
['ai-monitoring', 'ai-observability', 'ai-roi', 'clustering', 'llm-eval', 'llmops', 'ml-monitoring', 'ml-observability', 'mlops', 'model-monitoring', 'model-observability', 'umap']
2024-01-12
[('giskard-ai/giskard', 0.6145030856132507, 'data', 2), ('microsoft/lmops', 0.5890821814537048, 'llm', 0), ('llmware-ai/llmware', 0.5607779026031494, 'llm', 0), ('bentoml/bentoml', 0.547683835029602, 'ml-ops', 2), ('microsoft/promptflow', 0.5460477471351624, 'llm', 0), ('tigerlab-ai/tiger', 0.5459373593330383, 'llm', 0), ('confident-ai/deepeval', 0.5458160042762756, 'testing', 1), ('truera/trulens', 0.532617449760437, 'llm', 1), ('interpretml/interpret', 0.5245933532714844, 'ml-interpretability', 0), ('lastmile-ai/aiconfig', 0.5230908393859863, 'util', 0), ('mlc-ai/mlc-llm', 0.5153992772102356, 'llm', 0), ('nebuly-ai/nebullvm', 0.5097155570983887, 'perf', 0), ('googlecloudplatform/vertex-ai-samples', 0.5083956122398376, 'ml', 1), ('cheshire-cat-ai/core', 0.5057440400123596, 'llm', 0), ('csinva/imodels', 0.5046104192733765, 'ml', 0), ('evidentlyai/evidently', 0.5009012818336487, 'ml-ops', 2), ('openai/evals', 0.500573456287384, 'llm', 0)]
30
1
null
26.98
518
437
14
0
75
90
75
519
394
90
0.8
56
1,743
llm
https://github.com/microsoft/llmlingua
['inference', 'performance']
null
[]
[]
null
null
null
microsoft/llmlingua
LLMLingua
1,887
93
17
Python
https://llmlingua.com/
To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.
microsoft
2024-01-14
2023-07-07
29
63.811594
https://avatars.githubusercontent.com/u/6154722?v=4
To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.
[]
['inference', 'performance']
2024-01-13
[('vllm-project/vllm', 0.6239213347434998, 'llm', 1), ('intel/intel-extension-for-transformers', 0.6135388016700745, 'perf', 0), ('lightning-ai/lit-gpt', 0.5566024780273438, 'llm', 0), ('bentoml/openllm', 0.5037171244621277, 'ml-ops', 0)]
7
3
null
0.67
49
26
6
0
4
8
4
49
70
90
1.4
56
463
ml-dl
https://github.com/pytorch/torchrec
[]
null
[]
[]
null
null
null
pytorch/torchrec
torchrec
1,625
328
29
Python
null
Pytorch domain library for recommendation systems
pytorch
2024-01-14
2021-07-12
133
12.204936
https://avatars.githubusercontent.com/u/21003710?v=4
Pytorch domain library for recommendation systems
['cuda', 'deep-learning', 'gpu', 'pytorch', 'recommendation-system', 'recommender-system', 'sharding']
['cuda', 'deep-learning', 'gpu', 'pytorch', 'recommendation-system', 'recommender-system', 'sharding']
2024-01-13
[('rucaibox/recbole', 0.7371825575828552, 'ml', 3), ('nicolashug/surprise', 0.5874725580215454, 'ml', 0), ('pytorch/data', 0.5872920751571655, 'data', 0), ('pytorch/ignite', 0.5860687494277954, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.570334255695343, 'ml-dl', 2), ('cvxgrp/pymde', 0.5692107677459717, 'ml', 3), ('blackhc/toma', 0.5616428256034851, 'ml-dl', 2), ('microsoft/recommenders', 0.5602710247039795, 'study', 2), ('mrdbourke/pytorch-deep-learning', 0.5445482730865479, 'study', 2), ('rasbt/machine-learning-book', 0.5437749624252319, 'study', 2), ('oml-team/open-metric-learning', 0.5388403534889221, 'ml', 2), ('cupy/cupy', 0.5291244387626648, 'math', 2), ('intel/intel-extension-for-pytorch', 0.5260089635848999, 'perf', 2), ('google/tf-quant-finance', 0.5250528454780579, 'finance', 1), ('skorch-dev/skorch', 0.5207085609436035, 'ml-dl', 1), ('a-r-j/graphein', 0.5193598866462708, 'sim', 2), ('rentruewang/koila', 0.5190505385398865, 'ml', 2), ('xl0/lovely-tensors', 0.5139912366867065, 'ml-dl', 2), ('uber/petastorm', 0.5117344260215759, 'data', 2), ('qdrant/fastembed', 0.5069307088851929, 'ml', 0), ('catboost/catboost', 0.5050163269042969, 'ml', 2), ('facebookresearch/pytorch3d', 0.5049778819084167, 'ml-dl', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5045345425605774, 'ml', 2), ('rapidsai/cudf', 0.5002225637435913, 'pandas', 2)]
198
5
null
9.6
194
142
30
0
5
4
5
194
572
90
2.9
56
1,541
llm
https://github.com/weaviate/verba
['retrieval-augmentation']
null
[]
[]
null
null
null
weaviate/verba
Verba
1,585
157
31
Python
null
Retrieval Augmented Generation (RAG) chatbot powered by Weaviate
weaviate
2024-01-14
2023-07-28
26
59.650538
https://avatars.githubusercontent.com/u/37794290?v=4
Retrieval Augmented Generation (RAG) chatbot powered by Weaviate
[]
['retrieval-augmentation']
2024-01-02
[('rcgai/simplyretrieve', 0.6520878076553345, 'llm', 0), ('embedchain/embedchain', 0.5736026167869568, 'llm', 0), ('microsoft/chatgpt-robot-manipulation-prompts', 0.5466259121894836, 'llm', 0), ('lm-sys/fastchat', 0.5395397543907166, 'llm', 0), ('openlmlab/moss', 0.5387402772903442, 'llm', 0), ('langchain-ai/chat-langchain', 0.5274889469146729, 'llm', 0), ('togethercomputer/openchatkit', 0.5258392691612244, 'nlp', 0), ('cheshire-cat-ai/core', 0.5184066295623779, 'llm', 0)]
8
1
null
2.92
91
51
6
0
3
6
3
91
196
90
2.2
56
290
ml-ops
https://github.com/dagworks-inc/hamilton
['mlops']
null
[]
[]
null
null
null
dagworks-inc/hamilton
hamilton
1,120
63
12
Jupyter Notebook
https://hamilton.dagworks.io/en/latest/
Hamilton helps data scientists and engineers define testable, modular, self-documenting dataflows, that encode lineage and metadata. Runs and scales everywhere python does.
dagworks-inc
2024-01-13
2023-02-23
48
22.991202
https://avatars.githubusercontent.com/u/116846391?v=4
Hamilton helps data scientists and engineers define testable, modular, self-documenting dataflows, that encode lineage and metadata. Runs and scales everywhere python does.
['dag', 'data-analysis', 'data-engineering', 'data-science', 'dataframe', 'etl', 'etl-framework', 'etl-pipeline', 'feature-engineering', 'featurization', 'lineage', 'llmops', 'machine-learning', 'mlops', 'numpy', 'orchestration', 'pandas', 'software-engineering']
['dag', 'data-analysis', 'data-engineering', 'data-science', 'dataframe', 'etl', 'etl-framework', 'etl-pipeline', 'feature-engineering', 'featurization', 'lineage', 'llmops', 'machine-learning', 'mlops', 'numpy', 'orchestration', 'pandas', 'software-engineering']
2024-01-13
[('python-odin/odin', 0.6443514227867126, 'util', 0), ('polyaxon/datatile', 0.6286333203315735, 'pandas', 3), ('orchest/orchest', 0.6139141917228699, 'ml-ops', 5), ('mage-ai/mage-ai', 0.6080176830291748, 'ml-ops', 5), ('ploomber/ploomber', 0.6052381992340088, 'ml-ops', 4), ('fastai/fastcore', 0.603600263595581, 'util', 0), ('krzjoa/awesome-python-data-science', 0.5971183776855469, 'study', 3), ('airbytehq/airbyte', 0.5934673547744751, 'data', 3), ('dagster-io/dagster', 0.5917893052101135, 'ml-ops', 5), ('merantix-momentum/squirrel-core', 0.5907508730888367, 'ml', 2), ('fugue-project/fugue', 0.5906447768211365, 'pandas', 2), ('pandas-dev/pandas', 0.590579092502594, 'pandas', 4), ('plotly/dash', 0.5894344449043274, 'viz', 1), ('backtick-se/cowait', 0.5880764722824097, 'util', 2), ('avaiga/taipy', 0.5867727994918823, 'data', 3), ('meltano/meltano', 0.5787143111228943, 'ml-ops', 1), ('wandb/client', 0.5770619511604309, 'ml', 3), ('hi-primus/optimus', 0.5767509341239929, 'ml-ops', 3), ('kestra-io/kestra', 0.5751848816871643, 'ml-ops', 3), ('eventual-inc/daft', 0.5710514783859253, 'pandas', 4), ('gradio-app/gradio', 0.5623276233673096, 'viz', 3), ('dylanhogg/awesome-python', 0.5567782521247864, 'study', 3), ('eleutherai/pyfra', 0.5552157163619995, 'ml', 0), ('polyaxon/polyaxon', 0.5525692701339722, 'ml-ops', 3), ('flyteorg/flyte', 0.549081027507782, 'ml-ops', 4), ('kubeflow-kale/kale', 0.5480688214302063, 'ml-ops', 1), ('ydataai/ydata-profiling', 0.5421671867370605, 'pandas', 4), ('featurelabs/featuretools', 0.5415907502174377, 'ml', 3), ('unionai-oss/pandera', 0.5392426252365112, 'pandas', 1), ('goldmansachs/gs-quant', 0.5357715487480164, 'finance', 0), ('huggingface/datasets', 0.5354235172271729, 'nlp', 3), ('google/pyglove', 0.5348206162452698, 'util', 1), ('thealgorithms/python', 0.5340306162834167, 'study', 0), ('pytoolz/toolz', 0.5323624014854431, 'util', 0), ('malloydata/malloy-py', 0.532253086566925, 'data', 0), ('pathwaycom/pathway', 0.5315225720405579, 'data', 1), ('rasbt/mlxtend', 0.5286049842834473, 'ml', 2), ('google/ml-metadata', 0.5270819664001465, 'ml-ops', 0), ('ranaroussi/quantstats', 0.5268656015396118, 'finance', 0), ('kubeflow/fairing', 0.5266019105911255, 'ml-ops', 0), ('man-group/dtale', 0.525833010673523, 'viz', 3), ('selfexplainml/piml-toolbox', 0.5237611532211304, 'ml-interpretability', 0), ('firmai/industry-machine-learning', 0.5236888527870178, 'study', 2), ('thoth-station/micropipenv', 0.522192656993866, 'util', 0), ('netflix/metaflow', 0.519896924495697, 'ml-ops', 3), ('epistasislab/tpot', 0.5198063850402832, 'ml', 3), ('holoviz/panel', 0.5194111466407776, 'viz', 0), ('great-expectations/great_expectations', 0.5179693102836609, 'ml-ops', 3), ('spotify/luigi', 0.5168716907501221, 'ml-ops', 0), ('scikit-mobility/scikit-mobility', 0.5164218544960022, 'gis', 2), ('tobymao/sqlglot', 0.5160204768180847, 'data', 0), ('scikit-learn/scikit-learn', 0.514525830745697, 'ml', 3), ('mlflow/mlflow', 0.5135458111763, 'ml-ops', 1), ('lk-geimfari/mimesis', 0.5131853222846985, 'data', 2), ('whylabs/whylogs', 0.5131041407585144, 'util', 3), ('keon/algorithms', 0.5108981728553772, 'util', 0), ('pythagora-io/gpt-pilot', 0.510085940361023, 'llm', 0), ('apache/airflow', 0.5085076093673706, 'ml-ops', 7), ('googlecloudplatform/vertex-ai-samples', 0.5069316625595093, 'ml', 2), ('ibis-project/ibis', 0.5063190460205078, 'data', 1), ('pypa/pipenv', 0.5052401423454285, 'util', 0), ('linealabs/lineapy', 0.5050464868545532, 'jupyter', 0), ('dlt-hub/dlt', 0.5049058198928833, 'data', 1), ('saulpw/visidata', 0.5007401704788208, 'term', 1)]
40
3
null
12.56
185
148
11
0
55
84
55
186
240
90
1.3
56
1,875
llm
https://github.com/agenta-ai/agenta
['llmops']
null
[]
[]
null
null
null
agenta-ai/agenta
agenta
623
126
13
Python
http://www.agenta.ai
The all-in-one LLMOps platform: prompt management, evaluation, human feedback, and deployment all in one place.
agenta-ai
2024-01-14
2023-04-26
39
15.630824
https://avatars.githubusercontent.com/u/127993667?v=4
The all-in-one LLMOps platform: prompt management, evaluation, human feedback, and deployment all in one place.
['langchain', 'large-language-models', 'llama-index', 'llm', 'llm-evaluation', 'llm-framework', 'llm-tools', 'llmops', 'llms', 'prompt-engineering', 'prompt-management', 'prompt-toolkit', 'rag', 'rag-evaluation']
['langchain', 'large-language-models', 'llama-index', 'llm', 'llm-evaluation', 'llm-framework', 'llm-tools', 'llmops', 'llms', 'prompt-engineering', 'prompt-management', 'prompt-toolkit', 'rag', 'rag-evaluation']
2024-01-12
[('confident-ai/deepeval', 0.690017819404602, 'testing', 3), ('hegelai/prompttools', 0.6764405965805054, 'llm', 3), ('eugeneyan/open-llms', 0.6486678719520569, 'study', 3), ('hwchase17/langchain', 0.6438751816749573, 'llm', 1), ('alpha-vllm/llama2-accessory', 0.6384699940681458, 'llm', 0), ('bentoml/openllm', 0.6264759302139282, 'ml-ops', 2), ('argilla-io/argilla', 0.6207625269889832, 'nlp', 2), ('microsoft/promptflow', 0.6172305941581726, 'llm', 2), ('citadel-ai/langcheck', 0.613926351070404, 'llm', 0), ('young-geng/easylm', 0.6034758687019348, 'llm', 1), ('h2oai/h2o-llmstudio', 0.6011561751365662, 'llm', 1), ('promptslab/promptify', 0.5992403030395508, 'nlp', 3), ('deepset-ai/haystack', 0.5929967761039734, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5762568116188049, 'llm', 1), ('guidance-ai/guidance', 0.5751789808273315, 'llm', 1), ('nomic-ai/gpt4all', 0.5681662559509277, 'llm', 0), ('salesforce/xgen', 0.5658103227615356, 'llm', 2), ('hiyouga/llama-factory', 0.5645887851715088, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.5645886659622192, 'llm', 3), ('pathwaycom/llm-app', 0.5643110275268555, 'llm', 3), ('tigerlab-ai/tiger', 0.5620597004890442, 'llm', 3), ('bigscience-workshop/petals', 0.5601279735565186, 'data', 1), ('lm-sys/fastchat', 0.5597670674324036, 'llm', 0), ('deep-diver/pingpong', 0.557935893535614, 'llm', 0), ('microsoft/lmops', 0.5574962496757507, 'llm', 1), ('microsoft/autogen', 0.557157039642334, 'llm', 2), ('openai/evals', 0.5553388595581055, 'llm', 0), ('mooler0410/llmspracticalguide', 0.5545148849487305, 'study', 1), ('neulab/prompt2model', 0.5488535761833191, 'llm', 0), ('nat/openplayground', 0.5450541973114014, 'llm', 0), ('salesforce/codet5', 0.5426530241966248, 'nlp', 1), ('intel/intel-extension-for-transformers', 0.5398895144462585, 'perf', 0), ('night-chen/toolqa', 0.539746880531311, 'llm', 1), ('run-llama/llama-lab', 0.5381309986114502, 'llm', 1), ('conceptofmind/toolformer', 0.5377708673477173, 'llm', 0), ('promptslab/awesome-prompt-engineering', 0.53215092420578, 'study', 2), ('nebuly-ai/nebullvm', 0.5309828519821167, 'perf', 2), ('microsoft/promptcraft-robotics', 0.5304033756256104, 'sim', 2), ('langchain-ai/langsmith-cookbook', 0.5301238894462585, 'llm', 0), ('explosion/spacy-llm', 0.5294641256332397, 'llm', 3), ('lianjiatech/belle', 0.5287581086158752, 'llm', 0), ('microsoft/torchscale', 0.5262821912765503, 'llm', 0), ('bigscience-workshop/promptsource', 0.52383953332901, 'nlp', 0), ('openbmb/toolbench', 0.5236167907714844, 'llm', 0), ('ibm/dromedary', 0.5226309895515442, 'llm', 0), ('ai21labs/lm-evaluation', 0.5219810009002686, 'llm', 0), ('alphasecio/langchain-examples', 0.5152485370635986, 'llm', 2), ('langchain-ai/langgraph', 0.5138852000236511, 'llm', 1), ('epfllm/meditron', 0.5137256979942322, 'llm', 0), ('ray-project/ray-llm', 0.5125582218170166, 'llm', 3), ('ajndkr/lanarky', 0.5057575702667236, 'llm', 1), ('iryna-kondr/scikit-llm', 0.5052707195281982, 'llm', 1), ('next-gpt/next-gpt', 0.503362774848938, 'llm', 2), ('hazyresearch/ama_prompting', 0.5027536153793335, 'llm', 1), ('deep-diver/llm-as-chatbot', 0.5022589564323425, 'llm', 0)]
55
5
null
73.85
505
427
9
0
55
74
55
507
448
90
0.9
56
943
ml
https://github.com/lutzroeder/netron
[]
null
[]
[]
null
null
null
lutzroeder/netron
netron
25,153
2,629
296
JavaScript
https://netron.app
Visualizer for neural network, deep learning and machine learning models
lutzroeder
2024-01-14
2010-12-26
683
36.811834
null
Visualizer for neural network, deep learning and machine learning models
['ai', 'caffe', 'caffe2', 'coreml', 'darknet', 'deep-learning', 'deeplearning', 'keras', 'machine-learning', 'machinelearning', 'ml', 'mxnet', 'neural-network', 'onnx', 'paddle', 'pytorch', 'tensorflow', 'tensorflow-lite', 'torch', 'visualizer']
['ai', 'caffe', 'caffe2', 'coreml', 'darknet', 'deep-learning', 'deeplearning', 'keras', 'machine-learning', 'machinelearning', 'ml', 'mxnet', 'neural-network', 'onnx', 'paddle', 'pytorch', 'tensorflow', 'tensorflow-lite', 'torch', 'visualizer']
2024-01-14
[('neuralmagic/sparseml', 0.6401857137680054, 'ml-dl', 4), ('roboflow/supervision', 0.6290085911750793, 'ml', 4), ('onnx/onnx', 0.616361141204834, 'ml', 9), ('mosaicml/composer', 0.6044427156448364, 'ml-dl', 4), ('rwightman/pytorch-image-models', 0.601951003074646, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.6000135540962219, 'ml', 1), ('huggingface/datasets', 0.5983027219772339, 'nlp', 4), ('polyaxon/polyaxon', 0.5946682095527649, 'ml-ops', 8), ('tensorflow/lucid', 0.5944969654083252, 'ml-interpretability', 2), ('activeloopai/deeplake', 0.5856375694274902, 'ml-ops', 6), ('nvidia/deeplearningexamples', 0.5856183767318726, 'ml-dl', 4), ('nyandwi/modernconvnets', 0.584083616733551, 'ml-dl', 2), ('neuralmagic/deepsparse', 0.5835353136062622, 'nlp', 2), ('pytorch/ignite', 0.5811353325843811, 'ml-dl', 4), ('huggingface/exporters', 0.5719174742698669, 'ml', 5), ('tensorflow/tensorflow', 0.571031391620636, 'ml-dl', 5), ('districtdatalabs/yellowbrick', 0.570451557636261, 'ml', 2), ('explosion/thinc', 0.5670014023780823, 'ml-dl', 6), ('microsoft/onnxruntime', 0.5668833255767822, 'ml', 5), ('aleju/imgaug', 0.5660139322280884, 'ml', 2), ('wandb/client', 0.5644053816795349, 'ml', 5), ('deci-ai/super-gradients', 0.5625087022781372, 'ml-dl', 3), ('bentoml/bentoml', 0.5586127042770386, 'ml-ops', 3), ('tensorflow/tensor2tensor', 0.5569348335266113, 'ml', 2), ('keras-team/keras', 0.5549449920654297, 'ml-dl', 4), ('man-group/dtale', 0.5549408793449402, 'viz', 0), ('determined-ai/determined', 0.5507928729057312, 'ml-ops', 5), ('open-mmlab/mmediting', 0.5503832101821899, 'ml', 2), ('xl0/lovely-tensors', 0.549081027507782, 'ml-dl', 2), ('christoschristofidis/awesome-deep-learning', 0.5479288101196289, 'study', 3), ('keras-team/autokeras', 0.5447315573692322, 'ml-dl', 4), ('pyg-team/pytorch_geometric', 0.5430858731269836, 'ml-dl', 2), ('towhee-io/towhee', 0.5428910851478577, 'ml-ops', 1), ('harisiqbal88/plotneuralnet', 0.542097270488739, 'ml', 0), ('oegedijk/explainerdashboard', 0.54157954454422, 'ml-interpretability', 0), ('tensorlayer/tensorlayer', 0.5410547256469727, 'ml-rl', 3), ('nvlabs/gcvit', 0.5401598811149597, 'diffusion', 1), ('ludwig-ai/ludwig', 0.5391374230384827, 'ml-ops', 7), ('danielegrattarola/spektral', 0.5387458205223083, 'ml-dl', 3), ('keras-team/keras-cv', 0.5374981760978699, 'ml-dl', 1), ('ashleve/lightning-hydra-template', 0.5372906923294067, 'util', 2), ('hysts/pytorch_image_classification', 0.5342903137207031, 'ml-dl', 1), ('tensorflow/addons', 0.5334285497665405, 'ml', 4), ('awslabs/autogluon', 0.5327269434928894, 'ml', 3), ('fepegar/torchio', 0.531164288520813, 'ml-dl', 3), ('microsoft/nni', 0.5304214954376221, 'ml', 5), ('horovod/horovod', 0.5276727080345154, 'ml-ops', 8), ('intel/intel-extension-for-pytorch', 0.5267831683158875, 'perf', 4), ('opentensor/bittensor', 0.5261327028274536, 'ml', 5), ('huggingface/transformers', 0.5258775949478149, 'nlp', 4), ('rafiqhasan/auto-tensorflow', 0.5258046388626099, 'ml-dl', 4), ('skorch-dev/skorch', 0.5238518714904785, 'ml-dl', 2), ('lucidrains/imagen-pytorch', 0.52129065990448, 'ml-dl', 1), ('gradio-app/gradio', 0.520858645439148, 'viz', 2), ('polyaxon/datatile', 0.5207769274711609, 'pandas', 2), ('lightly-ai/lightly', 0.5200084447860718, 'ml', 3), ('albumentations-team/albumentations', 0.5197222828865051, 'ml-dl', 2), ('docarray/docarray', 0.51971834897995, 'data', 3), ('google-research/deeplab2', 0.5186880826950073, 'ml', 0), ('rasbt/machine-learning-book', 0.5182120203971863, 'study', 3), ('cvxgrp/pymde', 0.5167331695556641, 'ml', 2), ('mlflow/mlflow', 0.5155205726623535, 'ml-ops', 3), ('stellargraph/stellargraph', 0.514754056930542, 'graph', 2), ('amanchadha/coursera-deep-learning-specialization', 0.5117756128311157, 'study', 2), ('microsoft/deepspeed', 0.5104838609695435, 'ml-dl', 3), ('pytorchlightning/pytorch-lightning', 0.5080562829971313, 'ml-dl', 4), ('microsoft/torchgeo', 0.5072435140609741, 'gis', 2), ('ray-project/ray', 0.5069729685783386, 'ml-ops', 4), ('interpretml/interpret', 0.5063915848731995, 'ml-interpretability', 2), ('open-mmlab/mmsegmentation', 0.5060480237007141, 'ml', 1), ('apple/coremltools', 0.5053067803382874, 'ml', 4), ('hpcaitech/colossalai', 0.5051214098930359, 'llm', 2), ('tensorly/tensorly', 0.5027545094490051, 'ml-dl', 4), ('mrdbourke/pytorch-deep-learning', 0.5020248889923096, 'study', 3), ('kevinmusgrave/pytorch-metric-learning', 0.5019212365150452, 'ml', 3), ('googlecloudplatform/vertex-ai-samples', 0.5002110004425049, 'ml', 2)]
1
1
null
21.67
76
65
159
0
2
0
2
76
87
90
1.1
55
423
ml-dl
https://github.com/albumentations-team/albumentations
[]
null
[]
[]
null
null
null
albumentations-team/albumentations
albumentations
13,001
1,564
130
Python
https://albumentations.ai
Fast image augmentation library and an easy-to-use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about the library: https://www.mdpi.com/2078-2489/11/2/125
albumentations-team
2024-01-13
2018-06-06
294
44.092539
https://avatars.githubusercontent.com/u/57894582?v=4
Fast image augmentation library and an easy-to-use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about the library: https://www.mdpi.com/2078-2489/11/2/125
['augmentation', 'deep-learning', 'detection', 'fast-augmentations', 'image-augmentation', 'image-classification', 'image-processing', 'image-segmentation', 'machine-learning', 'object-detection', 'segmentation']
['augmentation', 'deep-learning', 'detection', 'fast-augmentations', 'image-augmentation', 'image-classification', 'image-processing', 'image-segmentation', 'machine-learning', 'object-detection', 'segmentation']
2023-12-07
[('mdbloice/augmentor', 0.6705105900764465, 'ml', 3), ('facebookresearch/augly', 0.6632611751556396, 'data', 0), ('aleju/imgaug', 0.6503161787986755, 'ml', 4), ('open-mmlab/mmediting', 0.5985205769538879, 'ml', 2), ('fepegar/torchio', 0.5927706956863403, 'ml-dl', 3), ('deci-ai/super-gradients', 0.5558651685714722, 'ml-dl', 3), ('project-monai/monai', 0.5541568994522095, 'ml', 1), ('fourthbrain/fastapi-for-machine-learning-live-demo', 0.5520427823066711, 'web', 0), ('visual-layer/fastdup', 0.5445998311042786, 'ml', 5), ('neuralmagic/sparseml', 0.5420981645584106, 'ml-dl', 2), ('lightly-ai/lightly', 0.5409029126167297, 'ml', 2), ('rom1504/clip-retrieval', 0.5307724475860596, 'ml', 1), ('lutzroeder/netron', 0.5197222828865051, 'ml', 2), ('nvlabs/gcvit', 0.5185796618461609, 'diffusion', 2), ('sanster/lama-cleaner', 0.515965461730957, 'ml-dl', 0), ('roboflow/supervision', 0.5144950151443481, 'ml', 4), ('open-mmlab/mmsegmentation', 0.5108982920646667, 'ml', 1), ('google-research/deeplab2', 0.5106143355369568, 'ml', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5062373876571655, 'ml', 2), ('azavea/raster-vision', 0.50620436668396, 'gis', 3), ('keras-team/autokeras', 0.5026241540908813, 'ml-dl', 2), ('kornia/kornia', 0.5021526217460632, 'ml-dl', 3)]
133
3
null
0.35
41
15
68
1
1
3
1
41
31
90
0.8
55
647
profiling
https://github.com/benfred/py-spy
[]
null
[]
[]
null
null
null
benfred/py-spy
py-spy
11,366
429
112
Rust
null
Sampling profiler for Python programs
benfred
2024-01-13
2018-08-01
286
39.62251
null
Sampling profiler for Python programs
['performance-analysis', 'profiler', 'profiling']
['performance-analysis', 'profiler', 'profiling']
2023-12-16
[('pythonspeed/filprofiler', 0.7144114971160889, 'profiling', 0), ('pyutils/line_profiler', 0.6891393065452576, 'profiling', 0), ('sumerc/yappi', 0.6047118902206421, 'profiling', 0), ('p403n1x87/austin', 0.5970548987388611, 'profiling', 1), ('joerick/pyinstrument', 0.5834751129150391, 'profiling', 1), ('pympler/pympler', 0.5802413821220398, 'perf', 0), ('klen/py-frameworks-bench', 0.5661771297454834, 'perf', 0), ('jiffyclub/snakeviz', 0.5489193797111511, 'profiling', 0), ('plasma-umass/scalene', 0.533981204032898, 'profiling', 3), ('pythonprofilers/memory_profiler', 0.5219977498054504, 'profiling', 0), ('csurfer/pyheat', 0.5209768414497375, 'profiling', 1), ('lcompilers/lpython', 0.5141026377677917, 'util', 0), ('google/pytype', 0.5136662721633911, 'typing', 0), ('nedbat/coveragepy', 0.5097211599349976, 'testing', 0), ('ionelmc/pytest-benchmark', 0.5037754774093628, 'testing', 0)]
37
3
null
0.46
48
16
66
1
0
6
6
48
41
90
0.9
55
1,119
data
https://github.com/coleifer/peewee
[]
null
[]
[]
null
null
null
coleifer/peewee
peewee
10,573
1,373
198
Python
http://docs.peewee-orm.com/
a small, expressive orm -- supports postgresql, mysql, sqlite and cockroachdb
coleifer
2024-01-13
2010-10-11
694
15.231735
null
a small, expressive orm -- supports postgresql, mysql, sqlite and cockroachdb
['dank', 'gametight', 'peewee', 'sqlite']
['dank', 'gametight', 'peewee', 'sqlite']
2024-01-05
[('mcfunley/pugsql', 0.6096048951148987, 'data', 0), ('ibis-project/ibis', 0.5938148498535156, 'data', 1), ('tiangolo/sqlmodel', 0.5841237306594849, 'data', 0), ('tiangolo/full-stack-fastapi-postgresql', 0.5561289191246033, 'template', 0), ('piccolo-orm/piccolo_admin', 0.5553250908851624, 'data', 1), ('aio-libs/aiopg', 0.5507586002349854, 'data', 0), ('tobymao/sqlglot', 0.5414004325866699, 'data', 1), ('airbytehq/airbyte', 0.53973788022995, 'data', 0), ('simonw/datasette', 0.5180539488792419, 'data', 1), ('zenodo/zenodo', 0.5084249377250671, 'util', 0), ('lancedb/lancedb', 0.5083345770835876, 'data', 0)]
153
3
null
1.83
42
42
161
0
5
14
5
42
84
90
2
55
5
web
https://github.com/benoitc/gunicorn
[]
null
[]
[]
null
null
null
benoitc/gunicorn
gunicorn
9,324
1,706
225
Python
http://www.gunicorn.org
gunicorn 'Green Unicorn' is a WSGI HTTP Server for UNIX, fast clients and sleepy applications.
benoitc
2024-01-14
2009-11-30
739
12.614612
null
gunicorn 'Green Unicorn' is a WSGI HTTP Server for UNIX, fast clients and sleepy applications.
['http', 'http-server', 'wsgi', 'wsgi-server']
['http', 'http-server', 'wsgi', 'wsgi-server']
2024-01-05
[('pallets/werkzeug', 0.6659462451934814, 'web', 2), ('pylons/waitress', 0.6345184445381165, 'web', 2), ('bottlepy/bottle', 0.6153336763381958, 'web', 1), ('cherrypy/cherrypy', 0.5961728096008301, 'web', 2), ('pallets/flask', 0.5726903676986694, 'web', 1), ('pylons/pyramid', 0.5611777305603027, 'web', 1), ('encode/uvicorn', 0.5551705360412598, 'web', 2), ('neoteroi/blacksheep', 0.542283296585083, 'web', 2), ('encode/httpx', 0.5388432145118713, 'web', 1), ('falconry/falcon', 0.5321671366691589, 'web', 2), ('pylons/webob', 0.5041623711585999, 'web', 1), ('klen/muffin', 0.5010045766830444, 'web', 0)]
417
6
null
1.42
162
80
172
0
3
7
3
162
190
90
1.2
55
1,332
nlp
https://github.com/google/sentencepiece
['word-segmentation', 'tokeniser']
null
[]
[]
1
null
null
google/sentencepiece
sentencepiece
8,799
1,078
125
C++
null
Unsupervised text tokenizer for Neural Network-based text generation.
google
2024-01-14
2017-03-07
360
24.441667
https://avatars.githubusercontent.com/u/1342004?v=4
Unsupervised text tokenizer for Neural Network-based text generation.
['natural-language-processing', 'neural-machine-translation', 'word-segmentation']
['natural-language-processing', 'neural-machine-translation', 'tokeniser', 'word-segmentation']
2024-01-14
[('minimaxir/textgenrnn', 0.6446799635887146, 'nlp', 0), ('huggingface/text-generation-inference', 0.607265830039978, 'llm', 0), ('google-research/electra', 0.5957339406013489, 'ml-dl', 0), ('lucidrains/deep-daze', 0.5594016909599304, 'ml', 0), ('sharonzhou/long_stable_diffusion', 0.5528421401977539, 'diffusion', 0), ('minimaxir/aitextgen', 0.5358452796936035, 'llm', 0), ('infinitylogesh/mutate', 0.5126572847366333, 'nlp', 0)]
81
4
null
1.31
65
46
83
0
3
4
3
65
68
90
1
55
1,195
llm
https://github.com/thudm/codegeex
[]
null
[]
[]
null
null
null
thudm/codegeex
CodeGeeX
7,468
525
78
Python
https://codegeex.cn
CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)
thudm
2024-01-13
2022-09-17
71
104.552
https://avatars.githubusercontent.com/u/48590610?v=4
CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)
['code-generation', 'pretrained-models', 'tools']
['code-generation', 'pretrained-models', 'tools']
2023-08-04
[('salesforce/codet5', 0.6897627115249634, 'nlp', 1), ('salesforce/codegen', 0.6133092045783997, 'nlp', 0), ('bigcode-project/starcoder', 0.5817055106163025, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5676085948944092, 'llm', 0), ('conceptofmind/toolformer', 0.5580187439918518, 'llm', 0), ('asottile/pyupgrade', 0.5523767471313477, 'util', 0), ('neulab/prompt2model', 0.525926411151886, 'llm', 0), ('microsoft/pycodegpt', 0.5184867978096008, 'llm', 1), ('yueyu1030/attrprompt', 0.510209858417511, 'llm', 0), ('guidance-ai/guidance', 0.5090668201446533, 'llm', 0), ('pre-commit/pre-commit', 0.5082143545150757, 'util', 0), ('lianjiatech/belle', 0.5078340172767639, 'llm', 0), ('ravenscroftj/turbopilot', 0.5072124600410461, 'llm', 0), ('lupantech/chameleon-llm', 0.5048568844795227, 'llm', 0), ('juncongmoo/pyllama', 0.503732442855835, 'llm', 0), ('salesforce/xgen', 0.5032574534416199, 'llm', 0), ('thudm/glm-130b', 0.5032495856285095, 'llm', 0), ('openai/finetune-transformer-lm', 0.5009891390800476, 'llm', 0), ('yizhongw/self-instruct', 0.5008969902992249, 'llm', 0)]
13
6
null
0.9
25
2
16
5
0
0
0
25
15
90
0.6
55
1,372
web
https://github.com/reactive-python/reactpy
[]
ReactPy is a library for building user interfaces in Python without Javascript
[]
[]
null
null
null
reactive-python/reactpy
reactpy
7,438
363
58
Python
https://reactpy.dev
It's React, but in Python
reactive-python
2024-01-13
2019-02-19
258
28.829457
https://avatars.githubusercontent.com/u/106191177?v=4
It's React, but in Python
['javascript', 'react', 'reactpy']
['javascript', 'react', 'reactpy']
2023-12-28
[('r0x0r/pywebview', 0.5532059073448181, 'gui', 1), ('webpy/webpy', 0.5520175695419312, 'web', 0), ('pyodide/pyodide', 0.5306482911109924, 'util', 0), ('urwid/urwid', 0.5233248472213745, 'term', 0)]
21
4
null
2.15
35
12
60
1
12
23
12
35
50
90
1.4
55
680
util
https://github.com/py-pdf/pypdf2
[]
null
[]
[]
null
null
null
py-pdf/pypdf2
pypdf
6,900
1,301
148
Python
https://pypdf.readthedocs.io/en/latest/
A pure-python PDF library capable of splitting, merging, cropping, and transforming the pages of PDF files
py-pdf
2024-01-14
2012-01-06
629
10.959837
https://avatars.githubusercontent.com/u/102914013?v=4
A pure-python PDF library capable of splitting, merging, cropping, and transforming the pages of PDF files
['help-wanted', 'pdf', 'pdf-documents', 'pdf-manipulation', 'pdf-parser', 'pdf-parsing', 'pypdf2']
['help-wanted', 'pdf', 'pdf-documents', 'pdf-manipulation', 'pdf-parser', 'pdf-parsing', 'pypdf2']
2024-01-11
[('pyfpdf/fpdf2', 0.6898808479309082, 'util', 1), ('jorisschellekens/borb', 0.6551130414009094, 'util', 1), ('camelot-dev/camelot', 0.6539286971092224, 'util', 0), ('pypdfium2-team/pypdfium2', 0.6358337998390198, 'util', 2), ('pdfminer/pdfminer.six', 0.5491688847541809, 'util', 1), ('unstructured-io/pipeline-paddleocr', 0.5316691398620605, 'data', 1)]
216
1
null
8.63
184
124
146
0
37
9
37
184
483
90
2.6
55
1,492
llm
https://github.com/bigcode-project/starcoder
['code-generation']
null
[]
[]
null
null
null
bigcode-project/starcoder
starcoder
6,776
476
65
Python
null
Home of StarCoder: fine-tuning & inference!
bigcode-project
2024-01-13
2023-04-24
40
168.797153
https://avatars.githubusercontent.com/u/110470554?v=4
Home of StarCoder: fine-tuning & inference!
[]
['code-generation']
2023-06-29
[('salesforce/codegen', 0.601254940032959, 'nlp', 0), ('huggingface/text-generation-inference', 0.5950606465339661, 'llm', 0), ('salesforce/codet5', 0.5859589576721191, 'nlp', 1), ('openai/image-gpt', 0.5846189260482788, 'llm', 0), ('thudm/codegeex', 0.5817055106163025, 'llm', 1), ('bytedance/lightseq', 0.5453761219978333, 'nlp', 0), ('microsoft/pycodegpt', 0.5438132882118225, 'llm', 1), ('deepmind/deepmind-research', 0.5220165252685547, 'ml', 0), ('facebookresearch/codellama', 0.5031982064247131, 'llm', 0)]
8
3
null
1.31
16
1
9
7
0
0
0
16
10
90
0.6
55
20
typing
https://github.com/facebook/pyre-check
['code-quality']
null
[]
[]
null
null
null
facebook/pyre-check
pyre-check
6,597
477
110
Python
https://pyre-check.org/
Performant type-checking for python.
facebook
2024-01-12
2017-11-10
324
20.325264
https://avatars.githubusercontent.com/u/69631?v=4
Performant type-checking for python.
['abstract-interpretation', 'code-quality', 'control-flow-analysis', 'ocaml', 'program-analysis', 'security', 'static-analysis', 'taint-analysis', 'type-check', 'typechecker']
['abstract-interpretation', 'code-quality', 'control-flow-analysis', 'ocaml', 'program-analysis', 'security', 'static-analysis', 'taint-analysis', 'type-check', 'typechecker']
2024-01-12
[('agronholm/typeguard', 0.8064729571342468, 'typing', 2), ('google/pytype', 0.7848848104476929, 'typing', 3), ('microsoft/pyright', 0.7650810480117798, 'typing', 2), ('instagram/monkeytype', 0.6643034815788269, 'typing', 1), ('python/mypy', 0.628227949142456, 'typing', 2), ('pydantic/pydantic', 0.6196001768112183, 'util', 0), ('patrick-kidger/torchtyping', 0.6189740300178528, 'typing', 0), ('rubik/radon', 0.6015112400054932, 'util', 1), ('landscapeio/prospector', 0.5935577154159546, 'util', 0), ('pycqa/mccabe', 0.5869566202163696, 'util', 0), ('pytoolz/toolz', 0.5858352184295654, 'util', 0), ('tiangolo/typer', 0.5768271088600159, 'term', 0), ('nedbat/coveragepy', 0.5666431784629822, 'testing', 0), ('pyupio/safety', 0.5607929229736328, 'security', 1), ('xrudelis/pytrait', 0.5590521693229675, 'util', 0), ('strawberry-graphql/strawberry', 0.5584018230438232, 'web', 0), ('python/typeshed', 0.5521007180213928, 'typing', 1), ('eugeneyan/python-collab-template', 0.5504177212715149, 'template', 0), ('aswinnnn/pyscan', 0.5478062033653259, 'security', 2), ('marshmallow-code/marshmallow', 0.5461035966873169, 'util', 0), ('pympler/pympler', 0.5445180535316467, 'perf', 0), ('pyston/pyston', 0.5409777760505676, 'util', 0), ('python-odin/odin', 0.5255442261695862, 'util', 0), ('pypy/pypy', 0.5224389433860779, 'util', 0), ('psf/black', 0.5206736922264099, 'util', 1), ('python-rope/rope', 0.5157984495162964, 'util', 0), ('python/cpython', 0.5143840312957764, 'util', 0), ('grantjenks/blue', 0.5125738382339478, 'util', 1), ('gaogaotiantian/viztracer', 0.5102528929710388, 'profiling', 0), ('pyeve/cerberus', 0.5100794434547424, 'data', 0), ('scikit-mobility/scikit-mobility', 0.5081936120986938, 'gis', 0), ('astral-sh/ruff', 0.5057628154754639, 'util', 2), ('pycqa/flake8', 0.5048815608024597, 'util', 2), ('facebookincubator/bowler', 0.5039924383163452, 'util', 0), ('cython/cython', 0.5014179944992065, 'util', 0)]
254
2
null
29.19
13
4
75
0
1
14
1
13
21
90
1.6
55
70
util
https://github.com/pygithub/pygithub
[]
null
[]
[]
null
null
null
pygithub/pygithub
PyGithub
6,469
1,713
111
Python
https://pygithub.readthedocs.io/
Typed interactions with the GitHub API v3
pygithub
2024-01-13
2012-02-25
622
10.39316
https://avatars.githubusercontent.com/u/11288996?v=4
Typed interactions with the GitHub API v3
['github', 'github-api', 'pygithub']
['github', 'github-api', 'pygithub']
2024-01-01
[('fastai/ghapi', 0.5488420724868774, 'util', 2)]
346
4
null
4
103
47
145
0
10
9
10
103
179
90
1.7
55
1,814
study
https://github.com/mrdbourke/pytorch-deep-learning
[]
null
[]
[]
null
null
null
mrdbourke/pytorch-deep-learning
pytorch-deep-learning
6,384
2,082
88
Jupyter Notebook
https://learnpytorch.io
Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.
mrdbourke
2024-01-14
2021-10-19
119
53.647059
null
Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.
['deep-learning', 'machine-learning', 'pytorch']
['deep-learning', 'machine-learning', 'pytorch']
2024-01-11
[('pytorch/ignite', 0.7811650037765503, 'ml-dl', 3), ('mrdbourke/tensorflow-deep-learning', 0.7342724800109863, 'study', 1), ('skorch-dev/skorch', 0.6955669522285461, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.6894313097000122, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.6849406957626343, 'study', 3), ('mrdbourke/zero-to-mastery-ml', 0.676668107509613, 'study', 2), ('nvidia/apex', 0.6514618396759033, 'ml-dl', 0), ('intel/intel-extension-for-pytorch', 0.6339874267578125, 'perf', 3), ('ageron/handson-ml2', 0.633056104183197, 'ml', 0), ('denys88/rl_games', 0.6325936913490295, 'ml-rl', 2), ('udacity/deep-learning-v2-pytorch', 0.6218847632408142, 'study', 2), ('d2l-ai/d2l-en', 0.6161856055259705, 'study', 3), ('pytorch/rl', 0.6149892210960388, 'ml-rl', 2), ('xl0/lovely-tensors', 0.613914966583252, 'ml-dl', 2), ('ashleve/lightning-hydra-template', 0.605148196220398, 'util', 2), ('udlbook/udlbook', 0.6033921837806702, 'study', 1), ('karpathy/micrograd', 0.602993369102478, 'study', 0), ('allenai/allennlp', 0.6028923988342285, 'nlp', 2), ('graykode/nlp-tutorial', 0.6003298163414001, 'study', 1), ('thu-ml/tianshou', 0.5997803211212158, 'ml-rl', 1), ('tensorlayer/tensorlayer', 0.5996901392936707, 'ml-rl', 1), ('intellabs/bayesian-torch', 0.5984524488449097, 'ml', 2), ('nicolas-chaulet/torch-points3d', 0.5965690016746521, 'ml', 0), ('facebookresearch/pytorch3d', 0.5950154066085815, 'ml-dl', 0), ('keras-team/keras', 0.5936383008956909, 'ml-dl', 3), ('pytorch/captum', 0.5934852361679077, 'ml-interpretability', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5927961468696594, 'study', 0), ('rentruewang/koila', 0.5876379609107971, 'ml', 3), ('davidadsp/generative_deep_learning_2nd_edition', 0.5829065442085266, 'study', 2), ('openai/spinningup', 0.580998420715332, 'study', 0), ('christoschristofidis/awesome-deep-learning', 0.5786244869232178, 'study', 2), ('huggingface/accelerate', 0.5736592411994934, 'ml', 0), ('pyro-ppl/pyro', 0.5717006325721741, 'ml-dl', 3), ('pytorch/data', 0.5634875893592834, 'data', 0), ('rasbt/deeplearning-models', 0.5607303977012634, 'ml-dl', 0), ('lucidrains/imagen-pytorch', 0.5554819703102112, 'ml-dl', 1), ('keras-rl/keras-rl', 0.554979681968689, 'ml-rl', 1), ('huggingface/transformers', 0.5548473596572876, 'nlp', 3), ('lightly-ai/lightly', 0.5538014769554138, 'ml', 3), ('tensorflow/tensor2tensor', 0.5526059865951538, 'ml', 2), ('horovod/horovod', 0.548136830329895, 'ml-ops', 3), ('ggerganov/ggml', 0.5461394190788269, 'ml', 1), ('pytorch/torchrec', 0.5445482730865479, 'ml-dl', 2), ('blackhc/toma', 0.5438900589942932, 'ml-dl', 2), ('salesforce/blip', 0.5360457897186279, 'diffusion', 0), ('amanchadha/coursera-deep-learning-specialization', 0.5357545614242554, 'study', 1), ('nvidia/deeplearningexamples', 0.5341781973838806, 'ml-dl', 2), ('humancompatibleai/imitation', 0.5296970009803772, 'ml-rl', 0), ('arogozhnikov/einops', 0.528740644454956, 'ml-dl', 2), ('laekov/fastmoe', 0.5278257131576538, 'ml', 0), ('hazyresearch/hgcn', 0.5278249979019165, 'ml', 0), ('huggingface/huggingface_hub', 0.5265445113182068, 'ml', 3), ('kshitij12345/torchnnprofiler', 0.5249190926551819, 'profiling', 0), ('tensorflow/tensorflow', 0.5236486196517944, 'ml-dl', 2), ('aistream-peelout/flow-forecast', 0.5234374403953552, 'time-series', 2), ('uber/petastorm', 0.5223989486694336, 'data', 3), ('karpathy/mingpt', 0.5222852230072021, 'llm', 0), ('microsoft/jarvis', 0.5219099521636963, 'llm', 2), ('nvlabs/gcvit', 0.520950198173523, 'diffusion', 1), ('pytorch/botorch', 0.5209388136863708, 'ml-dl', 0), ('rasbt/stat453-deep-learning-ss20', 0.5198850631713867, 'study', 0), ('whitead/dmol-book', 0.5192140340805054, 'ml-dl', 1), ('patchy631/machine-learning', 0.5156992673873901, 'ml', 0), ('neuralmagic/sparseml', 0.5144563317298889, 'ml-dl', 1), ('nyandwi/modernconvnets', 0.5134690999984741, 'ml-dl', 0), ('hysts/pytorch_image_classification', 0.5127461552619934, 'ml-dl', 1), ('dmlc/dgl', 0.5118030905723572, 'ml-dl', 1), ('determined-ai/determined', 0.5115607380867004, 'ml-ops', 3), ('mosaicml/composer', 0.5073535442352295, 'ml-dl', 3), ('rafiqhasan/auto-tensorflow', 0.5060444474220276, 'ml-dl', 1), ('cvxgrp/pymde', 0.5034160017967224, 'ml', 2), ('optimalscale/lmflow', 0.503092348575592, 'llm', 2), ('lutzroeder/netron', 0.5020248889923096, 'ml', 3), ('microsoft/deepspeed', 0.5005961656570435, 'ml-dl', 3), ('google-research/deeplab2', 0.5000344514846802, 'ml', 0)]
42
3
null
2.42
41
9
27
0
0
0
0
41
27
90
0.7
55
1,177
diffusion
https://github.com/openai/consistency_models
[]
null
[]
[]
null
null
null
openai/consistency_models
consistency_models
5,787
379
60
Python
null
Official repo for consistency models.
openai
2024-01-13
2023-02-26
48
119.849112
https://avatars.githubusercontent.com/u/14957082?v=4
Official repo for consistency models.
[]
[]
2023-08-12
[]
9
7
null
0.23
18
1
11
5
0
0
0
18
16
90
0.9
55
1,081
util
https://github.com/buildbot/buildbot
[]
null
[]
[]
null
null
null
buildbot/buildbot
buildbot
5,127
1,655
199
Python
https://www.buildbot.net
Python-based continuous integration testing framework; your pull requests are more than welcome!
buildbot
2024-01-14
2010-07-06
708
7.241525
https://avatars.githubusercontent.com/u/324515?v=4
Python-based continuous integration testing framework; your pull requests are more than welcome!
['ci', 'ci-framework', 'continuous-integration']
['ci', 'ci-framework', 'continuous-integration']
2024-01-09
[('eleutherai/pyfra', 0.6259655952453613, 'ml', 0), ('nedbat/coveragepy', 0.57981938123703, 'testing', 0), ('wolever/parameterized', 0.5751279592514038, 'testing', 0), ('willmcgugan/textual', 0.5555017590522766, 'term', 0), ('masoniteframework/masonite', 0.549967885017395, 'web', 0), ('cobrateam/splinter', 0.5403817296028137, 'testing', 0), ('tox-dev/tox', 0.5279530882835388, 'testing', 1), ('taverntesting/tavern', 0.5253430604934692, 'testing', 0), ('getsentry/responses', 0.5227794647216797, 'testing', 0), ('ethereum/web3.py', 0.5160036087036133, 'crypto', 0), ('google/gin-config', 0.5084891319274902, 'util', 0), ('pytest-dev/pytest-xdist', 0.5035778880119324, 'testing', 0)]
856
5
null
22.69
255
203
165
0
6
13
6
255
235
90
0.9
55
98
jupyter
https://github.com/voila-dashboards/voila
[]
null
[]
[]
null
null
null
voila-dashboards/voila
voila
5,051
487
77
Python
https://voila.readthedocs.io
Voilà turns Jupyter notebooks into standalone web applications
voila-dashboards
2024-01-14
2018-08-21
284
17.785211
https://avatars.githubusercontent.com/u/55792893?v=4
Voilà turns Jupyter notebooks into standalone web applications
['dashboarding', 'jupyter', 'jupyter-notebook', 'jupyterlab-extension']
['dashboarding', 'jupyter', 'jupyter-notebook', 'jupyterlab-extension']
2024-01-11
[('jupyterlab/jupyterlab-desktop', 0.7262636423110962, 'jupyter', 2), ('jupyter-widgets/ipywidgets', 0.7114137411117554, 'jupyter', 1), ('jupyter/notebook', 0.6948908567428589, 'jupyter', 2), ('jupyterlite/jupyterlite', 0.6913954615592957, 'jupyter', 2), ('aws/graph-notebook', 0.6807038187980652, 'jupyter', 2), ('mwouts/jupytext', 0.6650576591491699, 'jupyter', 2), ('jupyter/nbviewer', 0.6448253989219666, 'jupyter', 2), ('vizzuhq/ipyvizzu', 0.6425187587738037, 'jupyter', 2), ('maartenbreddels/ipyvolume', 0.6421133279800415, 'jupyter', 2), ('cohere-ai/notebooks', 0.60094153881073, 'llm', 0), ('jupyter/nbformat', 0.5947333574295044, 'jupyter', 0), ('holoviz/panel', 0.5938263535499573, 'viz', 1), ('jupyter/nbconvert', 0.5891522169113159, 'jupyter', 0), ('xiaohk/stickyland', 0.5852877497673035, 'jupyter', 2), ('jupyter/nbdime', 0.5848777890205383, 'jupyter', 3), ('jupyter-widgets/ipyleaflet', 0.5810590386390686, 'gis', 2), ('plotly/dash', 0.580794095993042, 'viz', 1), ('pallets/flask', 0.5802770256996155, 'web', 0), ('jupyterlab/jupyterlab', 0.5699175596237183, 'jupyter', 1), ('webpy/webpy', 0.5608404278755188, 'web', 0), ('ipython/ipyparallel', 0.5572918057441711, 'perf', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5473379492759705, 'jupyter', 3), ('plotly/plotly.py', 0.5468341112136841, 'viz', 1), ('mamba-org/gator', 0.5456347465515137, 'jupyter', 2), ('reflex-dev/reflex', 0.5454056859016418, 'web', 0), ('bloomberg/ipydatagrid', 0.5380343794822693, 'jupyter', 1), ('tkrabel/bamboolib', 0.5368069410324097, 'pandas', 1), ('bokeh/bokeh', 0.5361472368240356, 'viz', 1), ('ipython/ipykernel', 0.5356465578079224, 'util', 2), ('quantopian/qgrid', 0.5343106985092163, 'jupyter', 0), ('willmcgugan/textual', 0.5331439971923828, 'term', 0), ('giswqs/mapwidget', 0.5279869437217712, 'gis', 1), ('rapidsai/jupyterlab-nvdashboard', 0.5271745920181274, 'jupyter', 0), ('masoniteframework/masonite', 0.5220005512237549, 'web', 0), ('klen/muffin', 0.5211663246154785, 'web', 0), ('r0x0r/pywebview', 0.5208461880683899, 'gui', 0), ('opengeos/leafmap', 0.5204005241394043, 'gis', 2), ('computationalmodelling/nbval', 0.5194684267044067, 'jupyter', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5183944702148438, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.5165765881538391, 'study', 1), ('bottlepy/bottle', 0.5106417536735535, 'web', 0), ('pysimplegui/pysimplegui', 0.5095065236091614, 'gui', 0), ('cherrypy/cherrypy', 0.5070238709449768, 'web', 0), ('seleniumbase/seleniumbase', 0.5014607906341553, 'testing', 0)]
68
4
null
1.71
41
22
66
0
18
32
18
41
66
90
1.6
55
257
crypto
https://github.com/ethereum/web3.py
[]
null
[]
[]
1
null
null
ethereum/web3.py
web3.py
4,591
1,654
119
Python
http://web3py.readthedocs.io
A python interface for interacting with the Ethereum blockchain and ecosystem.
ethereum
2024-01-14
2016-04-14
406
11.288022
https://avatars.githubusercontent.com/u/6250754?v=4
A python interface for interacting with the Ethereum blockchain and ecosystem.
[]
[]
2024-01-10
[('primal100/pybitcointools', 0.6811222434043884, 'crypto', 0), ('ethereum/py-evm', 0.6437891721725464, 'crypto', 0), ('gbeced/basana', 0.6058024168014526, 'finance', 0), ('1200wd/bitcoinlib', 0.6057431101799011, 'crypto', 0), ('willmcgugan/textual', 0.5721923112869263, 'term', 0), ('gbeced/pyalgotrade', 0.570094883441925, 'finance', 0), ('pyston/pyston', 0.5668970942497253, 'util', 0), ('masoniteframework/masonite', 0.5657337307929993, 'web', 0), ('eleutherai/pyfra', 0.5655627250671387, 'ml', 0), ('bottlepy/bottle', 0.5624367594718933, 'web', 0), ('man-c/pycoingecko', 0.5624127388000488, 'crypto', 0), ('hydrosquall/tiingo-python', 0.5618115067481995, 'finance', 0), ('simple-salesforce/simple-salesforce', 0.5512309670448303, 'data', 0), ('hoffstadt/dearpygui', 0.5474371314048767, 'gui', 0), ('replicate/replicate-python', 0.5461574792861938, 'ml', 0), ('urwid/urwid', 0.5449756979942322, 'term', 0), ('robcarver17/pysystemtrade', 0.5425991415977478, 'finance', 0), ('falconry/falcon', 0.540778636932373, 'web', 0), ('requests/toolbelt', 0.5374890565872192, 'util', 0), ('pynamodb/pynamodb', 0.536690890789032, 'data', 0), ('pmaji/crypto-whale-watching-app', 0.5342921614646912, 'crypto', 0), ('secdev/scapy', 0.5224668383598328, 'util', 0), ('buildbot/buildbot', 0.5160036087036133, 'util', 0), ('pallets/flask', 0.5149424076080322, 'web', 0), ('amzn/ion-python', 0.5136985778808594, 'data', 0), ('scrapy/scrapy', 0.5123814344406128, 'data', 0), ('pytoolz/toolz', 0.5079506039619446, 'util', 0), ('webpy/webpy', 0.5061323046684265, 'web', 0), ('trailofbits/pip-audit', 0.5048879981040955, 'security', 0), ('nasdaq/data-link-python', 0.5034674406051636, 'finance', 0), ('cherrypy/cherrypy', 0.5029838681221008, 'web', 0), ('encode/httpx', 0.5025968551635742, 'web', 0), ('snyk-labs/pysnyk', 0.5023728013038635, 'security', 0)]
249
4
null
9.17
106
76
94
0
0
27
27
106
104
90
1
55
1,842
llm
https://github.com/langchain-ai/chat-langchain
['rag', 'question-answering', 'docs']
Locally hosted chatbot specifically focused on question answering over the LangChain documentation
[]
[]
null
null
null
langchain-ai/chat-langchain
chat-langchain
4,229
1,008
46
Python
https://chat.langchain.com
null
langchain-ai
2024-01-13
2023-01-16
54
78.108179
https://avatars.githubusercontent.com/u/126733545?v=4
Locally hosted chatbot specifically focused on question answering over the LangChain documentation
[]
['docs', 'question-answering', 'rag']
2024-01-11
[('lm-sys/fastchat', 0.628669023513794, 'llm', 0), ('togethercomputer/openchatkit', 0.6002198457717896, 'nlp', 0), ('embedchain/embedchain', 0.5953378677368164, 'llm', 0), ('nomic-ai/gpt4all', 0.594020426273346, 'llm', 0), ('mayooear/gpt4-pdf-chatbot-langchain', 0.5839036107063293, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5771211981773376, 'nlp', 0), ('hwchase17/langchain', 0.5708911418914795, 'llm', 0), ('openai/chatgpt-retrieval-plugin', 0.5608171820640564, 'llm', 0), ('rcgai/simplyretrieve', 0.5566864013671875, 'llm', 0), ('gkamradt/langchain-tutorials', 0.5390220284461975, 'study', 0), ('larsbaunwall/bricky', 0.5356094837188721, 'llm', 0), ('minimaxir/simpleaichat', 0.5350149273872375, 'llm', 0), ('fasteval/fasteval', 0.534351110458374, 'llm', 0), ('weaviate/verba', 0.5274889469146729, 'llm', 0), ('openlmlab/moss', 0.5243722200393677, 'llm', 0), ('deeppavlov/deeppavlov', 0.5239380598068237, 'nlp', 1), ('blinkdl/chatrwkv', 0.521385908126831, 'llm', 0), ('mlc-ai/web-llm', 0.5200137495994568, 'llm', 0), ('run-llama/rags', 0.5135616064071655, 'llm', 1), ('rasahq/rasa', 0.5066604614257812, 'llm', 0), ('thudm/chatglm2-6b', 0.5037407875061035, 'llm', 0), ('killianlucas/open-interpreter', 0.5030243396759033, 'llm', 0)]
16
1
null
2.63
51
35
12
0
0
0
0
51
56
90
1.1
55
1,239
llm
https://github.com/togethercomputer/redpajama-data
[]
null
[]
[]
null
null
null
togethercomputer/redpajama-data
RedPajama-Data
4,058
321
78
Python
null
The RedPajama-Data repository contains code for preparing large datasets for training large language models.
togethercomputer
2024-01-13
2023-04-14
41
97.61512
https://avatars.githubusercontent.com/u/109101822?v=4
The RedPajama-Data repository contains code for preparing large datasets for training large language models.
[]
[]
2023-12-27
[('hannibal046/awesome-llm', 0.6528944969177246, 'study', 0), ('yueyu1030/attrprompt', 0.6486657857894897, 'llm', 0), ('freedomintelligence/llmzoo', 0.6302767992019653, 'llm', 0), ('bigscience-workshop/biomedical', 0.6301681995391846, 'data', 0), ('eleutherai/the-pile', 0.6279685497283936, 'data', 0), ('cg123/mergekit', 0.6147141456604004, 'llm', 0), ('infinitylogesh/mutate', 0.6091659069061279, 'nlp', 0), ('ai21labs/lm-evaluation', 0.60612553358078, 'llm', 0), ('databrickslabs/dolly', 0.5899375677108765, 'llm', 0), ('lm-sys/fastchat', 0.5893017053604126, 'llm', 0), ('huggingface/text-generation-inference', 0.5783564448356628, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5778451561927795, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5702430605888367, 'llm', 0), ('lianjiatech/belle', 0.5700726509094238, 'llm', 0), ('openlm-research/open_llama', 0.5621833801269531, 'llm', 0), ('microsoft/lora', 0.5614542365074158, 'llm', 0), ('next-gpt/next-gpt', 0.5498401522636414, 'llm', 0), ('openai/finetune-transformer-lm', 0.5497167706489563, 'llm', 0), ('salesforce/xgen', 0.5379053950309753, 'llm', 0), ('prefecthq/langchain-prefect', 0.5340298414230347, 'llm', 0), ('bytedance/lightseq', 0.5332623720169067, 'nlp', 0), ('huawei-noah/pretrained-language-model', 0.5328022837638855, 'nlp', 0), ('juncongmoo/pyllama', 0.5303771495819092, 'llm', 0), ('baichuan-inc/baichuan-13b', 0.5299484729766846, 'llm', 0), ('srush/minichain', 0.5224243998527527, 'llm', 0), ('lupantech/chameleon-llm', 0.5191816687583923, 'llm', 0), ('princeton-nlp/alce', 0.5159098505973816, 'llm', 0), ('microsoft/autogen', 0.5106208920478821, 'llm', 0), ('microsoft/unilm', 0.5096539855003357, 'nlp', 0), ('ravenscroftj/turbopilot', 0.5085808038711548, 'llm', 0), ('oobabooga/text-generation-webui', 0.5050533413887024, 'llm', 0), ('optimalscale/lmflow', 0.5022752285003662, 'llm', 0)]
8
3
null
0.54
28
18
9
1
0
0
0
28
39
90
1.4
55
504
ml-ops
https://github.com/adap/flower
[]
null
[]
[]
null
null
null
adap/flower
flower
3,479
686
33
Python
https://flower.dev
Flower: A Friendly Federated Learning Framework
adap
2024-01-14
2020-02-17
206
16.876646
https://avatars.githubusercontent.com/u/57905187?v=4
Flower: A Friendly Federated Learning Framework
['ai', 'android', 'artificial-intelligence', 'cpp', 'deep-learning', 'federated-analytics', 'federated-learning', 'federated-learning-framework', 'fleet-intelligence', 'fleet-learning', 'flower', 'framework', 'grpc', 'ios', 'machine-learning', 'pytorch', 'raspberry-pi', 'scikit-learn', 'tensorflow']
['ai', 'android', 'artificial-intelligence', 'cpp', 'deep-learning', 'federated-analytics', 'federated-learning', 'federated-learning-framework', 'fleet-intelligence', 'fleet-learning', 'flower', 'framework', 'grpc', 'ios', 'machine-learning', 'pytorch', 'raspberry-pi', 'scikit-learn', 'tensorflow']
2024-01-08
[('nevronai/metisfl', 0.8411728739738464, 'ml', 6), ('jonasgeiping/breaching', 0.6508305668830872, 'ml', 3), ('horovod/horovod', 0.6284599304199219, 'ml-ops', 4), ('nccr-itmo/fedot', 0.618629515171051, 'ml-ops', 1), ('tensorflow/tensorflow', 0.6108560562133789, 'ml-dl', 3), ('mlflow/mlflow', 0.5906698107719421, 'ml-ops', 2), ('determined-ai/determined', 0.5839700698852539, 'ml-ops', 4), ('explosion/thinc', 0.5687860250473022, 'ml-dl', 6), ('onnx/onnx', 0.5646280646324158, 'ml', 5), ('polyaxon/polyaxon', 0.5568473935127258, 'ml-ops', 5), ('ml-tooling/opyrator', 0.5547651648521423, 'viz', 1), ('ai4finance-foundation/finrl', 0.551112949848175, 'finance', 0), ('gradio-app/gradio', 0.5504258871078491, 'viz', 2), ('merantix-momentum/squirrel-core', 0.5503032803535461, 'ml', 5), ('microsoft/onnxruntime', 0.5461448431015015, 'ml', 5), ('ludwig-ai/ludwig', 0.533837080001831, 'ml-ops', 3), ('alpa-projects/alpa', 0.5309455990791321, 'ml-dl', 2), ('tensorlayer/tensorlayer', 0.5287955403327942, 'ml-rl', 3), ('uber/petastorm', 0.5249413847923279, 'data', 4), ('nvidia/deeplearningexamples', 0.5243560671806335, 'ml-dl', 3), ('eventual-inc/daft', 0.5243489146232605, 'pandas', 2), ('bentoml/bentoml', 0.519675612449646, 'ml-ops', 3), ('microsoft/deepspeed', 0.5188344120979309, 'ml-dl', 3), ('apache/incubator-mxnet', 0.5179499387741089, 'ml-dl', 0), ('aiqc/aiqc', 0.5167785882949829, 'ml-ops', 0), ('googlecloudplatform/vertex-ai-samples', 0.5161627531051636, 'ml', 1), ('aimhubio/aim', 0.5154430270195007, 'ml-ops', 4), ('tensorly/tensorly', 0.5153002142906189, 'ml-dl', 3), ('operand/agency', 0.5125753283500671, 'llm', 4), ('dylanhogg/awesome-python', 0.510422945022583, 'study', 2), ('opentensor/bittensor', 0.5103121399879456, 'ml', 4), ('pytorchlightning/pytorch-lightning', 0.5078296065330505, 'ml-dl', 5), ('koaning/human-learn', 0.5073186755180359, 'data', 2), ('aws/sagemaker-python-sdk', 0.506871223449707, 'ml', 3), ('d2l-ai/d2l-en', 0.505675733089447, 'study', 4), ('uber/fiber', 0.505595326423645, 'data', 1), ('firmai/industry-machine-learning', 0.5053890347480774, 'study', 1), ('jina-ai/jina', 0.5048282146453857, 'ml', 4), ('deepmind/dm-haiku', 0.5038338303565979, 'ml-dl', 2), ('huggingface/huggingface_hub', 0.5031947493553162, 'ml', 3), ('deepmind/dm_control', 0.502716064453125, 'ml-rl', 3)]
97
3
null
14.02
360
260
48
0
5
4
5
359
210
90
0.6
55
1,710
perf
https://github.com/facebookincubator/cinder
['cpython']
null
[]
[]
null
null
null
facebookincubator/cinder
cinder
3,301
121
60
Python
https://trycinder.com
Cinder is Meta's internal performance-oriented production version of CPython.
facebookincubator
2024-01-14
2021-03-16
150
22.006667
https://avatars.githubusercontent.com/u/19538647?v=4
Cinder is Meta's internal performance-oriented production version of CPython.
['compiler', 'interpreter', 'jit', 'runtime']
['compiler', 'cpython', 'interpreter', 'jit', 'runtime']
2024-01-13
[('rustpython/rustpython', 0.5831960439682007, 'util', 3), ('python/cpython', 0.5806695222854614, 'util', 1), ('faster-cpython/ideas', 0.5721518397331238, 'perf', 1), ('faster-cpython/tools', 0.5622638463973999, 'perf', 1), ('pypy/pypy', 0.5570579767227173, 'util', 2), ('brandtbucher/specialist', 0.5538285374641418, 'perf', 1), ('cython/cython', 0.5495518445968628, 'util', 1), ('scikit-build/scikit-build', 0.5411034226417542, 'ml', 1), ('fastai/fastcore', 0.5330604910850525, 'util', 0), ('sumerc/yappi', 0.5309968590736389, 'profiling', 0), ('astral-sh/ruff', 0.5143499374389648, 'util', 0), ('p403n1x87/austin', 0.5041605830192566, 'profiling', 0)]
1,760
6
null
7.19
10
8
34
0
0
0
0
12
14
90
1.2
55
1,293
llm
https://github.com/microsoft/lmops
[]
null
[]
[]
null
null
null
microsoft/lmops
LMOps
2,828
192
55
Python
https://aka.ms/GeneralAI
General technology for enabling AI capabilities w/ LLMs and MLLMs
microsoft
2024-01-13
2022-12-13
59
47.932203
https://avatars.githubusercontent.com/u/6154722?v=4
General technology for enabling AI capabilities w/ LLMs and MLLMs
['agi', 'gpt', 'language-model', 'llm', 'lm', 'lmops', 'nlp', 'pretraining', 'prompt', 'promptist', 'x-prompt']
['agi', 'gpt', 'language-model', 'llm', 'lm', 'lmops', 'nlp', 'pretraining', 'prompt', 'promptist', 'x-prompt']
2024-01-02
[('mlc-ai/mlc-llm', 0.7063540816307068, 'llm', 2), ('microsoft/promptflow', 0.6579537987709045, 'llm', 3), ('prefecthq/marvin', 0.6434080600738525, 'nlp', 2), ('lastmile-ai/aiconfig', 0.6332518458366394, 'util', 1), ('bentoml/bentoml', 0.6321725249290466, 'ml-ops', 1), ('cheshire-cat-ai/core', 0.6224048137664795, 'llm', 1), ('operand/agency', 0.6131894588470459, 'llm', 2), ('microsoft/generative-ai-for-beginners', 0.6037994623184204, 'study', 2), ('pathwaycom/llm-app', 0.6022082567214966, 'llm', 1), ('microsoft/semantic-kernel', 0.6015781760215759, 'llm', 1), ('arize-ai/phoenix', 0.5890821814537048, 'ml-interpretability', 0), ('pytorchlightning/pytorch-lightning', 0.5851262211799622, 'ml-dl', 0), ('antonosika/gpt-engineer', 0.5837531089782715, 'llm', 0), ('microsoft/torchscale', 0.5832264423370361, 'llm', 0), ('bentoml/openllm', 0.581097424030304, 'ml-ops', 1), ('nebuly-ai/nebullvm', 0.5789636373519897, 'perf', 1), ('mindsdb/mindsdb', 0.5788654088973999, 'data', 2), ('lucidrains/toolformer-pytorch', 0.5752981901168823, 'llm', 1), ('torantulino/auto-gpt', 0.5733479261398315, 'llm', 0), ('ludwig-ai/ludwig', 0.5721259713172913, 'ml-ops', 1), ('argilla-io/argilla', 0.5673712491989136, 'nlp', 2), ('oneil512/insight', 0.5636782050132751, 'ml', 2), ('transformeroptimus/superagi', 0.5605264902114868, 'llm', 2), ('deepset-ai/haystack', 0.5590223073959351, 'llm', 2), ('agenta-ai/agenta', 0.5574962496757507, 'llm', 1), ('llmware-ai/llmware', 0.5573378205299377, 'llm', 1), ('microsoft/autogen', 0.555975079536438, 'llm', 1), ('sweepai/sweep', 0.5525568127632141, 'llm', 1), ('tigerlab-ai/tiger', 0.5503789186477661, 'llm', 1), ('microsoft/promptcraft-robotics', 0.5502687096595764, 'sim', 1), ('giskard-ai/giskard', 0.5501245260238647, 'data', 0), ('hegelai/prompttools', 0.5492219924926758, 'llm', 0), ('explosion/spacy-llm', 0.5478001832962036, 'llm', 2), ('promptslab/awesome-prompt-engineering', 0.538474440574646, 'study', 2), ('nccr-itmo/fedot', 0.5380227565765381, 'ml-ops', 0), ('hpcaitech/colossalai', 0.5340853929519653, 'llm', 0), ('mlflow/mlflow', 0.5320460200309753, 'ml-ops', 0), ('microsoft/jarvis', 0.5317671895027161, 'llm', 0), ('rasahq/rasa', 0.5303319096565247, 'llm', 1), ('chatarena/chatarena', 0.529494047164917, 'llm', 0), ('avaiga/taipy', 0.5267688632011414, 'data', 0), ('thilinarajapakse/simpletransformers', 0.5261474251747131, 'nlp', 0), ('young-geng/easylm', 0.5255038738250732, 'llm', 1), ('embedchain/embedchain', 0.5240100622177124, 'llm', 1), ('bigscience-workshop/petals', 0.5237755179405212, 'data', 2), ('googlecloudplatform/vertex-ai-samples', 0.5236150026321411, 'ml', 0), ('rcgai/simplyretrieve', 0.5208574533462524, 'llm', 1), ('nomic-ai/gpt4all', 0.5191216468811035, 'llm', 1), ('google/dopamine', 0.5175570249557495, 'ml-rl', 0), ('polyaxon/polyaxon', 0.5171562433242798, 'ml-ops', 0), ('guardrails-ai/guardrails', 0.5142502784729004, 'llm', 1), ('onnx/onnx', 0.5136048793792725, 'ml', 0), ('eugeneyan/obsidian-copilot', 0.5132716298103333, 'llm', 1), ('unity-technologies/ml-agents', 0.5131751298904419, 'ml-rl', 0), ('vllm-project/vllm', 0.5128405094146729, 'llm', 2), ('huggingface/datasets', 0.5126212239265442, 'nlp', 1), ('nvidia/nemo', 0.5125614404678345, 'nlp', 2), ('h2oai/h2o-llmstudio', 0.5096468329429626, 'llm', 2), ('jina-ai/thinkgpt', 0.5094317197799683, 'llm', 1), ('ml-tooling/opyrator', 0.5080411434173584, 'viz', 0), ('microsoft/unilm', 0.5072470903396606, 'nlp', 2), ('activeloopai/deeplake', 0.504906177520752, 'ml-ops', 1), ('pan-ml/panml', 0.5039084553718567, 'llm', 0), ('intel/intel-extension-for-transformers', 0.5034509301185608, 'perf', 0), ('titanml/takeoff', 0.5029642581939697, 'llm', 2), ('ray-project/ray', 0.5007473826408386, 'ml-ops', 0)]
22
4
null
1.54
68
54
13
0
0
0
0
68
95
90
1.4
55
51
testing
https://github.com/nedbat/coveragepy
[]
null
[]
[]
null
null
null
nedbat/coveragepy
coveragepy
2,742
392
32
Python
https://coverage.readthedocs.io
The code coverage tool for Python
nedbat
2024-01-12
2018-06-23
292
9.376649
null
The code coverage tool for Python
[]
[]
2024-01-13
[('eugeneyan/python-collab-template', 0.6858402490615845, 'template', 0), ('wolever/parameterized', 0.6841293573379517, 'testing', 0), ('pytest-dev/pytest-bdd', 0.6206257939338684, 'testing', 0), ('ionelmc/pytest-benchmark', 0.6183704733848572, 'testing', 0), ('eleutherai/pyfra', 0.6178824305534363, 'ml', 0), ('pmorissette/bt', 0.6093915700912476, 'finance', 0), ('landscapeio/prospector', 0.6040084362030029, 'util', 0), ('rubik/radon', 0.6033869981765747, 'util', 0), ('alexmojaki/snoop', 0.6032272577285767, 'debug', 0), ('pytest-dev/pytest-cov', 0.5966586470603943, 'testing', 0), ('pympler/pympler', 0.5953695178031921, 'perf', 0), ('sourcery-ai/sourcery', 0.5949026942253113, 'util', 0), ('getsentry/responses', 0.5841493606567383, 'testing', 0), ('pyutils/line_profiler', 0.5808612108230591, 'profiling', 0), ('buildbot/buildbot', 0.57981938123703, 'util', 0), ('google/pytype', 0.5753951072692871, 'typing', 0), ('klen/pylama', 0.5741574764251709, 'util', 0), ('pycqa/pyflakes', 0.5710163116455078, 'util', 0), ('gaogaotiantian/viztracer', 0.5709172487258911, 'profiling', 0), ('pythonprofilers/memory_profiler', 0.5676537156105042, 'profiling', 0), ('facebook/pyre-check', 0.5666431784629822, 'typing', 0), ('pytoolz/toolz', 0.5574312210083008, 'util', 0), ('samuelcolvin/python-devtools', 0.5552131533622742, 'debug', 0), ('hhatto/autopep8', 0.5550077557563782, 'util', 0), ('pypy/pypy', 0.5531808733940125, 'util', 0), ('grantjenks/blue', 0.5528746843338013, 'util', 0), ('dosisod/refurb', 0.5513451099395752, 'util', 0), ('reloadware/reloadium', 0.5490651726722717, 'profiling', 0), ('psf/black', 0.5479041337966919, 'util', 0), ('python/cpython', 0.5459318161010742, 'util', 0), ('taverntesting/tavern', 0.5402073264122009, 'testing', 0), ('snyk/faker-security', 0.5369202494621277, 'security', 0), ('samuelcolvin/dirty-equals', 0.5362508296966553, 'util', 0), ('google/yapf', 0.535642147064209, 'util', 0), ('spulec/freezegun', 0.5298979878425598, 'testing', 0), ('lk-geimfari/mimesis', 0.5268024206161499, 'data', 0), ('aswinnnn/pyscan', 0.525583028793335, 'security', 0), ('jendrikseipp/vulture', 0.5239750146865845, 'util', 0), ('mgedmin/check-manifest', 0.5218181610107422, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.521513819694519, 'study', 0), ('locustio/locust', 0.5198348760604858, 'testing', 0), ('astral-sh/ruff', 0.5197017788887024, 'util', 0), ('agronholm/typeguard', 0.5188262462615967, 'typing', 0), ('amaargiru/pyroad', 0.5170186161994934, 'study', 0), ('requests/toolbelt', 0.5164726376533508, 'util', 0), ('klen/py-frameworks-bench', 0.514492928981781, 'perf', 0), ('microsoft/playwright-python', 0.5143460631370544, 'testing', 0), ('pycqa/bandit', 0.5142317414283752, 'security', 0), ('pyston/pyston', 0.5141503810882568, 'util', 0), ('jiffyclub/snakeviz', 0.5139472484588623, 'profiling', 0), ('cuemacro/finmarketpy', 0.5129390954971313, 'finance', 0), ('cobrateam/splinter', 0.512545645236969, 'testing', 0), ('hypothesisworks/hypothesis', 0.5107763409614563, 'testing', 0), ('pytest-dev/pytest-xdist', 0.5098601579666138, 'testing', 0), ('benfred/py-spy', 0.5097211599349976, 'profiling', 0), ('featurelabs/featuretools', 0.5096982717514038, 'ml', 0), ('brandon-rhodes/python-patterns', 0.5084773302078247, 'util', 0), ('microsoft/pycodegpt', 0.506847083568573, 'llm', 0), ('samuelcolvin/pytest-pretty', 0.506611704826355, 'testing', 0), ('hadialqattan/pycln', 0.5058234930038452, 'util', 0), ('pycaret/pycaret', 0.5046213269233704, 'ml', 0), ('google/python-fire', 0.5045384764671326, 'term', 0), ('pycqa/flake8', 0.5013235807418823, 'util', 0), ('google/latexify_py', 0.5010238885879517, 'util', 0)]
168
6
null
8.23
55
30
68
0
15
23
15
55
138
90
2.5
55
1,281
viz
https://github.com/pyvista/pyvista
[]
null
[]
[]
null
null
null
pyvista/pyvista
pyvista
2,144
407
34
Python
https://docs.pyvista.org
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)
pyvista
2024-01-14
2017-05-31
347
6.16345
https://avatars.githubusercontent.com/u/50384771?v=4
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)
['3d', 'mesh', 'mesh-processing', 'meshviewer', 'open-science', 'plotting', 'scientific-research', 'scientific-visualization', 'visualization', 'vtk']
['3d', 'mesh', 'mesh-processing', 'meshviewer', 'open-science', 'plotting', 'scientific-research', 'scientific-visualization', 'visualization', 'vtk']
2024-01-13
[('marcomusy/vedo', 0.7296451330184937, 'viz', 6), ('pyqtgraph/pyqtgraph', 0.6187593936920166, 'viz', 2), ('contextlab/hypertools', 0.5857540369033813, 'ml', 1), ('enthought/mayavi', 0.5794352293014526, 'viz', 2), ('districtdatalabs/yellowbrick', 0.578895092010498, 'ml', 1), ('holoviz/hvplot', 0.5786033868789673, 'pandas', 1), ('holoviz/holoviz', 0.5743590593338013, 'viz', 0), ('mckinsey/vizro', 0.5597613453865051, 'viz', 1), ('bokeh/bokeh', 0.559531569480896, 'viz', 2), ('isl-org/open3d', 0.5594555735588074, 'sim', 3), ('matplotlib/matplotlib', 0.5509993433952332, 'viz', 1), ('man-group/dtale', 0.5372913479804993, 'viz', 1), ('plotly/plotly.py', 0.5286508798599243, 'viz', 1), ('visgl/deck.gl', 0.5255587100982666, 'viz', 1), ('residentmario/geoplot', 0.5253320336341858, 'gis', 0), ('holoviz/panel', 0.5228663682937622, 'viz', 0), ('gaogaotiantian/viztracer', 0.5193122029304504, 'profiling', 1), ('polyaxon/datatile', 0.5150445699691772, 'pandas', 0), ('maartenbreddels/ipyvolume', 0.5043342709541321, 'jupyter', 2), ('pygraphviz/pygraphviz', 0.5015963315963745, 'viz', 0)]
153
4
null
15.13
391
278
81
0
12
19
12
390
1,158
90
3
55
371
gis
https://github.com/microsoft/torchgeo
[]
null
[]
[]
null
null
null
microsoft/torchgeo
torchgeo
2,046
247
45
Python
https://torchgeo.rtfd.io
TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data
microsoft
2024-01-12
2021-05-21
140
14.554878
https://avatars.githubusercontent.com/u/6154722?v=4
TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data
['computer-vision', 'datasets', 'deep-learning', 'earth-observation', 'geospatial', 'models', 'pytorch', 'remote-sensing', 'satellite-imagery', 'torchvision', 'transforms']
['computer-vision', 'datasets', 'deep-learning', 'earth-observation', 'geospatial', 'models', 'pytorch', 'remote-sensing', 'satellite-imagery', 'torchvision', 'transforms']
2024-01-12
[('datasystemslab/geotorch', 0.6509654521942139, 'gis', 1), ('developmentseed/label-maker', 0.629837691783905, 'gis', 4), ('remotesensinglab/raster4ml', 0.6221429705619812, 'gis', 1), ('azavea/raster-vision', 0.6176372766494751, 'gis', 5), ('osgeo/grass', 0.6095272302627563, 'gis', 3), ('huggingface/datasets', 0.570610761642456, 'nlp', 4), ('nvlabs/gcvit', 0.5610058307647705, 'diffusion', 1), ('osgeo/gdal', 0.5599908828735352, 'gis', 1), ('fatiando/verde', 0.5598282217979431, 'gis', 1), ('opengeos/earthformer', 0.5563389658927917, 'gis', 2), ('aleju/imgaug', 0.5551947355270386, 'ml', 1), ('plant99/felicette', 0.554535448551178, 'gis', 3), ('kornia/kornia', 0.5526466369628906, 'ml-dl', 3), ('roboflow/notebooks', 0.5472760200500488, 'study', 3), ('awslabs/autogluon', 0.5401058197021484, 'ml', 3), ('roboflow/supervision', 0.5378150939941406, 'ml', 3), ('opengeos/segment-geospatial', 0.5342783331871033, 'gis', 2), ('deci-ai/super-gradients', 0.5279808640480042, 'ml-dl', 3), ('rwightman/pytorch-image-models', 0.5265195965766907, 'ml-dl', 1), ('lutzroeder/netron', 0.5072435140609741, 'ml', 2)]
53
7
null
10.5
171
132
32
0
4
4
4
171
261
90
1.5
55
765
nlp
https://github.com/huggingface/setfit
[]
null
[]
[]
null
null
null
huggingface/setfit
setfit
1,804
185
21
Jupyter Notebook
https://hf.co/docs/setfit
Efficient few-shot learning with Sentence Transformers
huggingface
2024-01-13
2022-06-30
82
21.810017
https://avatars.githubusercontent.com/u/25720743?v=4
Efficient few-shot learning with Sentence Transformers
['few-shot-learning', 'nlp', 'sentence-transformers']
['few-shot-learning', 'nlp', 'sentence-transformers']
2024-01-11
[('eleutherai/lm-evaluation-harness', 0.6814461350440979, 'llm', 0), ('alibaba/easynlp', 0.5513603091239929, 'nlp', 1), ('ofa-sys/ofa', 0.5320513844490051, 'llm', 0), ('bigscience-workshop/t-zero', 0.5152558088302612, 'llm', 0), ('google-research/electra', 0.5080073475837708, 'ml-dl', 1)]
48
4
null
4.63
110
86
19
0
5
9
5
110
182
90
1.7
55
1,572
llm
https://github.com/pathwaycom/llm-app
[]
null
[]
[]
null
null
null
pathwaycom/llm-app
llm-app
1,568
101
21
Python
https://pathway.com/developers/showcases/llm-app-pathway/
LLM App is a production framework for building and serving AI applications and LLM-enabled real-time data pipelines.
pathwaycom
2024-01-13
2023-07-19
27
56.287179
https://avatars.githubusercontent.com/u/25750857?v=4
LLM App is a production framework for building and serving AI applications and LLM-enabled real-time data pipelines.
['chatbot', 'hugging-face', 'llm', 'llm-local', 'llm-prompting', 'llm-security', 'llmops', 'machine-learning', 'open-ai', 'pathway', 'rag', 'real-time', 'retrieval-augmented-generation', 'vector-database', 'vector-index']
['chatbot', 'hugging-face', 'llm', 'llm-local', 'llm-prompting', 'llm-security', 'llmops', 'machine-learning', 'open-ai', 'pathway', 'rag', 'real-time', 'retrieval-augmented-generation', 'vector-database', 'vector-index']
2023-12-27
[('microsoft/semantic-kernel', 0.7631767988204956, 'llm', 1), ('microsoft/promptflow', 0.7594974040985107, 'llm', 1), ('deepset-ai/haystack', 0.7468881607055664, 'llm', 1), ('cheshire-cat-ai/core', 0.6957066059112549, 'llm', 2), ('deep-diver/llm-as-chatbot', 0.6957004070281982, 'llm', 1), ('embedchain/embedchain', 0.6783232688903809, 'llm', 1), ('intel/intel-extension-for-transformers', 0.6731693148612976, 'perf', 1), ('hwchase17/langchain', 0.6680853366851807, 'llm', 1), ('nebuly-ai/nebullvm', 0.6677808165550232, 'perf', 1), ('nomic-ai/gpt4all', 0.6673745512962341, 'llm', 1), ('lancedb/lancedb', 0.6573936343193054, 'data', 1), ('tigerlab-ai/tiger', 0.6506632566452026, 'llm', 2), ('h2oai/h2o-llmstudio', 0.6417025327682495, 'llm', 2), ('alphasecio/langchain-examples', 0.6350022554397583, 'llm', 1), ('bigscience-workshop/petals', 0.6320452690124512, 'data', 2), ('mnotgod96/appagent', 0.6296766400337219, 'llm', 1), ('shishirpatil/gorilla', 0.6179982423782349, 'llm', 1), ('mlc-ai/mlc-llm', 0.6101855039596558, 'llm', 1), ('activeloopai/deeplake', 0.6084655523300171, 'ml-ops', 3), ('microsoft/lmops', 0.6022082567214966, 'llm', 1), ('ludwig-ai/ludwig', 0.5985682010650635, 'ml-ops', 2), ('prefecthq/marvin', 0.5963694453239441, 'nlp', 1), ('superduperdb/superduperdb', 0.595395028591156, 'data', 2), ('alpha-vllm/llama2-accessory', 0.5948898196220398, 'llm', 0), ('bentoml/bentoml', 0.5931383371353149, 'ml-ops', 2), ('iryna-kondr/scikit-llm', 0.5918958187103271, 'llm', 2), ('lastmile-ai/aiconfig', 0.5902220606803894, 'util', 1), ('run-llama/rags', 0.5891484618186951, 'llm', 3), ('young-geng/easylm', 0.5865856409072876, 'llm', 1), ('rcgai/simplyretrieve', 0.5839216113090515, 'llm', 2), ('zilliztech/gptcache', 0.5837850570678711, 'llm', 2), ('chatarena/chatarena', 0.5828151702880859, 'llm', 0), ('microsoft/torchscale', 0.5825396180152893, 'llm', 1), ('argilla-io/argilla', 0.5815805792808533, 'nlp', 2), ('explosion/spacy-llm', 0.5805977582931519, 'llm', 2), ('jerryjliu/llama_index', 0.5804813504219055, 'llm', 3), ('microsoft/autogen', 0.5762929916381836, 'llm', 2), ('chainlit/chainlit', 0.5761844515800476, 'llm', 1), ('llmware-ai/llmware', 0.5754697322845459, 'llm', 3), ('berriai/litellm', 0.5751776695251465, 'llm', 2), ('ajndkr/lanarky', 0.5696076154708862, 'llm', 1), ('bentoml/openllm', 0.5679009556770325, 'ml-ops', 2), ('vllm-project/vllm', 0.5676781535148621, 'llm', 2), ('jina-ai/jina', 0.567528486251831, 'ml', 2), ('mindsdb/mindsdb', 0.5670859217643738, 'data', 3), ('rasahq/rasa', 0.5657259821891785, 'llm', 2), ('agenta-ai/agenta', 0.5643110275268555, 'llm', 3), ('microsoft/promptcraft-robotics', 0.5630580186843872, 'sim', 1), ('paddlepaddle/paddlenlp', 0.5630315542221069, 'llm', 1), ('avaiga/taipy', 0.5616130232810974, 'data', 0), ('mmabrouk/chatgpt-wrapper', 0.5610566735267639, 'llm', 2), ('skypilot-org/skypilot', 0.554336428642273, 'llm', 1), ('confident-ai/deepeval', 0.549860417842865, 'testing', 2), ('citadel-ai/langcheck', 0.5472109317779541, 'llm', 0), ('microsoft/jarvis', 0.544485330581665, 'llm', 0), ('operand/agency', 0.5409510135650635, 'llm', 3), ('minimaxir/simpleaichat', 0.5408278703689575, 'llm', 0), ('hegelai/prompttools', 0.5340642333030701, 'llm', 1), ('run-llama/llama-hub', 0.5336598753929138, 'data', 1), ('gunthercox/chatterbot', 0.5325236916542053, 'nlp', 2), ('mlc-ai/web-llm', 0.5320335030555725, 'llm', 1), ('sweepai/sweep', 0.5312567353248596, 'llm', 1), ('night-chen/toolqa', 0.5218302607536316, 'llm', 0), ('bobazooba/xllm', 0.5216497778892517, 'llm', 1), ('eugeneyan/open-llms', 0.5204359889030457, 'study', 1), ('lm-sys/fastchat', 0.5164425373077393, 'llm', 1), ('streamlit/streamlit', 0.5164030194282532, 'viz', 1), ('googlecloudplatform/vertex-ai-samples', 0.5163154006004333, 'ml', 0), ('gradio-app/gradio', 0.5149146914482117, 'viz', 1), ('ml-tooling/opyrator', 0.5144424438476562, 'viz', 1), ('larsbaunwall/bricky', 0.5143710374832153, 'llm', 0), ('salesforce/xgen', 0.5143515467643738, 'llm', 1), ('titanml/takeoff', 0.5129966735839844, 'llm', 1), ('langchain-ai/langgraph', 0.5122884511947632, 'llm', 0), ('microsoft/generative-ai-for-beginners', 0.5098125338554382, 'study', 0), ('deeppavlov/deeppavlov', 0.5093848705291748, 'nlp', 2), ('thudm/chatglm2-6b', 0.5088384747505188, 'llm', 1), ('pathwaycom/pathway', 0.5075528621673584, 'data', 3), ('aimhubio/aim', 0.506819486618042, 'ml-ops', 1), ('togethercomputer/openchatkit', 0.5052575469017029, 'nlp', 1), ('zenml-io/zenml', 0.504523515701294, 'ml-ops', 3), ('deep-diver/pingpong', 0.5041395425796509, 'llm', 0), ('lucidrains/toolformer-pytorch', 0.5037291049957275, 'llm', 0)]
15
5
null
2.19
7
4
6
1
8
16
8
7
6
90
0.9
55
1,767
ml-ops
https://github.com/meltano/meltano
[]
null
[]
[]
null
null
null
meltano/meltano
meltano
1,447
139
13
Python
https://meltano.com/
Meltano: the declarative code-first data integration engine that powers your wildest data and ML-powered product ideas. Say goodbye to writing, maintaining, and scaling your own API integrations.
meltano
2024-01-14
2021-06-21
136
10.628541
https://avatars.githubusercontent.com/u/43816713?v=4
Meltano: the declarative code-first data integration engine that powers your wildest data and ML-powered product ideas. Say goodbye to writing, maintaining, and scaling your own API integrations.
['connectors', 'data', 'data-engineering', 'data-pipelines', 'dataops', 'dataops-platform', 'elt', 'extract-data', 'integration', 'loaders', 'meltano', 'meltano-sdk', 'open-source', 'opensource', 'pipelines', 'singer', 'tap', 'taps', 'target', 'targets']
['connectors', 'data', 'data-engineering', 'data-pipelines', 'dataops', 'dataops-platform', 'elt', 'extract-data', 'integration', 'loaders', 'meltano', 'meltano-sdk', 'open-source', 'opensource', 'pipelines', 'singer', 'tap', 'taps', 'target', 'targets']
2024-01-12
[('mage-ai/mage-ai', 0.6557142734527588, 'ml-ops', 5), ('airbytehq/airbyte', 0.6305922865867615, 'data', 3), ('ploomber/ploomber', 0.6284797787666321, 'ml-ops', 2), ('orchest/orchest', 0.6131107211112976, 'ml-ops', 2), ('simonw/datasette', 0.6087267398834229, 'data', 0), ('avaiga/taipy', 0.608718752861023, 'data', 2), ('dagster-io/dagster', 0.60458904504776, 'ml-ops', 2), ('linealabs/lineapy', 0.5844327211380005, 'jupyter', 0), ('flyteorg/flyte', 0.5828467607498169, 'ml-ops', 2), ('kestra-io/kestra', 0.5790954232215881, 'ml-ops', 3), ('dagworks-inc/hamilton', 0.5787143111228943, 'ml-ops', 1), ('streamlit/streamlit', 0.5685817003250122, 'viz', 0), ('polyaxon/datatile', 0.5661336183547974, 'pandas', 1), ('netflix/metaflow', 0.5626580119132996, 'ml-ops', 0), ('airbnb/omniduct', 0.5620505213737488, 'data', 0), ('whylabs/whylogs', 0.5477058291435242, 'util', 1), ('hi-primus/optimus', 0.5476229190826416, 'ml-ops', 0), ('kedro-org/kedro', 0.5286129117012024, 'ml-ops', 0), ('fugue-project/fugue', 0.5231815576553345, 'pandas', 0), ('zenml-io/zenml', 0.5218309760093689, 'ml-ops', 1), ('featureform/embeddinghub', 0.5155656337738037, 'nlp', 0), ('polyaxon/polyaxon', 0.5144167542457581, 'ml-ops', 1), ('ml-tooling/opyrator', 0.5139985084533691, 'viz', 0), ('tiangolo/fastapi', 0.5132185220718384, 'web', 0), ('huggingface/datasets', 0.5098901391029358, 'nlp', 0), ('astronomer/astro-sdk', 0.5098263621330261, 'ml-ops', 1), ('drivendata/cookiecutter-data-science', 0.5092251300811768, 'template', 0), ('pythagora-io/gpt-pilot', 0.5066982507705688, 'llm', 0), ('merantix-momentum/squirrel-core', 0.506161093711853, 'ml', 1), ('great-expectations/great_expectations', 0.5034080147743225, 'ml-ops', 1), ('kubeflow/fairing', 0.5027660131454468, 'ml-ops', 0)]
157
4
null
20.71
143
110
31
0
19
106
19
143
296
90
2.1
55