File size: 7,634 Bytes
8c5499d 6884213 8c5499d 6884213 8c5499d 6884213 8c5499d 6884213 8c5499d 6884213 8c5499d 6884213 8c5499d 6e0e0a3 d2ed991 74de67d d2ed991 74de67d d2ed991 74de67d d2ed991 6e0e0a3 74de67d 6e0e0a3 74de67d 6e0e0a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
language:
- en
license: other
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
paperswithcode_id: rvl-cdip
pretty_name: RVL-CDIP Mini
dataset_info:
features:
- name: image
dtype: image
- name: width
dtype: int64
- name: height
dtype: int64
- name: category
dtype: string
- name: ocr_words
sequence: string
- name: word_boxes
sequence:
sequence: int64
- name: ocr_paragraphs
sequence: string
- name: paragraph_boxes
sequence:
sequence: int64
- name: label
dtype: int64
splits:
- name: train
num_bytes: 353331082.8
num_examples: 3200
- name: validation
num_bytes: 43966539.0
num_examples: 400
- name: test
num_bytes: 42947141.0
num_examples: 400
download_size: 424911398
dataset_size: 440244762.8
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for RVL-CDIP-MINI
**This dataset is a subset (1%) of the original [aharley/rvl_cdip](https://huggingface.co/datasets/aharley/rvl_cdip) merged with the corresponding annotations from [jordyvl/rvl_cdip_easyocr](https://huggingface.co/datasets/jordyvl/rvl_cdip_easyocr).**
You can easily and quickly load it:
```python
dataset = load_dataset("dvgodoy/rvl_cdip_mini")
```
```
DatasetDict({
train: Dataset({
features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
num_rows: 3200
})
validation: Dataset({
features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
num_rows: 400
})
test: Dataset({
features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
num_rows: 400
})
})
```
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [The RVL-CDIP Dataset](https://www.cs.cmu.edu/~aharley/rvl-cdip/)
- **Repository:**
- **Paper:** [Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval](https://arxiv.org/abs/1502.07058)
- **Leaderboard:** [RVL-CDIP leaderboard](https://paperswithcode.com/dataset/rvl-cdip)
- **Point of Contact:** [Adam W. Harley](mailto:[email protected])
### Dataset Summary
The original RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of 400,000 grayscale images in 16 classes, with 25,000 images per class. There are 320,000 training images, 40,000 validation images, and 40,000 test images. The images are sized so their largest dimension does not exceed 1000 pixels.
**This "mini" version contains only the first 4,000 images from the original dataset: 3,200 training images, 400 validation images, and 400 test images.**
### Supported Tasks and Leaderboards
- `image-classification`: The goal of this task is to classify a given document into one of 16 classes representing document types (letter, form, etc.). The leaderboard for this task is available [here](https://paperswithcode.com/sota/document-image-classification-on-rvl-cdip).
### Languages
All the classes and documents use English as their primary language.
## Dataset Structure
### Data Instances
A sample from the training set is provided below :
```
{
'image': <PIL.TiffImagePlugin.TiffImageFile image mode=L size=754x1000 at 0x7F9A5E92CA90>,
'width': 754,
'height': 1000,
'category': 'advertisement',
'ocr_words': [...],
'word_boxes': [[...]],
'ocr_paragraphs': [...],
'paragraph_boxes': [[...]],
'label': 4
}
```
### Data Fields
- `image`: A `PIL.Image.Image` object containing a document.
- `width`: image's width.
- `height`: image's height.
- `category`: class label.
- `ocr_words`: list of OCRed words.
- `word_boxes`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
- `ocr_paragraphs`: list of OCRed paragraphs.
- `paragraph_boxes`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
- `label`: an `int` classification label.
<details>
<summary>Class Label Mappings</summary>
```json
{
"0": "letter",
"1": "form",
"2": "email",
"3": "handwritten",
"4": "advertisement",
"5": "scientific report",
"6": "scientific publication",
"7": "specification",
"8": "file folder",
"9": "news article",
"10": "budget",
"11": "invoice",
"12": "presentation",
"13": "questionnaire",
"14": "resume",
"15": "memo"
}
```
</details>
### Data Splits
| |train|test|validation|
|----------|----:|----:|---------:|
|# of examples|3200|400|400|
The dataset was split in proportions similar to those of ImageNet.
- 3200 images were used for training,
- 400 images for validation, and
- 400 images for testing.
## Dataset Creation
### Curation Rationale
From the paper:
> This work makes available a new labelled subset of the IIT-CDIP collection, containing 400,000
document images across 16 categories, useful for training new CNNs for document analysis.
### Source Data
#### Initial Data Collection and Normalization
The same as in the IIT-CDIP collection.
#### Who are the source language producers?
The same as in the IIT-CDIP collection.
### Annotations
#### Annotation process
The same as in the IIT-CDIP collection.
#### Who are the annotators?
The same as in the IIT-CDIP collection.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was curated by the authors - Adam W. Harley, Alex Ufkes, and Konstantinos G. Derpanis.
### Licensing Information
RVL-CDIP is a subset of IIT-CDIP, which came from the [Legacy Tobacco Document Library](https://www.industrydocuments.ucsf.edu/tobacco/), for which license information can be found [here](https://www.industrydocuments.ucsf.edu/help/copyright/).
### Citation Information
```bibtex
@inproceedings{harley2015icdar,
title = {Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval},
author = {Adam W Harley and Alex Ufkes and Konstantinos G Derpanis},
booktitle = {International Conference on Document Analysis and Recognition ({ICDAR})}},
year = {2015}
}
```
### Contributions
Thanks to [@dnaveenr](https://github.com/dnaveenr) for adding this dataset. |