Datasets:

Modalities:
Text
Formats:
parquet
DOI:
Libraries:
Datasets
pandas
License:
abumafrim commited on
Commit
0ed25b0
·
verified ·
1 Parent(s): 79e8870

Upload 6 files

Browse files
Files changed (6) hide show
  1. describe.py +123 -0
  2. downloads.sh +25 -0
  3. extract.py +46 -0
  4. raw.zip +3 -0
  5. requirements.txt +6 -0
  6. utils.py +954 -0
describe.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import pandas as pd
3
+ from pathlib import Path
4
+ from utils import DataLoader, SCAPlotter, TextProcessor, TopicModeling, DATA_ANALYSIS_PATH
5
+
6
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
7
+
8
+ logging.info('Initialising the data loader, plotter, text processor and topic modeler')
9
+ dl = DataLoader()
10
+ plotter = SCAPlotter()
11
+ text_processor = TextProcessor(dl)
12
+ topic_modeler = TopicModeling()
13
+
14
+ # plot case distribution
15
+ logging.info('Plotting the case distribution on all data')
16
+ plotter.plot_case_distribution(dl.load_data('all'))
17
+
18
+ # get the data with summaries
19
+ logging.info('Loading the data with summaries only for further analysis.')
20
+ df = dl.load_data('with_summaries')
21
+
22
+ # prepare the text
23
+ logging.info('Preparing the text: dropping duplicates, removing null values, etc.')
24
+ df = text_processor.prepare_text(df, target_columns=['input', 'output'])
25
+
26
+ # get all stats
27
+ logging.info('Getting all stats for the text and summary')
28
+ stats_file = DATA_ANALYSIS_PATH / 'data_with_stats.csv'
29
+ if stats_file.exists():
30
+ stats = pd.read_csv(stats_file)
31
+ df = pd.concat([df, stats], axis=1)
32
+
33
+ stats = df.copy()
34
+ df = text_processor.get_all_stats(df)
35
+
36
+ if df.equals(stats):
37
+ logging.info('Data and stats are the same. All stats are calculated up to date.')
38
+ else:
39
+ stats = df.drop(columns=['text', 'summary'])
40
+ stats.to_csv(stats_file, index=False)
41
+ logging.info(f'Data with stats saved to {stats_file}')
42
+ del stats
43
+
44
+ logging.info('Plotting the summary vs judgment length')
45
+ plotter.plot_summary_vs_judgment_length(df)
46
+
47
+ logging.info('Plotting the summary and judgment stats')
48
+ plotter.plot_length_distribution(df, columns=['text_sent_count', 'text_word_count', 'text_char_count'], file_name='judgment_stats')
49
+ plotter.plot_length_distribution(df, columns=['text_sent_density','text_word_density'], file_name='judgment_density_stats')
50
+
51
+ plotter.plot_length_distribution(df, columns=['sum_sent_count', 'sum_word_count', 'sum_char_count'], file_name='summary_stats')
52
+ plotter.plot_length_distribution(df, columns=['sum_sent_density','sum_word_density'], file_name='summary_density_stats')
53
+
54
+ # get the pos tags
55
+ logging.info('Getting the POS tags for the text and summary')
56
+ columns = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X']
57
+
58
+ # plot the pos tags
59
+ logging.info('Plotting the POS tags for the text and summary')
60
+ postags = ['ADJ','ADP','ADV','CONJ','DET','NOUN']
61
+
62
+ df_text = df[[f'text_{p}' for p in postags]]
63
+ df_text.columns = [p for p in postags]
64
+ plotter.plot_length_distribution(df_text, columns=postags, plot_boxplots=False, file_name='judgment_pos_tags')
65
+
66
+ df_summary = df[[f'sum_{p}' for p in postags]]
67
+ df_summary.columns = [p for p in postags]
68
+ plotter.plot_length_distribution(df_summary, columns=postags, plot_boxplots=False, file_name='summary_pos_tags')
69
+
70
+ del df_text, df_summary
71
+
72
+ # print some unknown words
73
+ logging.info('Printing some unknown words')
74
+ print('Unknown words: ', df['text_unknown_words'].values[5])
75
+
76
+ # plot unknown words stats in text and summary
77
+ logging.info('Plotting the unknown words stats')
78
+ unknown_words_columns = ['text_unknown_count', 'sum_unknown_count']
79
+ plotter.plot_length_distribution(df, columns=unknown_words_columns, file_name='unknown_words_stats')
80
+
81
+ # plot puncs and stopwords
82
+ logging.info('Plotting the punctuation and stopwords stats')
83
+ target_columns = ['text_stopw_count', 'sum_stopw_count', 'text_punc_count','sum_punc_count']
84
+ plotter.plot_length_distribution(df, columns=target_columns, file_name='punc_stopw_and_punc_stats')
85
+
86
+ # clean the data for topic modeling
87
+ logging.info('Cleaning the text and summary for topic modeling')
88
+ cleaned_text, cleaned_summary = text_processor.remove_stopwords(df, target_columns=['text', 'summary'])
89
+
90
+ plotter.plot_wordcloud(cleaned_text, file_name='judgment_wordcloud')
91
+ plotter.plot_wordcloud(cleaned_summary, file_name='summary_wordcloud')
92
+
93
+ # Visualise the 20 most common words in the judgment
94
+ logging.info('Visualising the 20 most common words in the judgment')
95
+ tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_text)
96
+ plotter.plot_most_common_words(tf, tf_feature_names, file_name='judgment_most_common_words')
97
+
98
+ # # perform lda analysis, this takes a lot of time
99
+ # logging.info('Performing LDA analysis on the judgment')
100
+ # topic_modeler.perform_lda_analysis(cleaned_text, tf_vectorizer, file_name='judgment_lda_analysis')
101
+
102
+ # Visualise the 20 most common words in the summary
103
+ logging.info('Visualising the 20 most common words in the summary')
104
+ tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_summary)
105
+ plotter.plot_most_common_words(tf, tf_feature_names, file_name='summary_most_common_words')
106
+
107
+ # # perform lda analysis, this takes a lot of time
108
+ # logging.info('Performing LDA analysis on the summary')
109
+ # topic_modeler.perform_lda_analysis(cleaned_summary, tf_vectorizer, file_name='summary_lda_analysis')
110
+
111
+ # perform bertopic analysis
112
+ logging.info('Performing BERTopic analysis on the judgment and summary')
113
+ topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, cleaned_summary=cleaned_summary, output_path='bertopic/')
114
+ judgment_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, save_topic_info=False, output_path='bertopic/judgments/')
115
+ summary_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_summary=cleaned_summary, save_topic_info=False, output_path='bertopic/summaries/')
116
+
117
+ # calculate topic overlap
118
+ logging.info('Calculating the topic overlap between the judgment and summary')
119
+ overlap_matrix = topic_modeler.calculate_overlap_matrix(judgment_model, summary_model)
120
+
121
+ # plot the overlap matrix
122
+ logging.info('Plotting the overlap matrix')
123
+ plotter.plot_overlap_heatmap(overlap_matrix, file_name='overlap_matrix')
downloads.sh ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ DATA_DIR=../data
4
+ URL=https://nlp.stanford.edu/data/glove.6B.zip
5
+ ZIP_FILE=$DATA_DIR/glove.6B.zip
6
+ UNZIPPED_FILE=$DATA_DIR/glove.6B.100d.txt
7
+
8
+ mkdir -p $DATA_DIR
9
+
10
+ if [ -f $UNZIPPED_FILE ]; then
11
+ echo "Files already unzipped in $DATA_DIR. Skipping download and extraction."
12
+ else
13
+ if [ ! -f $ZIP_FILE ]; then
14
+ echo "Downloading $URL..."
15
+ wget -N $URL -O $ZIP_FILE
16
+ else
17
+ echo "Zip file already exists at $ZIP_FILE. Skipping download."
18
+ fi
19
+
20
+ echo "Unzipping $ZIP_FILE to $DATA_DIR..."
21
+ unzip -o $ZIP_FILE -d $DATA_DIR
22
+
23
+ echo "Removing zip file $ZIP_FILE..."
24
+ rm $ZIP_FILE
25
+ fi
extract.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from pathlib import Path
4
+ from tqdm.notebook import tqdm
5
+ from utils import FileManager, PDFExtractor
6
+
7
+ FileManager.unzip_data('../data/raw.zip', '../data')
8
+
9
+ directories = {
10
+ "with_summaries": {
11
+ "path": Path('../data/raw/with_summaries'),
12
+ "columns": ['id', 'type', 'year', 'main_judgement', 'media_summary'],
13
+ "has_summary": True
14
+ },
15
+ "without_summaries": {
16
+ "path": Path('../data/raw/without_summaries'),
17
+ "columns": ['id', 'type', 'year', 'main_judgement'],
18
+ "has_summary": False
19
+ }
20
+ }
21
+
22
+ for dir_key, dir_info in directories.items():
23
+ data = []
24
+ pdir = dir_info["path"]
25
+
26
+ for root, dirs, files in tqdm(os.walk(pdir)):
27
+ if not files:
28
+ continue
29
+ try:
30
+ dtails = Path(root).parts
31
+ record = [
32
+ dtails[-1].split('-')[0],
33
+ dtails[3],
34
+ dtails[4].split('-')[-1]
35
+ ]
36
+ record.append(PDFExtractor.extract_text_from_pdf(f'{root}/main-judgement.pdf'))
37
+ if dir_info["has_summary"]:
38
+ record.append(PDFExtractor.extract_text_from_pdf(f'{root}/media-summary.pdf'))
39
+
40
+ data.append(record)
41
+ except Exception as e:
42
+ print(f"Skipping {root} due to error: {e}")
43
+ continue
44
+
45
+ df = pd.DataFrame(data, columns=dir_info["columns"])
46
+ df.to_csv(f'../data/processed/judgments_{dir_key}.tsv', sep='\t', index=False)
raw.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eee3d7ba9f95645da5d59306d6e96f17f1f835b09472765e302145c891630138
3
+ size 1155703723
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ nltk
2
+ gensim
3
+ PyMuPDF
4
+ bertopic
5
+ pyLDAvis
6
+ wordcloud
utils.py ADDED
@@ -0,0 +1,954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fitz
2
+ import random
3
+ import logging
4
+ import zipfile
5
+ import re, string
6
+ import unicodedata
7
+ import numpy as np
8
+ import pandas as pd
9
+ import seaborn as sns
10
+ from tqdm import tqdm
11
+ from scipy import stats
12
+ from pathlib import Path
13
+ import matplotlib.pyplot as plt
14
+ from collections import Counter
15
+
16
+ import nltk
17
+ from nltk.tokenize import word_tokenize, sent_tokenize
18
+
19
+ import warnings
20
+ warnings.simplefilter("ignore", DeprecationWarning)
21
+
22
+ import pickle
23
+ import pyLDAvis
24
+ import pyLDAvis.lda_model as lda
25
+
26
+ from bertopic import BERTopic
27
+ from wordcloud import WordCloud
28
+ from sklearn.feature_extraction.text import CountVectorizer
29
+
30
+ from sklearn.decomposition import LatentDirichletAllocation as LDA
31
+
32
+ nltk.download('stopwords')
33
+ nltk.download('punkt')
34
+ nltk.download('averaged_perceptron_tagger')
35
+ nltk.download('universal_tagset')
36
+
37
+ tqdm.pandas()
38
+ plt.rcParams["font.family"] = "Tahoma"
39
+ sns.set_theme(style="whitegrid", font="Tahoma")
40
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
41
+
42
+ HOME_DIR = Path("..")
43
+
44
+ EXTRACTED_DATA_DIR = HOME_DIR / "data"
45
+ RAW_DATA_DIR = EXTRACTED_DATA_DIR / "raw"
46
+ PROCESSED_DATA_DIR = EXTRACTED_DATA_DIR / "processed"
47
+ GLOVE_EMBEDDINGS_FILE = EXTRACTED_DATA_DIR / "glove.6B.100d.txt"
48
+
49
+ DATA_ANALYSIS_PATH = HOME_DIR / "data_analysis"
50
+ FIGURES_DIR = DATA_ANALYSIS_PATH / "plots"
51
+
52
+ FIGURES_DIR.mkdir(parents=True, exist_ok=True)
53
+ POST_TAGS = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X']
54
+
55
+
56
+ class FileManager:
57
+ """Handles file operations, including zip and unzipping folders and saving text to files."""
58
+
59
+ @staticmethod
60
+ def unzip_data(zip_path, extract_to):
61
+ """
62
+ Unzips a ZIP file to a specified directory.
63
+
64
+ Parameters:
65
+ - zip_path (str or Path): Path to the ZIP file.
66
+ - extract_to (str or Path): Target directory to extract files to.
67
+
68
+ Raises:
69
+ - FileNotFoundError: If the ZIP file does not exist.
70
+ - RuntimeError: If the file is not a valid ZIP archive.
71
+ """
72
+ zip_file = Path(zip_path)
73
+ extract_to = Path(extract_to)
74
+ if not zip_file.exists():
75
+ raise FileNotFoundError(f"ZIP file not found: {zip_file}")
76
+
77
+ target_dir = extract_to / zip_file.stem
78
+ if target_dir.exists():
79
+ logging.info(f"Directory already exists: {target_dir}")
80
+ return
81
+
82
+ try:
83
+ with zipfile.ZipFile(zip_file, 'r') as zip_ref:
84
+ zip_ref.extractall(target_dir)
85
+ logging.info(f"Extracted {zip_file} to {target_dir}")
86
+ except zipfile.BadZipFile as e:
87
+ raise RuntimeError(f"Invalid ZIP file: {zip_file}") from e
88
+
89
+ @staticmethod
90
+ def save_text(text, file_path):
91
+ """
92
+ Saves text to a file.
93
+
94
+ Parameters:
95
+ - text (str): Text to save.
96
+ - file_path (str or Path): Target file path.
97
+
98
+ Raises:
99
+ - IOError: If writing to the file fails.
100
+ """
101
+ file_path = Path(file_path)
102
+ file_path.parent.mkdir(parents=True, exist_ok=True)
103
+ try:
104
+ with open(file_path, 'w', encoding='utf-8') as file:
105
+ file.write(text)
106
+ logging.info(f"Saved text to {file_path}")
107
+ except IOError as e:
108
+ logging.error(f"Failed to save text to {file_path}: {e}")
109
+ raise
110
+
111
+
112
+ class PDFExtractor:
113
+ """Extracts and cleans text from PDF documents."""
114
+
115
+ @staticmethod
116
+ def extract_text(pdf_path):
117
+ """
118
+ Extracts and processes text from a PDF file.
119
+
120
+ Parameters:
121
+ - pdf_path (str or Path): Path to the PDF file.
122
+
123
+ Returns:
124
+ - str: Cleaned and processed text.
125
+
126
+ Raises:
127
+ - FileNotFoundError: If the PDF file does not exist.
128
+ - RuntimeError: If the PDF cannot be opened.
129
+ """
130
+ pdf_path = Path(pdf_path)
131
+
132
+ if not pdf_path.exists():
133
+ logging.error(f"PDF file not found: {pdf_path}")
134
+ raise FileNotFoundError(f"PDF file not found: {pdf_path}")
135
+
136
+ try:
137
+ doc = fitz.open(pdf_path)
138
+ text_lines = [
139
+ PDFExtractor._clean_line(page.get_text("text"))
140
+ for page in doc
141
+ ]
142
+ doc.close()
143
+ return '\n'.join(PDFExtractor._combine_paragraphs(text_lines))
144
+ except Exception as e:
145
+ logging.error(f"Error extracting text from {pdf_path}: {e}")
146
+ raise RuntimeError(f"Error extracting text from {pdf_path}: {e}")
147
+
148
+ @staticmethod
149
+ def _clean_line(text):
150
+ """
151
+ Cleans a line of text by removing unwanted content.
152
+
153
+ Parameters:
154
+ - text (str): The text to clean.
155
+
156
+ Returns:
157
+ - list: List of cleaned sentences.
158
+ """
159
+ paragraphs = [line.strip() for line in sent_tokenize(text)]
160
+ return [p for p in paragraphs if not PDFExtractor._is_numeric_string(p)]
161
+
162
+ @staticmethod
163
+ def _combine_paragraphs(lines):
164
+ """
165
+ Combines lines into paragraphs based on paragraph markers.
166
+
167
+ Parameters:
168
+ - lines (list of str): List of text lines.
169
+
170
+ Returns:
171
+ - list: Combined paragraphs.
172
+ """
173
+ combined = []
174
+ for line in lines:
175
+ if PDFExtractor._is_paragraph_marker(line):
176
+ if combined:
177
+ combined[-1] += f' {line}'
178
+ else:
179
+ combined.append(line)
180
+ else:
181
+ combined.append(line)
182
+ return combined
183
+
184
+ @staticmethod
185
+ def _is_numeric_string(string):
186
+ """
187
+ Checks if a string is numeric and less than 1000.
188
+
189
+ Parameters:
190
+ - string (str): The string to check.
191
+
192
+ Returns:
193
+ - bool: True if numeric and less than 1000, otherwise False.
194
+ """
195
+ return string.isdigit() and int(string) < 1000
196
+
197
+ @staticmethod
198
+ def _is_paragraph_marker(line):
199
+ """
200
+ Determines if a line is a paragraph marker.
201
+
202
+ Parameters:
203
+ - line (str): The line to check.
204
+
205
+ Returns:
206
+ - bool: True if it matches paragraph marker criteria, otherwise False.
207
+ """
208
+ return line.startswith("[") and line.endswith("]") and line[1:-1].isdigit()
209
+
210
+
211
+ class DataLoader:
212
+ """Loads and processes TSV data files into DataFrames."""
213
+
214
+ def __init__(self, base_dir=PROCESSED_DATA_DIR, file_extension="tsv"):
215
+ """
216
+ Initialize the DataLoader.
217
+
218
+ Parameters:
219
+ - base_dir (Path): Base directory containing the processed data.
220
+ - file_extension (str): Extension of data files to read (default: 'tsv').
221
+ """
222
+ self.base_dir = Path(base_dir)
223
+ self.file_extension = file_extension
224
+
225
+ def load_data(self, data_type, column_name=None):
226
+ """
227
+ Load data based on the specified type.
228
+
229
+ Parameters:
230
+ - data_type (str): One of ['with_summaries', 'without_summaries', 'all'].
231
+
232
+ Returns:
233
+ - pd.DataFrame: Concatenated DataFrame with a 'split' column.
234
+ """
235
+ paths = {
236
+ 'with_summaries': [self.base_dir / "with_summaries" / f"{split}.{self.file_extension}" for split in ['train', 'dev', 'test']],
237
+ 'without_summaries': [self.base_dir / "without_summaries" / f"all_data.{self.file_extension}"],
238
+ 'all': [self.base_dir / "without_summaries" / f"all_data.{self.file_extension}"] +
239
+ [self.base_dir / "with_summaries" / f"{split}.{self.file_extension}" for split in ['train', 'dev', 'test']]
240
+ }
241
+
242
+ if data_type not in paths:
243
+ raise ValueError(f"Invalid data type specified: {data_type}. Expected one of {list(paths.keys())}.")
244
+
245
+ valid_paths = [path for path in paths[data_type] if path.exists()]
246
+ missing_paths = [path for path in paths[data_type] if not path.exists()]
247
+
248
+ if missing_paths:
249
+ logging.warning(f"Missing files: {missing_paths}")
250
+
251
+ if not valid_paths:
252
+ raise FileNotFoundError("No valid data files found to load.")
253
+
254
+ if column_name:
255
+ return self._read_files(valid_paths)[column_name]
256
+
257
+ return self._read_files(valid_paths)
258
+
259
+ @staticmethod
260
+ def _read_files(paths):
261
+ """
262
+ Read and concatenate data files into a single DataFrame.
263
+
264
+ Parameters:
265
+ - paths (list of Path): Paths to the files to read.
266
+
267
+ Returns:
268
+ - pd.DataFrame: Combined DataFrame with a 'split' column.
269
+ """
270
+ df_list = []
271
+ for path in paths:
272
+ logging.info(f"Loading file: {path}")
273
+ try:
274
+ df = pd.read_csv(path, sep='\t')
275
+ df['split'] = path.stem
276
+ df_list.append(df)
277
+ except Exception as e:
278
+ logging.error(f"Failed to read {path}: {e}")
279
+
280
+ return pd.concat(df_list, ignore_index=True) if df_list else pd.DataFrame()
281
+
282
+
283
+ class GloveVectorizer:
284
+ """
285
+ Maps words to GloVe embeddings and computes sentence embeddings
286
+ by averaging word vectors.
287
+ """
288
+
289
+ def __init__(self, embedding_file):
290
+ """
291
+ Initializes the vectorizer with GloVe embeddings.
292
+
293
+ Args:
294
+ embedding_file (str): Path to the GloVe embedding file.
295
+ """
296
+ self.word2vec = {}
297
+ self.embedding = []
298
+ self.idx2word = []
299
+
300
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
301
+
302
+ try:
303
+ logging.info("Loading word vectors...")
304
+ with open(embedding_file, encoding='utf-8') as f:
305
+ for line in f:
306
+ values = line.split()
307
+ word = values[0]
308
+ vec = np.asarray(values[1:], dtype='float32')
309
+ self.word2vec[word] = vec
310
+ self.embedding.append(vec)
311
+ self.idx2word.append(word)
312
+
313
+ self.embedding = np.array(self.embedding)
314
+ self.word2idx = {word: idx for idx, word in enumerate(self.idx2word)}
315
+ self.V, self.D = self.embedding.shape
316
+ logging.info(f"Found {len(self.word2vec)} word vectors.")
317
+ except FileNotFoundError:
318
+ logging.error(f"Embedding file '{embedding_file}' not found.")
319
+ raise FileNotFoundError(f"Embedding file '{embedding_file}' not found.")
320
+ except Exception as e:
321
+ logging.error(f"Error loading embeddings: {e}")
322
+ raise RuntimeError(f"Error loading embeddings: {e}")
323
+
324
+ def fit(self, data):
325
+ """Placeholder for potential future implementation."""
326
+ pass
327
+
328
+ def get_vocabulary(self):
329
+ """
330
+ Returns the vocabulary of the embeddings.
331
+
332
+ Returns:
333
+ list: A list of all words in the GloVe vocabulary.
334
+ """
335
+ return list(self.word2vec.keys())
336
+
337
+ def transform(self, data, return_unknowns=False):
338
+ """
339
+ Transforms a list of sentences into mean GloVe embeddings.
340
+
341
+ Args:
342
+ data (list of str): Sentences to transform.
343
+ return_unknowns (bool): If True, also return unknown words.
344
+
345
+ Returns:
346
+ np.ndarray: Mean GloVe embeddings for each sentence.
347
+ list: (Optional) List of unknown words for each sentence.
348
+ """
349
+ X = np.zeros((len(data), self.D))
350
+ unknown_words = []
351
+ emptycount = 0
352
+
353
+ for n, sentence in enumerate(data):
354
+ tokens = sentence.lower().split()
355
+ vecs = []
356
+ unknowns = []
357
+
358
+ for word in tokens:
359
+ if word in self.word2vec:
360
+ vecs.append(self.word2vec[word])
361
+ else:
362
+ unknowns.append(word)
363
+
364
+ if vecs:
365
+ vecs = np.array(vecs)
366
+ X[n] = vecs.mean(axis=0)
367
+ else:
368
+ emptycount += 1
369
+
370
+ if return_unknowns:
371
+ unknown_words.append(unknowns)
372
+
373
+ if emptycount > 0:
374
+ print(f"Warning: {emptycount} sentences had no known words.")
375
+
376
+ return (X, unknown_words) if return_unknowns else X
377
+
378
+ def fit_transform(self, data, return_unknowns=False):
379
+ """
380
+ Fits and transforms the data.
381
+
382
+ Args:
383
+ data (list of str): Sentences to transform.
384
+ return_unknowns (bool): If True, also return unknown words.
385
+
386
+ Returns:
387
+ np.ndarray: Mean GloVe embeddings for each sentence.
388
+ list: (Optional) List of unknown words for each sentence.
389
+ """
390
+ self.fit(data)
391
+ return self.transform(data, return_unknowns)
392
+
393
+ class TextProcessor:
394
+ """Processes text data for analysis and visualization."""
395
+
396
+ def __init__(self, data_loader):
397
+ self.data_loader = data_loader
398
+
399
+ @staticmethod
400
+ def tokenize_stats(df, col_name, tokenize_type):
401
+ tokenizer = sent_tokenize if tokenize_type == 'sent' else word_tokenize
402
+ stats = df[col_name].dropna().apply(lambda x: len(tokenizer(x)))
403
+ return stats
404
+
405
+ @staticmethod
406
+ def get_punctuation():
407
+ return string.punctuation
408
+
409
+ @staticmethod
410
+ def get_stopwords(language='english'):
411
+ return set(nltk.corpus.stopwords.words(language))
412
+
413
+ @staticmethod
414
+ def unicode_to_ascii(s):
415
+ return ''.join(c for c in unicodedata.normalize('NFD', s)
416
+ if unicodedata.category(c) != 'Mn')
417
+
418
+ @staticmethod
419
+ def count_stopwords(text, stopwords):
420
+ word_tokens = word_tokenize(text)
421
+ stopwords_x = [w for w in word_tokens if w in stopwords]
422
+ return len(stopwords_x)
423
+
424
+ @staticmethod
425
+ def replace_punctuation(text, punctuation):
426
+ table = str.maketrans(punctuation, ' ' * len(punctuation))
427
+ return text.translate(table)
428
+
429
+ @staticmethod
430
+ def get_unknown_words(text, vocab):
431
+ tokens = word_tokenize(text)
432
+ unknown = [t for t in tokens if t not in vocab.word2vec]
433
+ return unknown
434
+
435
+ @staticmethod
436
+ def get_pos_tags(sentences, columns, data_type, tagset='universal'):
437
+ ''' Extract the part-of-speech taggings of the sentence
438
+ Input:
439
+ - sentence: string, sentence to tag
440
+ - tagset: string, tagset or the set of tags to search for
441
+ '''
442
+ tags = []
443
+ columns = [f'{data_type}_{c}' for c in columns]
444
+ for sent in tqdm(sentences):
445
+ pos_tags = Counter([j for _,j in nltk.pos_tag(word_tokenize(sent), tagset=tagset)])
446
+ pos_tags = {f'{data_type}_{k}':v for k,v in dict(pos_tags).items()}
447
+ tags.append(pos_tags)
448
+
449
+ return pd.DataFrame(tags, columns=columns).fillna(0)
450
+
451
+ def remove_stopwords(self, df, target_columns=None):
452
+ ''' Apply some basic techniques for cleaning a text for an analysis of words
453
+
454
+ Input:
455
+ - text: text to be cleaned
456
+ Output:
457
+ - result: cleaned text
458
+ '''
459
+ def clean_text(text, stopwords):
460
+ text = text.lower()
461
+ pattern = r'[^a-zA-Z\s]'
462
+ text = re.sub(pattern, '', text)
463
+
464
+ tokens = nltk.word_tokenize(text)
465
+ tokens = [token.strip() for token in tokens]
466
+ text = ' '.join([token for token in tokens if token not in stopwords])
467
+ return text
468
+
469
+ if target_columns:
470
+ logging.info(f"Removing stopwords for columns: {target_columns}")
471
+ stopwords = self.get_stopwords()
472
+ cleaned_text = []
473
+ for col in target_columns:
474
+ cleaned_text.append(df[col].progress_apply(lambda x: clean_text(x, stopwords)).tolist())
475
+ return cleaned_text
476
+
477
+ def prepare_text(self, df, target_columns=None, drop_duplicates=True, drop_na=True):
478
+ if target_columns and len(target_columns) == 2:
479
+ logging.info(f"Preparing text data for columns: {target_columns}")
480
+ try:
481
+ df = df[target_columns]
482
+ except KeyError as e:
483
+ logging.error(f"Invalid columns specified: {e}")
484
+ raise ValueError(f"Invalid columns specified: {e}")
485
+ if drop_duplicates:
486
+ df.drop_duplicates(subset=target_columns[0], inplace=True)
487
+ logging.info(f"Dropped duplicates, new shape: {df.shape}")
488
+ if drop_na:
489
+ df.dropna(inplace=True)
490
+ logging.info(f"Dropped NA values, new shape: {df.shape}")
491
+ df.reset_index(drop=True, inplace=True)
492
+ df.columns = ['text', 'summary']
493
+ logging.info(f"Renamed columns to 'text' and 'summary'")
494
+
495
+ logging.info("Cleaning unicode characters and extra spaces...")
496
+ df['text'] = df['text'].apply(lambda x: self.unicode_to_ascii(x.strip()))
497
+ df['summary'] = df['summary'].apply(lambda x: self.unicode_to_ascii(x.strip()))
498
+
499
+ logging.info(f"Data prepared, new shape: {df.shape}")
500
+
501
+ return df
502
+ else:
503
+ logging.error("Invalid columns or number of target columns specified.")
504
+ raise ValueError('No target columns specified, or invalid number of columns.')
505
+
506
+ def get_vectorizer_features(self, texts, max_df=0.9, min_df=25, max_features=5000):
507
+ tf_vectorizer = CountVectorizer(max_df=max_df, min_df=min_df, max_features=max_features)
508
+ tf = tf_vectorizer.fit_transform(texts)
509
+ tf_feature_names = tf_vectorizer.get_feature_names_out()
510
+ return tf, tf_feature_names
511
+
512
+ def get_all_stats(self, df):
513
+ """
514
+ Generate and add statistical metrics for text and summary columns in a DataFrame.
515
+
516
+ Parameters:
517
+ df (pd.DataFrame): Input DataFrame containing 'text' and 'summary' columns.
518
+
519
+ Returns:
520
+ pd.DataFrame: DataFrame with added statistical columns.
521
+ """
522
+ punc = self.get_punctuation()
523
+ stopwords = self.get_stopwords()
524
+ vocab = GloveVectorizer(GLOVE_EMBEDDINGS_FILE)
525
+
526
+ def add_stat_column(column_name, compute_func, *args, **kwargs):
527
+ if column_name not in df.columns:
528
+ logging.info(f"Calculating {column_name}...")
529
+ df[column_name] = compute_func(*args, **kwargs)
530
+ else:
531
+ logging.info(f"{column_name} already present in stats, skipping...")
532
+
533
+ logging.info("Calculating text statistics (sentences, tokens, characters, etc.)...")
534
+ add_stat_column('text_sent_count', self.tokenize_stats, df, 'text', 'sent')
535
+ add_stat_column('text_word_count', self.tokenize_stats, df, 'text', 'word')
536
+ add_stat_column('text_char_count', lambda x: x['text'].progress_apply(lambda t: len(t.replace(" ", ""))), df)
537
+ add_stat_column('text_sent_density', lambda x: x['text_sent_count'] / (x['text_word_count'] + 1), df)
538
+ add_stat_column('text_word_density', lambda x: x['text_word_count'] / (x['text_char_count'] + 1), df)
539
+ add_stat_column('text_punc_count', lambda x: x['text'].progress_apply(lambda t: sum(1 for char in t if char in punc)), df)
540
+ add_stat_column('text_stopw_count', lambda x: x['text'].progress_apply(lambda t: self.count_stopwords(t, stopwords)), df)
541
+ add_stat_column('text_unknown_words', lambda x: x['text'].progress_apply(lambda t: self.get_unknown_words(self.replace_punctuation(t.lower(), string.punctuation), vocab)), df)
542
+ add_stat_column('text_unknown_count', lambda x: x['text_unknown_words'].progress_apply(lambda t: len(t) if isinstance(t, list) else 0), df)
543
+
544
+ logging.info("Calculating summary statistics (sentences, tokens, characters, etc.)...")
545
+ add_stat_column('sum_sent_count', self.tokenize_stats, df, 'summary', 'sent')
546
+ add_stat_column('sum_word_count', self.tokenize_stats, df, 'summary', 'word')
547
+ add_stat_column('sum_char_count', lambda x: x['summary'].progress_apply(lambda t: len(t.replace(" ", ""))), df)
548
+ add_stat_column('sum_sent_density', lambda x: x['sum_sent_count'] / (x['sum_word_count'] + 1), df)
549
+ add_stat_column('sum_word_density', lambda x: x['sum_word_count'] / (x['sum_char_count'] + 1), df)
550
+ add_stat_column('sum_punc_count', lambda x: x['summary'].progress_apply(lambda t: sum(1 for char in t if char in punc)), df)
551
+ add_stat_column('sum_stopw_count', lambda x: x['summary'].progress_apply(lambda t: self.count_stopwords(t, stopwords)), df)
552
+ add_stat_column('sum_unknown_words', lambda x: x['summary'].progress_apply(lambda t: self.get_unknown_words(self.replace_punctuation(t.lower(), string.punctuation), vocab)), df)
553
+ add_stat_column('sum_unknown_count', lambda x: x['sum_unknown_words'].progress_apply(lambda t: len(t) if isinstance(t, list) else 0), df)
554
+
555
+ logging.info("Adding POS tags for text and summary...")
556
+ text_columns = [f'text_{p}' for p in POST_TAGS]
557
+ if not all(col in df.columns for col in text_columns):
558
+ df = pd.concat([df, self.get_pos_tags(df['text'], POST_TAGS, 'text')], axis=1)
559
+ else:
560
+ logging.info("Text POS tags already present in stats, skipping...")
561
+ sum_columns = [f'sum_{p}' for p in POST_TAGS]
562
+ if not all(col in df.columns for col in sum_columns):
563
+ df = pd.concat([df, self.get_pos_tags(df['summary'], POST_TAGS, 'sum')], axis=1)
564
+ else:
565
+ logging.info("Summary POS tags already present in stats, skipping...")
566
+
567
+ logging.info("All statistics have been calculated successfully.")
568
+ return df
569
+
570
+ class SCAPlotter:
571
+ """Generates plots for data visualization."""
572
+
573
+ def __init__(self):
574
+ self.labels_dict = {
575
+ 'sum_word_count': 'Word Count of Summaries', 'text_word_count': 'Word Count of Judgments',
576
+ 'sum_char_count': 'Chararacter Count of Summaries', 'text_char_count': 'Chararacter Count of Judgments',
577
+ 'sum_word_density': 'Word Density of Summaries', 'text_word_density': 'Word Density of Judgments',
578
+ 'sum_punc_count': 'Punctuation Count of Summaries', 'text_punc_count': 'Punctuation Count of Judgments',
579
+ 'text_sent_count': 'Sentence Count of Judgments', 'sum_sent_count': 'Sentence Count of Summaries',
580
+ 'text_sent_density': 'Sentence Density of Judgments', 'sum_sent_density': 'Sentence Density of Summaries',
581
+ 'text_stopw_count': 'Stopwords Count of Judgments', 'sum_stopw_count': 'Stopwords Count of Summaries',
582
+ 'ADJ': 'adjective','ADP': 'adposition', 'ADV': 'adverb','CONJ': 'conjunction',
583
+ 'DET': 'determiner','NOUN': 'noun', 'text_unknown_count': 'Unknown words in Judgments',
584
+ 'sum_unknown_count': 'Unknown words in Summaries'
585
+ }
586
+
587
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
588
+
589
+ def plot_case_distribution(self, df):
590
+ plt.figure(figsize=(7.5, 6))
591
+ sns.countplot(data=df, x='type', hue='type', palette='muted', width=0.5)
592
+ plt.ylabel('Number of Cases')
593
+ plt.xlabel('Case Type')
594
+ plt.xticks(rotation=0)
595
+ plt.savefig(FIGURES_DIR / 'number_of_cases_by_type.png')
596
+ plt.close()
597
+
598
+ def plot_summary_vs_judgment_length(self, df):
599
+ slope, intercept, _, _, _ = stats.linregress(df['text_word_count'], df['sum_word_count'])
600
+ plt.figure(figsize=(7.5, 6))
601
+ sns.scatterplot(x='text_word_count', y='sum_word_count', data=df, s=10, label='Data', color="dodgerblue")
602
+
603
+ plt.xlabel('Judgment Length')
604
+ plt.ylabel('Summary Length')
605
+ plt.plot(df['text_word_count'], intercept + slope * df['text_word_count'], 'b', label=f'Best Fit: y = {slope:.2f}x + {intercept:.2f}')
606
+ self._add_capacity_shading(df['text_word_count'], df['sum_word_count'])
607
+ plt.legend()
608
+ plt.savefig(FIGURES_DIR / 'data_summary_lengths.png')
609
+
610
+ plt.close()
611
+
612
+ def plot_length_distribution(self, df, columns, plot_histogram=True, plot_boxplots=True, file_name='stats'):
613
+ if plot_histogram or plot_boxplots:
614
+ if plot_histogram:
615
+ self._plot_histograms(
616
+ df,
617
+ np.array([columns]),
618
+ self.labels_dict,
619
+ show_kde=False,
620
+ output_path=FIGURES_DIR / f'{file_name}_histograms.png'
621
+ )
622
+ if plot_boxplots:
623
+ self._plot_boxplots(
624
+ df,
625
+ np.array([columns]),
626
+ self.labels_dict,
627
+ output_path=FIGURES_DIR / f'{file_name}_boxplots.png'
628
+ )
629
+ else:
630
+ raise ValueError('No plots selected to be generated.')
631
+
632
+ def plot_most_common_words(self, count_data, words, figsize=(15, 7), no_words=20, file_name=None, show_plot=False):
633
+ """
634
+ Draw a barplot showing the most common words in the data.
635
+
636
+ Parameters:
637
+ - count_data (sparse matrix): Document-term matrix containing word occurrences.
638
+ - count_vectorizer (CountVectorizer): Fitted CountVectorizer object.
639
+ - figsize (tuple): Figure size for the plot.
640
+ - no_words (int): Number of most common words to display.
641
+ - output_path (str): Path to save the plot.
642
+ """
643
+ total_counts = np.zeros(len(words))
644
+ for t in count_data:
645
+ total_counts += t.toarray()[0]
646
+
647
+ count_dict = sorted(zip(words, total_counts), key=lambda x: x[1], reverse=True)[:no_words]
648
+ words = [w[0] for w in count_dict]
649
+ counts = [w[1] for w in count_dict]
650
+ x_pos = np.arange(len(words))
651
+
652
+ plt.figure(figsize=figsize)
653
+ plt.subplot(title=f'{no_words} most common words')
654
+ sns.set_context("notebook", font_scale=1.25, rc={"lines.linewidth": 2.5})
655
+ sns.barplot(x=x_pos, y=counts, palette='husl')
656
+ plt.xticks(x_pos, words, rotation=45)
657
+ plt.ylabel('Frequency')
658
+ plt.tight_layout()
659
+ if file_name:
660
+ plt.savefig(FIGURES_DIR / f'{file_name}.png')
661
+ if show_plot:
662
+ plt.show()
663
+ plt.close()
664
+
665
+ def plot_bertopic_visualizations(self, model, output_path):
666
+ """
667
+ Generate and save BERTopic visualizations.
668
+ """
669
+ fig = model.visualize_barchart(top_n_topics=12)
670
+ fig.write_html(output_path / "topic_barchart.html")
671
+
672
+ hierarchical_fig = model.visualize_hierarchy()
673
+ hierarchical_fig.write_html(output_path / "topic_hierarchy.html")
674
+
675
+ heatmap_fig = model.visualize_heatmap()
676
+ heatmap_fig.write_html(output_path / "topic_heatmap.html")
677
+
678
+ word_cloud_fig = model.visualize_topics()
679
+ word_cloud_fig.write_html(output_path / "topic_wordcloud.html")
680
+
681
+ def plot_overlap_heatmap(self, overlap_matrix, file_name=None):
682
+ """
683
+ Plot a heatmap for the overlap matrix.
684
+
685
+ Parameters:
686
+ overlap_matrix (np.array): Overlap matrix between judgment and summary topics.
687
+ output_path (str): Path to save the heatmap.
688
+ """
689
+ plt.figure(figsize=(12, 8))
690
+ sns.heatmap(overlap_matrix, annot=False, cmap="coolwarm", cbar=True)
691
+ plt.title("Topic Overlap Between Judgments and Summaries")
692
+ plt.xlabel("Summary Topics")
693
+ plt.ylabel("Judgment Topics")
694
+ plt.savefig(FIGURES_DIR / f'{file_name}.png')
695
+ plt.close()
696
+
697
+ def plot_wordcloud(self, texts, background_color="white", max_words=1000, contour_width=3, contour_color='steelblue', file_name='wordcloud'):
698
+ long_string = ','.join(texts)
699
+ wordcloud = WordCloud(background_color=background_color, max_words=max_words, contour_width=contour_width, contour_color=contour_color)
700
+ wordcloud.generate(long_string)
701
+ wordcloud.to_image()
702
+ wordcloud.to_file(FIGURES_DIR / f'{file_name}.png')
703
+
704
+ def plot_lda_results(self, lda_model, tf, tf_vectorizer, file_name='lda_topics'):
705
+ LDAvis_prepared = lda.prepare(lda_model, tf, tf_vectorizer)
706
+
707
+ with open(FIGURES_DIR / f'{file_name}.pkl', 'wb') as f:
708
+ pickle.dump(LDAvis_prepared, f)
709
+
710
+ with open(FIGURES_DIR / f'{file_name}.pkl', 'rb') as f:
711
+ LDAvis_prepared = pickle.load(f)
712
+
713
+ pyLDAvis.save_html(LDAvis_prepared, FIGURES_DIR / f'{file_name}.html')
714
+
715
+ @staticmethod
716
+ def _plot_boxplots(data, plot_vars, labels, figsize=(15, 5), output_path=None, show_plot=False):
717
+ """
718
+ Plot boxplots for the specified variables with appropriate labels.
719
+
720
+ Parameters:
721
+ - data (pd.DataFrame): The data points to plot.
722
+ - plot_vars (array-like): A (1, x) or (n, m) array containing column names to plot.
723
+ - labels (dict): A dictionary mapping column names to their respective labels.
724
+ - figsize (tuple): The size of the figure (default: (15, 5)).
725
+ - output_path (str, optional): File path to save the plot.
726
+ - show_plot (bool, optional): Whether to display the plot.
727
+
728
+ Returns:
729
+ - None
730
+ """
731
+ plot_vars = np.atleast_2d(plot_vars)
732
+ nrows, ncols = plot_vars.shape
733
+
734
+ fig, axes = plt.subplots(nrows, ncols, figsize=figsize, squeeze=False)
735
+
736
+ for i in range(nrows):
737
+ for j in range(ncols):
738
+ var = plot_vars[i, j]
739
+ ax = axes[i, j]
740
+
741
+ if var is not None:
742
+ ax.set_title(labels.get(var, var))
743
+ ax.grid(True)
744
+ ax.tick_params(
745
+ axis='x',
746
+ which='both',
747
+ bottom=False,
748
+ top=False,
749
+ labelbottom=False
750
+ )
751
+ if var in data.columns:
752
+ ax.boxplot(data[var])
753
+ else:
754
+ ax.set_visible(False)
755
+ else:
756
+ ax.set_visible(False)
757
+
758
+ fig.tight_layout()
759
+
760
+ if output_path:
761
+ plt.savefig(output_path)
762
+ if show_plot:
763
+ plt.show()
764
+ plt.close()
765
+
766
+ @staticmethod
767
+ def _plot_histograms(data, plot_vars, labels, figsize=(15,5), show_kde=False, output_path=None, show_plot=False):
768
+ ''' Function to plot the histograms of the variables in plot_vars
769
+ Input:
770
+ - data: a dataframe, containing the data points to plot
771
+ - plot_vars: a (1,x) array, containing the columns to plot
772
+ - xlim: a list, defines the max x value for every column to plot
773
+ - labels: a dictionary, to map the column names to its label
774
+ - figsize: a tuple, indicating the size of the figure
775
+ - show_kde: a boolean, indicating if the kde should be shown
776
+ - output_path: a string, indicating the path to save the file
777
+ '''
778
+ fig, axes = plt.subplots(1, plot_vars.shape[1], figsize=figsize, sharey=False, dpi=100)
779
+
780
+ if plot_vars.shape[1] == 1:
781
+ axes = [axes]
782
+
783
+ for i in range(plot_vars.shape[1]):
784
+ color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))
785
+
786
+ sns.histplot(
787
+ data[plot_vars[0, i]],
788
+ color=color,
789
+ ax=axes[i],
790
+ bins=50,
791
+ kde=show_kde,
792
+ )
793
+
794
+ x_label = plot_vars[0, i].replace('sent', 'sentence')
795
+ axes[i].set_xlabel(' '.join([l.capitalize() for l in x_label.split('_')[1:]]))
796
+ axes[i].set_ylabel('Frequency')
797
+
798
+ axes[i].set_title(labels[plot_vars[0, i]])
799
+
800
+ fig.tight_layout()
801
+ if output_path:
802
+ plt.savefig(output_path)
803
+ if show_plot:
804
+ plt.show()
805
+ plt.close()
806
+
807
+ @staticmethod
808
+ def _add_capacity_shading(input_stats, output_stats):
809
+ model_input_length, model_output_length = 16384, 1024
810
+ plt.gca().add_patch(
811
+ plt.Rectangle((0, 0), model_input_length, max(output_stats) + 50,
812
+ color='red', alpha=0.3, linestyle='--', linewidth=1.5,
813
+ label=f"Judgments accommodated: {len([x for x in input_stats if x < model_input_length]):,}")
814
+ )
815
+ plt.gca().add_patch(
816
+ plt.Rectangle((0, 0), max(input_stats) + 400, model_output_length,
817
+ color='green', alpha=0.3, linestyle='-', linewidth=1.5,
818
+ label=f"Summaries accommodated: {len([y for y in output_stats if y < model_output_length]):,}")
819
+ )
820
+
821
+
822
+ class TopicModeling:
823
+ """
824
+ Class to perform topic modeling using LDA, UMAP, and HDBSCAN.
825
+ """
826
+
827
+ def __init__(self):
828
+ self.plotter = SCAPlotter()
829
+
830
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
831
+
832
+ def perform_lda_analysis(self, texts, tf_vectorizer, no_top_words=8, n_components=10, max_iter=500, random_state=0, learning_method='online', file_name='lda_topics'):
833
+ """
834
+ Perform LDA topic modeling and save top words per topic.
835
+
836
+ Parameters:
837
+ texts (list of str): Input texts for LDA.
838
+ tf_vectorizer (TfidfVectorizer or CountVectorizer): Vectorizer for text processing.
839
+ no_top_words (int): Number of top words to display per topic.
840
+ n_components (int): Number of topics.
841
+ max_iter (int): Maximum number of iterations.
842
+ random_state (int): Random state for reproducibility.
843
+ learning_method (str): Learning method for LDA ('batch' or 'online').
844
+ file_name (str): Name of the file to save topics.
845
+
846
+ Returns:
847
+ lda_model (LDA): Fitted LDA model.
848
+ """
849
+ logging.info("Vectorizing text data...")
850
+ tf = tf_vectorizer.fit_transform(texts)
851
+
852
+ logging.info("Fitting LDA model...")
853
+ lda_model = LDA(
854
+ n_components=n_components,
855
+ learning_method=learning_method,
856
+ max_iter=max_iter,
857
+ random_state=random_state
858
+ ).fit(tf)
859
+
860
+ words = tf_vectorizer.get_feature_names_out()
861
+
862
+ with open(FIGURES_DIR / f'{file_name}.txt', 'w') as f:
863
+ for topic_idx, topic in enumerate(lda_model.components_):
864
+ f.write(f"\nTopic #{topic_idx}:\n")
865
+ f.write(" ".join([words[i] for i in topic.argsort()[:-no_top_words - 1:-1]]) + "\n")
866
+
867
+ self.plotter.plot_lda_results(lda_model, tf, tf_vectorizer, file_name)
868
+ return lda_model
869
+
870
+ def perform_bertopic_analysis(self, cleaned_text=None, cleaned_summary=None, output_path='bertopic', save_topic_info=True):
871
+ """
872
+ Perform BERTopic modeling and generate plots.
873
+
874
+ Parameters:
875
+ cleaned_text (list of str): List of cleaned text strings.
876
+ cleaned_summary (list of str): List of cleaned summary strings.
877
+ output_path (str): Directory path to save results.
878
+ save_topic_info (bool): Save topic information as a CSV file.
879
+
880
+ Returns:
881
+ model (BERTopic): Trained BERTopic model.
882
+ topic_info (pd.DataFrame): DataFrame containing topic information.
883
+ """
884
+ if cleaned_text is None and cleaned_summary is None:
885
+ logging.error("No cleaned text or summary data provided.")
886
+ raise ValueError("Please provide cleaned text and/or summary data.")
887
+
888
+ if cleaned_text and cleaned_summary:
889
+ logging.info('merging text and summary data...')
890
+ elif cleaned_text:
891
+ logging.info('using only text data...')
892
+ elif cleaned_summary:
893
+ logging.info('using only summary data...')
894
+
895
+ combined_texts = cleaned_text or [] + cleaned_summary or []
896
+
897
+ logging.info("Initializing and fitting BERTopic model...")
898
+ model = BERTopic()
899
+ model.fit_transform(combined_texts)
900
+
901
+ topic_info = None
902
+ topic_info_path = FIGURES_DIR / output_path
903
+ topic_info_path.mkdir(parents=True, exist_ok=True)
904
+
905
+ if save_topic_info:
906
+ logging.info("Saving topic information to CSV file...")
907
+ topic_info = model.get_topic_info()
908
+ topic_info.to_csv(topic_info_path / "topic_info.csv", index=False)
909
+
910
+ logging.info("Generating BERTopic visualizations...")
911
+ self.plotter.plot_bertopic_visualizations(model, topic_info_path)
912
+
913
+ return model, topic_info
914
+
915
+ def calculate_overlap_matrix(self, judgment_model, summary_model, top_n=12):
916
+ """
917
+ Calculate the overlap matrix between judgment and summary topics.
918
+
919
+ Args:
920
+ judgment_model: The model containing judgment topics.
921
+ summary_model: The model containing summary topics.
922
+ top_n (int): The number of top topics to consider.
923
+
924
+ Returns:
925
+ np.ndarray: Overlap matrix between judgment and summary topics.
926
+ """
927
+ logging.info("Getting topic information from judgment and summary models.")
928
+
929
+ # Get topic information
930
+ judgment_topics = judgment_model.get_topic_info()['Topic'][:top_n].values
931
+ summary_topics = summary_model.get_topic_info()['Topic'][:top_n].values
932
+
933
+ logging.info("Initializing overlap matrix.")
934
+ # Initialize overlap matrix
935
+ overlap_matrix = np.zeros((top_n, top_n))
936
+
937
+ for i, j_topic_id in enumerate(judgment_topics):
938
+ if j_topic_id == -1: # Skip outliers
939
+ logging.info(f"Skipping outlier topic in judgment model at index {i}.")
940
+ continue
941
+ logging.info(f"Processing judgment topic {j_topic_id} at index {i}.")
942
+ j_terms = {term for term, _ in judgment_model.get_topic(j_topic_id)}
943
+ for j, s_topic_id in enumerate(summary_topics):
944
+ if s_topic_id == -1: # Skip outliers
945
+ logging.info(f"Skipping outlier topic in summary model at index {j}.")
946
+ continue
947
+ logging.info(f"Processing summary topic {s_topic_id} at index {j}.")
948
+ s_terms = {term for term, _ in summary_model.get_topic(s_topic_id)}
949
+ # Calculate Jaccard similarity
950
+ overlap_matrix[i, j] = len(j_terms & s_terms) / len(j_terms | s_terms)
951
+ logging.info(f"Calculated Jaccard similarity for judgment topic {j_topic_id} and summary topic {s_topic_id}: {overlap_matrix[i, j]}")
952
+
953
+ logging.info("Overlap matrix calculation complete.")
954
+ return overlap_matrix