|
import fitz |
|
import random |
|
import logging |
|
import zipfile |
|
import re, string |
|
import unicodedata |
|
import numpy as np |
|
import pandas as pd |
|
import seaborn as sns |
|
from tqdm import tqdm |
|
from scipy import stats |
|
from pathlib import Path |
|
import matplotlib.pyplot as plt |
|
from collections import Counter |
|
|
|
import nltk |
|
from nltk.tokenize import word_tokenize, sent_tokenize |
|
|
|
import warnings |
|
warnings.simplefilter("ignore", DeprecationWarning) |
|
|
|
import pickle |
|
import pyLDAvis |
|
import pyLDAvis.lda_model as lda |
|
|
|
from bertopic import BERTopic |
|
from wordcloud import WordCloud |
|
from sklearn.feature_extraction.text import CountVectorizer |
|
|
|
from sklearn.decomposition import LatentDirichletAllocation as LDA |
|
|
|
nltk.download('stopwords') |
|
nltk.download('punkt') |
|
nltk.download('averaged_perceptron_tagger') |
|
nltk.download('universal_tagset') |
|
|
|
tqdm.pandas() |
|
plt.rcParams["font.family"] = "Tahoma" |
|
sns.set_theme(style="whitegrid", font="Tahoma") |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
HOME_DIR = Path("..") |
|
|
|
RAW_DATA_DIR = HOME_DIR / "raw" |
|
PROCESSED_DATA_DIR = HOME_DIR / "processed" |
|
GLOVE_EMBEDDINGS_FILE = PROCESSED_DATA_DIR / "glove.6B.100d.txt" |
|
|
|
DATA_ANALYSIS_PATH = HOME_DIR / "data_analysis" |
|
FIGURES_DIR = DATA_ANALYSIS_PATH / "plots" |
|
|
|
FIGURES_DIR.mkdir(parents=True, exist_ok=True) |
|
PROCESSED_DATA_DIR.mkdir(parents=True, exist_ok=True) |
|
POST_TAGS = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X'] |
|
|
|
|
|
class FileManager: |
|
"""Handles file operations, including zip and unzipping folders and saving text to files.""" |
|
|
|
@staticmethod |
|
def unzip_data(zip_path, extract_to): |
|
""" |
|
Unzips a ZIP file to a specified directory. |
|
|
|
Parameters: |
|
- zip_path (str or Path): Path to the ZIP file. |
|
- extract_to (str or Path): Target directory to extract files to. |
|
|
|
Raises: |
|
- FileNotFoundError: If the ZIP file does not exist. |
|
- RuntimeError: If the file is not a valid ZIP archive. |
|
""" |
|
zip_file = Path(zip_path) |
|
extract_to = Path(extract_to) |
|
if not zip_file.exists(): |
|
raise FileNotFoundError(f"ZIP file not found: {zip_file}") |
|
|
|
target_dir = extract_to / zip_file.stem |
|
if target_dir.exists(): |
|
logging.info(f"Directory already exists: {target_dir}") |
|
return |
|
|
|
try: |
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref: |
|
zip_ref.extractall(target_dir) |
|
logging.info(f"Extracted {zip_file} to {target_dir}") |
|
except zipfile.BadZipFile as e: |
|
raise RuntimeError(f"Invalid ZIP file: {zip_file}") from e |
|
|
|
@staticmethod |
|
def save_text(text, file_path): |
|
""" |
|
Saves text to a file. |
|
|
|
Parameters: |
|
- text (str): Text to save. |
|
- file_path (str or Path): Target file path. |
|
|
|
Raises: |
|
- IOError: If writing to the file fails. |
|
""" |
|
file_path = Path(file_path) |
|
file_path.parent.mkdir(parents=True, exist_ok=True) |
|
try: |
|
with open(file_path, 'w', encoding='utf-8') as file: |
|
file.write(text) |
|
logging.info(f"Saved text to {file_path}") |
|
except IOError as e: |
|
logging.error(f"Failed to save text to {file_path}: {e}") |
|
raise |
|
|
|
|
|
class PDFExtractor: |
|
"""Extracts and cleans text from PDF documents.""" |
|
|
|
@staticmethod |
|
def extract_text(pdf_path): |
|
""" |
|
Extracts and processes text from a PDF file. |
|
|
|
Parameters: |
|
- pdf_path (str or Path): Path to the PDF file. |
|
|
|
Returns: |
|
- str: Cleaned and processed text. |
|
|
|
Raises: |
|
- FileNotFoundError: If the PDF file does not exist. |
|
- RuntimeError: If the PDF cannot be opened. |
|
""" |
|
pdf_path = Path(pdf_path) |
|
|
|
if not pdf_path.exists(): |
|
logging.error(f"PDF file not found: {pdf_path}") |
|
raise FileNotFoundError(f"PDF file not found: {pdf_path}") |
|
|
|
try: |
|
doc = fitz.open(pdf_path) |
|
text_lines = [ |
|
PDFExtractor._clean_line(page.get_text("text")) |
|
for page in doc |
|
] |
|
doc.close() |
|
return '\n'.join(PDFExtractor._combine_paragraphs(text_lines)) |
|
except Exception as e: |
|
logging.error(f"Error extracting text from {pdf_path}: {e}") |
|
raise RuntimeError(f"Error extracting text from {pdf_path}: {e}") |
|
|
|
@staticmethod |
|
def _clean_line(text): |
|
""" |
|
Cleans a line of text by removing unwanted content. |
|
|
|
Parameters: |
|
- text (str): The text to clean. |
|
|
|
Returns: |
|
- list: List of cleaned sentences. |
|
""" |
|
paragraphs = [line.strip() for line in sent_tokenize(text)] |
|
return [p for p in paragraphs if not PDFExtractor._is_numeric_string(p)] |
|
|
|
@staticmethod |
|
def _combine_paragraphs(lines): |
|
""" |
|
Combines lines into paragraphs based on paragraph markers. |
|
|
|
Parameters: |
|
- lines (list of str): List of text lines. |
|
|
|
Returns: |
|
- list: Combined paragraphs. |
|
""" |
|
combined = [] |
|
for line in lines: |
|
if PDFExtractor._is_paragraph_marker(line): |
|
if combined: |
|
combined[-1] += f' {line}' |
|
else: |
|
combined.append(line) |
|
else: |
|
combined.append(line) |
|
return combined |
|
|
|
@staticmethod |
|
def _is_numeric_string(string): |
|
""" |
|
Checks if a string is numeric and less than 1000. |
|
|
|
Parameters: |
|
- string (str): The string to check. |
|
|
|
Returns: |
|
- bool: True if numeric and less than 1000, otherwise False. |
|
""" |
|
return string.isdigit() and int(string) < 1000 |
|
|
|
@staticmethod |
|
def _is_paragraph_marker(line): |
|
""" |
|
Determines if a line is a paragraph marker. |
|
|
|
Parameters: |
|
- line (str): The line to check. |
|
|
|
Returns: |
|
- bool: True if it matches paragraph marker criteria, otherwise False. |
|
""" |
|
return line.startswith("[") and line.endswith("]") and line[1:-1].isdigit() |
|
|
|
|
|
class DataLoader: |
|
"""Loads and processes TSV data files into DataFrames.""" |
|
|
|
def __init__(self, base_dir=PROCESSED_DATA_DIR, file_extension="tsv"): |
|
""" |
|
Initialize the DataLoader. |
|
|
|
Parameters: |
|
- base_dir (Path): Base directory containing the processed data. |
|
- file_extension (str): Extension of data files to read (default: 'tsv'). |
|
""" |
|
self.base_dir = Path(base_dir) |
|
self.file_extension = file_extension |
|
|
|
def load_data(self, data_type, column_name=None): |
|
""" |
|
Load data based on the specified type. |
|
|
|
Parameters: |
|
- data_type (str): One of ['with_summaries', 'without_summaries', 'all']. |
|
|
|
Returns: |
|
- pd.DataFrame: Concatenated DataFrame with a 'split' column. |
|
""" |
|
paths = { |
|
'with_summaries': [self.base_dir / "with_summaries" / f"{split}.{self.file_extension}" for split in ['train', 'dev', 'test']], |
|
'without_summaries': [self.base_dir / "without_summaries" / f"all_data.{self.file_extension}"], |
|
'all': [self.base_dir / "without_summaries" / f"all_data.{self.file_extension}"] + |
|
[self.base_dir / "with_summaries" / f"{split}.{self.file_extension}" for split in ['train', 'dev', 'test']] |
|
} |
|
|
|
if data_type not in paths: |
|
raise ValueError(f"Invalid data type specified: {data_type}. Expected one of {list(paths.keys())}.") |
|
|
|
valid_paths = [path for path in paths[data_type] if path.exists()] |
|
missing_paths = [path for path in paths[data_type] if not path.exists()] |
|
|
|
if missing_paths: |
|
logging.warning(f"Missing files: {missing_paths}") |
|
|
|
if not valid_paths: |
|
raise FileNotFoundError("No valid data files found to load.") |
|
|
|
if column_name: |
|
return self._read_files(valid_paths)[column_name] |
|
|
|
return self._read_files(valid_paths) |
|
|
|
@staticmethod |
|
def _read_files(paths): |
|
""" |
|
Read and concatenate data files into a single DataFrame. |
|
|
|
Parameters: |
|
- paths (list of Path): Paths to the files to read. |
|
|
|
Returns: |
|
- pd.DataFrame: Combined DataFrame with a 'split' column. |
|
""" |
|
df_list = [] |
|
for path in paths: |
|
logging.info(f"Loading file: {path}") |
|
try: |
|
df = pd.read_csv(path, sep='\t') |
|
df['split'] = path.stem |
|
df_list.append(df) |
|
except Exception as e: |
|
logging.error(f"Failed to read {path}: {e}") |
|
|
|
return pd.concat(df_list, ignore_index=True) if df_list else pd.DataFrame() |
|
|
|
|
|
class GloveVectorizer: |
|
""" |
|
Maps words to GloVe embeddings and computes sentence embeddings |
|
by averaging word vectors. |
|
""" |
|
|
|
def __init__(self, embedding_file): |
|
""" |
|
Initializes the vectorizer with GloVe embeddings. |
|
|
|
Args: |
|
embedding_file (str): Path to the GloVe embedding file. |
|
""" |
|
self.word2vec = {} |
|
self.embedding = [] |
|
self.idx2word = [] |
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s") |
|
|
|
try: |
|
logging.info("Loading word vectors...") |
|
with open(embedding_file, encoding='utf-8') as f: |
|
for line in f: |
|
values = line.split() |
|
word = values[0] |
|
vec = np.asarray(values[1:], dtype='float32') |
|
self.word2vec[word] = vec |
|
self.embedding.append(vec) |
|
self.idx2word.append(word) |
|
|
|
self.embedding = np.array(self.embedding) |
|
self.word2idx = {word: idx for idx, word in enumerate(self.idx2word)} |
|
self.V, self.D = self.embedding.shape |
|
logging.info(f"Found {len(self.word2vec)} word vectors.") |
|
except FileNotFoundError: |
|
logging.error(f"Embedding file '{embedding_file}' not found.") |
|
raise FileNotFoundError(f"Embedding file '{embedding_file}' not found.") |
|
except Exception as e: |
|
logging.error(f"Error loading embeddings: {e}") |
|
raise RuntimeError(f"Error loading embeddings: {e}") |
|
|
|
def fit(self, data): |
|
"""Placeholder for potential future implementation.""" |
|
pass |
|
|
|
def get_vocabulary(self): |
|
""" |
|
Returns the vocabulary of the embeddings. |
|
|
|
Returns: |
|
list: A list of all words in the GloVe vocabulary. |
|
""" |
|
return list(self.word2vec.keys()) |
|
|
|
def transform(self, data, return_unknowns=False): |
|
""" |
|
Transforms a list of sentences into mean GloVe embeddings. |
|
|
|
Args: |
|
data (list of str): Sentences to transform. |
|
return_unknowns (bool): If True, also return unknown words. |
|
|
|
Returns: |
|
np.ndarray: Mean GloVe embeddings for each sentence. |
|
list: (Optional) List of unknown words for each sentence. |
|
""" |
|
X = np.zeros((len(data), self.D)) |
|
unknown_words = [] |
|
emptycount = 0 |
|
|
|
for n, sentence in enumerate(data): |
|
tokens = sentence.lower().split() |
|
vecs = [] |
|
unknowns = [] |
|
|
|
for word in tokens: |
|
if word in self.word2vec: |
|
vecs.append(self.word2vec[word]) |
|
else: |
|
unknowns.append(word) |
|
|
|
if vecs: |
|
vecs = np.array(vecs) |
|
X[n] = vecs.mean(axis=0) |
|
else: |
|
emptycount += 1 |
|
|
|
if return_unknowns: |
|
unknown_words.append(unknowns) |
|
|
|
if emptycount > 0: |
|
print(f"Warning: {emptycount} sentences had no known words.") |
|
|
|
return (X, unknown_words) if return_unknowns else X |
|
|
|
def fit_transform(self, data, return_unknowns=False): |
|
""" |
|
Fits and transforms the data. |
|
|
|
Args: |
|
data (list of str): Sentences to transform. |
|
return_unknowns (bool): If True, also return unknown words. |
|
|
|
Returns: |
|
np.ndarray: Mean GloVe embeddings for each sentence. |
|
list: (Optional) List of unknown words for each sentence. |
|
""" |
|
self.fit(data) |
|
return self.transform(data, return_unknowns) |
|
|
|
class TextProcessor: |
|
"""Processes text data for analysis and visualization.""" |
|
|
|
def __init__(self, data_loader): |
|
self.data_loader = data_loader |
|
|
|
@staticmethod |
|
def tokenize_stats(df, col_name, tokenize_type): |
|
tokenizer = sent_tokenize if tokenize_type == 'sent' else word_tokenize |
|
stats = df[col_name].dropna().apply(lambda x: len(tokenizer(x))) |
|
return stats |
|
|
|
@staticmethod |
|
def get_punctuation(): |
|
return string.punctuation |
|
|
|
@staticmethod |
|
def get_stopwords(language='english'): |
|
return set(nltk.corpus.stopwords.words(language)) |
|
|
|
@staticmethod |
|
def unicode_to_ascii(s): |
|
return ''.join(c for c in unicodedata.normalize('NFD', s) |
|
if unicodedata.category(c) != 'Mn') |
|
|
|
@staticmethod |
|
def count_stopwords(text, stopwords): |
|
word_tokens = word_tokenize(text) |
|
stopwords_x = [w for w in word_tokens if w in stopwords] |
|
return len(stopwords_x) |
|
|
|
@staticmethod |
|
def replace_punctuation(text, punctuation): |
|
table = str.maketrans(punctuation, ' ' * len(punctuation)) |
|
return text.translate(table) |
|
|
|
@staticmethod |
|
def get_unknown_words(text, vocab): |
|
tokens = word_tokenize(text) |
|
unknown = [t for t in tokens if t not in vocab.word2vec] |
|
return unknown |
|
|
|
@staticmethod |
|
def get_pos_tags(sentences, columns, data_type, tagset='universal'): |
|
''' Extract the part-of-speech taggings of the sentence |
|
Input: |
|
- sentence: string, sentence to tag |
|
- tagset: string, tagset or the set of tags to search for |
|
''' |
|
tags = [] |
|
columns = [f'{data_type}_{c}' for c in columns] |
|
for sent in tqdm(sentences): |
|
pos_tags = Counter([j for _,j in nltk.pos_tag(word_tokenize(sent), tagset=tagset)]) |
|
pos_tags = {f'{data_type}_{k}':v for k,v in dict(pos_tags).items()} |
|
tags.append(pos_tags) |
|
|
|
return pd.DataFrame(tags, columns=columns).fillna(0) |
|
|
|
def remove_stopwords(self, df, target_columns=None): |
|
''' Apply some basic techniques for cleaning a text for an analysis of words |
|
|
|
Input: |
|
- text: text to be cleaned |
|
Output: |
|
- result: cleaned text |
|
''' |
|
def clean_text(text, stopwords): |
|
text = text.lower() |
|
pattern = r'[^a-zA-Z\s]' |
|
text = re.sub(pattern, '', text) |
|
|
|
tokens = nltk.word_tokenize(text) |
|
tokens = [token.strip() for token in tokens] |
|
text = ' '.join([token for token in tokens if token not in stopwords]) |
|
return text |
|
|
|
if target_columns: |
|
logging.info(f"Removing stopwords for columns: {target_columns}") |
|
stopwords = self.get_stopwords() |
|
cleaned_text = [] |
|
for col in target_columns: |
|
cleaned_text.append(df[col].progress_apply(lambda x: clean_text(x, stopwords)).tolist()) |
|
return cleaned_text |
|
|
|
def prepare_text(self, df, target_columns=None, drop_duplicates=True, drop_na=True): |
|
if target_columns and len(target_columns) == 2: |
|
logging.info(f"Preparing text data for columns: {target_columns}") |
|
try: |
|
df = df[target_columns] |
|
except KeyError as e: |
|
logging.error(f"Invalid columns specified: {e}") |
|
raise ValueError(f"Invalid columns specified: {e}") |
|
if drop_duplicates: |
|
df.drop_duplicates(subset=target_columns[0], inplace=True) |
|
logging.info(f"Dropped duplicates, new shape: {df.shape}") |
|
if drop_na: |
|
df.dropna(inplace=True) |
|
logging.info(f"Dropped NA values, new shape: {df.shape}") |
|
df.reset_index(drop=True, inplace=True) |
|
df.columns = ['text', 'summary'] |
|
logging.info(f"Renamed columns to 'text' and 'summary'") |
|
|
|
logging.info("Cleaning unicode characters and extra spaces...") |
|
df['text'] = df['text'].apply(lambda x: self.unicode_to_ascii(x.strip())) |
|
df['summary'] = df['summary'].apply(lambda x: self.unicode_to_ascii(x.strip())) |
|
|
|
logging.info(f"Data prepared, new shape: {df.shape}") |
|
|
|
return df |
|
else: |
|
logging.error("Invalid columns or number of target columns specified.") |
|
raise ValueError('No target columns specified, or invalid number of columns.') |
|
|
|
def get_vectorizer_features(self, texts, max_df=0.9, min_df=25, max_features=5000): |
|
tf_vectorizer = CountVectorizer(max_df=max_df, min_df=min_df, max_features=max_features) |
|
tf = tf_vectorizer.fit_transform(texts) |
|
tf_feature_names = tf_vectorizer.get_feature_names_out() |
|
return tf, tf_feature_names |
|
|
|
def get_all_stats(self, df): |
|
""" |
|
Generate and add statistical metrics for text and summary columns in a DataFrame. |
|
|
|
Parameters: |
|
df (pd.DataFrame): Input DataFrame containing 'text' and 'summary' columns. |
|
|
|
Returns: |
|
pd.DataFrame: DataFrame with added statistical columns. |
|
""" |
|
punc = self.get_punctuation() |
|
stopwords = self.get_stopwords() |
|
vocab = GloveVectorizer(GLOVE_EMBEDDINGS_FILE) |
|
|
|
def add_stat_column(column_name, compute_func, *args, **kwargs): |
|
if column_name not in df.columns: |
|
logging.info(f"Calculating {column_name}...") |
|
df[column_name] = compute_func(*args, **kwargs) |
|
else: |
|
logging.info(f"{column_name} already present in stats, skipping...") |
|
|
|
logging.info("Calculating text statistics (sentences, tokens, characters, etc.)...") |
|
add_stat_column('text_sent_count', self.tokenize_stats, df, 'text', 'sent') |
|
add_stat_column('text_word_count', self.tokenize_stats, df, 'text', 'word') |
|
add_stat_column('text_char_count', lambda x: x['text'].progress_apply(lambda t: len(t.replace(" ", ""))), df) |
|
add_stat_column('text_sent_density', lambda x: x['text_sent_count'] / (x['text_word_count'] + 1), df) |
|
add_stat_column('text_word_density', lambda x: x['text_word_count'] / (x['text_char_count'] + 1), df) |
|
add_stat_column('text_punc_count', lambda x: x['text'].progress_apply(lambda t: sum(1 for char in t if char in punc)), df) |
|
add_stat_column('text_stopw_count', lambda x: x['text'].progress_apply(lambda t: self.count_stopwords(t, stopwords)), df) |
|
add_stat_column('text_unknown_words', lambda x: x['text'].progress_apply(lambda t: self.get_unknown_words(self.replace_punctuation(t.lower(), string.punctuation), vocab)), df) |
|
add_stat_column('text_unknown_count', lambda x: x['text_unknown_words'].progress_apply(lambda t: len(t) if isinstance(t, list) else 0), df) |
|
|
|
logging.info("Calculating summary statistics (sentences, tokens, characters, etc.)...") |
|
add_stat_column('sum_sent_count', self.tokenize_stats, df, 'summary', 'sent') |
|
add_stat_column('sum_word_count', self.tokenize_stats, df, 'summary', 'word') |
|
add_stat_column('sum_char_count', lambda x: x['summary'].progress_apply(lambda t: len(t.replace(" ", ""))), df) |
|
add_stat_column('sum_sent_density', lambda x: x['sum_sent_count'] / (x['sum_word_count'] + 1), df) |
|
add_stat_column('sum_word_density', lambda x: x['sum_word_count'] / (x['sum_char_count'] + 1), df) |
|
add_stat_column('sum_punc_count', lambda x: x['summary'].progress_apply(lambda t: sum(1 for char in t if char in punc)), df) |
|
add_stat_column('sum_stopw_count', lambda x: x['summary'].progress_apply(lambda t: self.count_stopwords(t, stopwords)), df) |
|
add_stat_column('sum_unknown_words', lambda x: x['summary'].progress_apply(lambda t: self.get_unknown_words(self.replace_punctuation(t.lower(), string.punctuation), vocab)), df) |
|
add_stat_column('sum_unknown_count', lambda x: x['sum_unknown_words'].progress_apply(lambda t: len(t) if isinstance(t, list) else 0), df) |
|
|
|
logging.info("Adding POS tags for text and summary...") |
|
text_columns = [f'text_{p}' for p in POST_TAGS] |
|
if not all(col in df.columns for col in text_columns): |
|
df = pd.concat([df, self.get_pos_tags(df['text'], POST_TAGS, 'text')], axis=1) |
|
else: |
|
logging.info("Text POS tags already present in stats, skipping...") |
|
sum_columns = [f'sum_{p}' for p in POST_TAGS] |
|
if not all(col in df.columns for col in sum_columns): |
|
df = pd.concat([df, self.get_pos_tags(df['summary'], POST_TAGS, 'sum')], axis=1) |
|
else: |
|
logging.info("Summary POS tags already present in stats, skipping...") |
|
|
|
logging.info("All statistics have been calculated successfully.") |
|
return df |
|
|
|
class SCAPlotter: |
|
"""Generates plots for data visualization.""" |
|
|
|
def __init__(self): |
|
self.labels_dict = { |
|
'sum_word_count': 'Word Count of Summaries', 'text_word_count': 'Word Count of Judgments', |
|
'sum_char_count': 'Chararacter Count of Summaries', 'text_char_count': 'Chararacter Count of Judgments', |
|
'sum_word_density': 'Word Density of Summaries', 'text_word_density': 'Word Density of Judgments', |
|
'sum_punc_count': 'Punctuation Count of Summaries', 'text_punc_count': 'Punctuation Count of Judgments', |
|
'text_sent_count': 'Sentence Count of Judgments', 'sum_sent_count': 'Sentence Count of Summaries', |
|
'text_sent_density': 'Sentence Density of Judgments', 'sum_sent_density': 'Sentence Density of Summaries', |
|
'text_stopw_count': 'Stopwords Count of Judgments', 'sum_stopw_count': 'Stopwords Count of Summaries', |
|
'ADJ': 'adjective','ADP': 'adposition', 'ADV': 'adverb','CONJ': 'conjunction', |
|
'DET': 'determiner','NOUN': 'noun', 'text_unknown_count': 'Unknown words in Judgments', |
|
'sum_unknown_count': 'Unknown words in Summaries' |
|
} |
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s") |
|
|
|
def plot_case_distribution(self, df): |
|
plt.figure(figsize=(7.5, 6)) |
|
sns.countplot(data=df, x='type', hue='type', palette='muted', width=0.5) |
|
plt.ylabel('Number of Cases') |
|
plt.xlabel('Case Type') |
|
plt.xticks(rotation=0) |
|
plt.savefig(FIGURES_DIR / 'number_of_cases_by_type.png') |
|
plt.close() |
|
|
|
def plot_summary_vs_judgment_length(self, df): |
|
slope, intercept, _, _, _ = stats.linregress(df['text_word_count'], df['sum_word_count']) |
|
plt.figure(figsize=(7.5, 6)) |
|
sns.scatterplot(x='text_word_count', y='sum_word_count', data=df, s=10, label='Data', color="dodgerblue") |
|
|
|
plt.xlabel('Judgment Length') |
|
plt.ylabel('Summary Length') |
|
plt.plot(df['text_word_count'], intercept + slope * df['text_word_count'], 'b', label=f'Best Fit: y = {slope:.2f}x + {intercept:.2f}') |
|
self._add_capacity_shading(df['text_word_count'], df['sum_word_count']) |
|
plt.legend() |
|
plt.savefig(FIGURES_DIR / 'data_summary_lengths.png') |
|
|
|
plt.close() |
|
|
|
def plot_length_distribution(self, df, columns, plot_histogram=True, plot_boxplots=True, file_name='stats'): |
|
if plot_histogram or plot_boxplots: |
|
if plot_histogram: |
|
self._plot_histograms( |
|
df, |
|
np.array([columns]), |
|
self.labels_dict, |
|
show_kde=False, |
|
output_path=FIGURES_DIR / f'{file_name}_histograms.png' |
|
) |
|
if plot_boxplots: |
|
self._plot_boxplots( |
|
df, |
|
np.array([columns]), |
|
self.labels_dict, |
|
output_path=FIGURES_DIR / f'{file_name}_boxplots.png' |
|
) |
|
else: |
|
raise ValueError('No plots selected to be generated.') |
|
|
|
def plot_most_common_words(self, count_data, words, figsize=(15, 7), no_words=20, file_name=None, show_plot=False): |
|
""" |
|
Draw a barplot showing the most common words in the data. |
|
|
|
Parameters: |
|
- count_data (sparse matrix): Document-term matrix containing word occurrences. |
|
- count_vectorizer (CountVectorizer): Fitted CountVectorizer object. |
|
- figsize (tuple): Figure size for the plot. |
|
- no_words (int): Number of most common words to display. |
|
- output_path (str): Path to save the plot. |
|
""" |
|
total_counts = np.zeros(len(words)) |
|
for t in count_data: |
|
total_counts += t.toarray()[0] |
|
|
|
count_dict = sorted(zip(words, total_counts), key=lambda x: x[1], reverse=True)[:no_words] |
|
words = [w[0] for w in count_dict] |
|
counts = [w[1] for w in count_dict] |
|
x_pos = np.arange(len(words)) |
|
|
|
plt.figure(figsize=figsize) |
|
plt.subplot(title=f'{no_words} most common words') |
|
sns.set_context("notebook", font_scale=1.25, rc={"lines.linewidth": 2.5}) |
|
sns.barplot(x=x_pos, y=counts, palette='husl') |
|
plt.xticks(x_pos, words, rotation=45) |
|
plt.ylabel('Frequency') |
|
plt.tight_layout() |
|
if file_name: |
|
plt.savefig(FIGURES_DIR / f'{file_name}.png') |
|
if show_plot: |
|
plt.show() |
|
plt.close() |
|
|
|
def plot_bertopic_visualizations(self, model, output_path): |
|
""" |
|
Generate and save BERTopic visualizations. |
|
""" |
|
fig = model.visualize_barchart(top_n_topics=12) |
|
fig.write_html(output_path / "topic_barchart.html") |
|
|
|
hierarchical_fig = model.visualize_hierarchy() |
|
hierarchical_fig.write_html(output_path / "topic_hierarchy.html") |
|
|
|
heatmap_fig = model.visualize_heatmap() |
|
heatmap_fig.write_html(output_path / "topic_heatmap.html") |
|
|
|
word_cloud_fig = model.visualize_topics() |
|
word_cloud_fig.write_html(output_path / "topic_wordcloud.html") |
|
|
|
def plot_overlap_heatmap(self, overlap_matrix, file_name=None): |
|
""" |
|
Plot a heatmap for the overlap matrix. |
|
|
|
Parameters: |
|
overlap_matrix (np.array): Overlap matrix between judgment and summary topics. |
|
output_path (str): Path to save the heatmap. |
|
""" |
|
plt.figure(figsize=(12, 8)) |
|
sns.heatmap(overlap_matrix, annot=False, cmap="coolwarm", cbar=True) |
|
plt.title("Topic Overlap Between Judgments and Summaries") |
|
plt.xlabel("Summary Topics") |
|
plt.ylabel("Judgment Topics") |
|
plt.savefig(FIGURES_DIR / f'{file_name}.png') |
|
plt.close() |
|
|
|
def plot_wordcloud(self, texts, background_color="white", max_words=1000, contour_width=3, contour_color='steelblue', file_name='wordcloud'): |
|
long_string = ','.join(texts) |
|
wordcloud = WordCloud(background_color=background_color, max_words=max_words, contour_width=contour_width, contour_color=contour_color) |
|
wordcloud.generate(long_string) |
|
wordcloud.to_image() |
|
wordcloud.to_file(FIGURES_DIR / f'{file_name}.png') |
|
|
|
def plot_lda_results(self, lda_model, tf, tf_vectorizer, file_name='lda_topics'): |
|
LDAvis_prepared = lda.prepare(lda_model, tf, tf_vectorizer) |
|
|
|
with open(FIGURES_DIR / f'{file_name}.pkl', 'wb') as f: |
|
pickle.dump(LDAvis_prepared, f) |
|
|
|
with open(FIGURES_DIR / f'{file_name}.pkl', 'rb') as f: |
|
LDAvis_prepared = pickle.load(f) |
|
|
|
pyLDAvis.save_html(LDAvis_prepared, FIGURES_DIR / f'{file_name}.html') |
|
|
|
@staticmethod |
|
def _plot_boxplots(data, plot_vars, labels, figsize=(15, 5), output_path=None, show_plot=False): |
|
""" |
|
Plot boxplots for the specified variables with appropriate labels. |
|
|
|
Parameters: |
|
- data (pd.DataFrame): The data points to plot. |
|
- plot_vars (array-like): A (1, x) or (n, m) array containing column names to plot. |
|
- labels (dict): A dictionary mapping column names to their respective labels. |
|
- figsize (tuple): The size of the figure (default: (15, 5)). |
|
- output_path (str, optional): File path to save the plot. |
|
- show_plot (bool, optional): Whether to display the plot. |
|
|
|
Returns: |
|
- None |
|
""" |
|
plot_vars = np.atleast_2d(plot_vars) |
|
nrows, ncols = plot_vars.shape |
|
|
|
fig, axes = plt.subplots(nrows, ncols, figsize=figsize, squeeze=False) |
|
|
|
for i in range(nrows): |
|
for j in range(ncols): |
|
var = plot_vars[i, j] |
|
ax = axes[i, j] |
|
|
|
if var is not None: |
|
ax.set_title(labels.get(var, var)) |
|
ax.grid(True) |
|
ax.tick_params( |
|
axis='x', |
|
which='both', |
|
bottom=False, |
|
top=False, |
|
labelbottom=False |
|
) |
|
if var in data.columns: |
|
ax.boxplot(data[var]) |
|
else: |
|
ax.set_visible(False) |
|
else: |
|
ax.set_visible(False) |
|
|
|
fig.tight_layout() |
|
|
|
if output_path: |
|
plt.savefig(output_path) |
|
if show_plot: |
|
plt.show() |
|
plt.close() |
|
|
|
@staticmethod |
|
def _plot_histograms(data, plot_vars, labels, figsize=(15,5), show_kde=False, output_path=None, show_plot=False): |
|
''' Function to plot the histograms of the variables in plot_vars |
|
Input: |
|
- data: a dataframe, containing the data points to plot |
|
- plot_vars: a (1,x) array, containing the columns to plot |
|
- xlim: a list, defines the max x value for every column to plot |
|
- labels: a dictionary, to map the column names to its label |
|
- figsize: a tuple, indicating the size of the figure |
|
- show_kde: a boolean, indicating if the kde should be shown |
|
- output_path: a string, indicating the path to save the file |
|
''' |
|
fig, axes = plt.subplots(1, plot_vars.shape[1], figsize=figsize, sharey=False, dpi=100) |
|
|
|
if plot_vars.shape[1] == 1: |
|
axes = [axes] |
|
|
|
for i in range(plot_vars.shape[1]): |
|
color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)) |
|
|
|
sns.histplot( |
|
data[plot_vars[0, i]], |
|
color=color, |
|
ax=axes[i], |
|
bins=50, |
|
kde=show_kde, |
|
) |
|
|
|
x_label = plot_vars[0, i].replace('sent', 'sentence') |
|
axes[i].set_xlabel(' '.join([l.capitalize() for l in x_label.split('_')[1:]])) |
|
axes[i].set_ylabel('Frequency') |
|
|
|
axes[i].set_title(labels[plot_vars[0, i]]) |
|
|
|
fig.tight_layout() |
|
if output_path: |
|
plt.savefig(output_path) |
|
if show_plot: |
|
plt.show() |
|
plt.close() |
|
|
|
@staticmethod |
|
def _add_capacity_shading(input_stats, output_stats): |
|
model_input_length, model_output_length = 16384, 1024 |
|
plt.gca().add_patch( |
|
plt.Rectangle((0, 0), model_input_length, max(output_stats) + 50, |
|
color='red', alpha=0.3, linestyle='--', linewidth=1.5, |
|
label=f"Judgments accommodated: {len([x for x in input_stats if x < model_input_length]):,}") |
|
) |
|
plt.gca().add_patch( |
|
plt.Rectangle((0, 0), max(input_stats) + 400, model_output_length, |
|
color='green', alpha=0.3, linestyle='-', linewidth=1.5, |
|
label=f"Summaries accommodated: {len([y for y in output_stats if y < model_output_length]):,}") |
|
) |
|
|
|
|
|
class TopicModeling: |
|
""" |
|
Class to perform topic modeling using LDA, UMAP, and HDBSCAN. |
|
""" |
|
|
|
def __init__(self): |
|
self.plotter = SCAPlotter() |
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s") |
|
|
|
def perform_lda_analysis(self, texts, tf_vectorizer, no_top_words=8, n_components=10, max_iter=500, random_state=0, learning_method='online', file_name='lda_topics'): |
|
""" |
|
Perform LDA topic modeling and save top words per topic. |
|
|
|
Parameters: |
|
texts (list of str): Input texts for LDA. |
|
tf_vectorizer (TfidfVectorizer or CountVectorizer): Vectorizer for text processing. |
|
no_top_words (int): Number of top words to display per topic. |
|
n_components (int): Number of topics. |
|
max_iter (int): Maximum number of iterations. |
|
random_state (int): Random state for reproducibility. |
|
learning_method (str): Learning method for LDA ('batch' or 'online'). |
|
file_name (str): Name of the file to save topics. |
|
|
|
Returns: |
|
lda_model (LDA): Fitted LDA model. |
|
""" |
|
logging.info("Vectorizing text data...") |
|
tf = tf_vectorizer.fit_transform(texts) |
|
|
|
logging.info("Fitting LDA model...") |
|
lda_model = LDA( |
|
n_components=n_components, |
|
learning_method=learning_method, |
|
max_iter=max_iter, |
|
random_state=random_state |
|
).fit(tf) |
|
|
|
words = tf_vectorizer.get_feature_names_out() |
|
|
|
with open(FIGURES_DIR / f'{file_name}.txt', 'w') as f: |
|
for topic_idx, topic in enumerate(lda_model.components_): |
|
f.write(f"\nTopic #{topic_idx}:\n") |
|
f.write(" ".join([words[i] for i in topic.argsort()[:-no_top_words - 1:-1]]) + "\n") |
|
|
|
self.plotter.plot_lda_results(lda_model, tf, tf_vectorizer, file_name) |
|
return lda_model |
|
|
|
def perform_bertopic_analysis(self, cleaned_text=None, cleaned_summary=None, output_path='bertopic', save_topic_info=True): |
|
""" |
|
Perform BERTopic modeling and generate plots. |
|
|
|
Parameters: |
|
cleaned_text (list of str): List of cleaned text strings. |
|
cleaned_summary (list of str): List of cleaned summary strings. |
|
output_path (str): Directory path to save results. |
|
save_topic_info (bool): Save topic information as a CSV file. |
|
|
|
Returns: |
|
model (BERTopic): Trained BERTopic model. |
|
topic_info (pd.DataFrame): DataFrame containing topic information. |
|
""" |
|
if cleaned_text is None and cleaned_summary is None: |
|
logging.error("No cleaned text or summary data provided.") |
|
raise ValueError("Please provide cleaned text and/or summary data.") |
|
|
|
if cleaned_text and cleaned_summary: |
|
logging.info('merging text and summary data...') |
|
elif cleaned_text: |
|
logging.info('using only text data...') |
|
elif cleaned_summary: |
|
logging.info('using only summary data...') |
|
|
|
combined_texts = cleaned_text or [] + cleaned_summary or [] |
|
|
|
logging.info("Initializing and fitting BERTopic model...") |
|
model = BERTopic() |
|
model.fit_transform(combined_texts) |
|
|
|
topic_info = None |
|
topic_info_path = FIGURES_DIR / output_path |
|
topic_info_path.mkdir(parents=True, exist_ok=True) |
|
|
|
if save_topic_info: |
|
logging.info("Saving topic information to CSV file...") |
|
topic_info = model.get_topic_info() |
|
topic_info.to_csv(topic_info_path / "topic_info.csv", index=False) |
|
|
|
logging.info("Generating BERTopic visualizations...") |
|
self.plotter.plot_bertopic_visualizations(model, topic_info_path) |
|
|
|
return model, topic_info |
|
|
|
def calculate_overlap_matrix(self, judgment_model, summary_model, top_n=12): |
|
""" |
|
Calculate the overlap matrix between judgment and summary topics. |
|
|
|
Args: |
|
judgment_model: The model containing judgment topics. |
|
summary_model: The model containing summary topics. |
|
top_n (int): The number of top topics to consider. |
|
|
|
Returns: |
|
np.ndarray: Overlap matrix between judgment and summary topics. |
|
""" |
|
logging.info("Getting topic information from judgment and summary models.") |
|
|
|
|
|
judgment_topics = judgment_model.get_topic_info()['Topic'][:top_n].values |
|
summary_topics = summary_model.get_topic_info()['Topic'][:top_n].values |
|
|
|
logging.info("Initializing overlap matrix.") |
|
|
|
overlap_matrix = np.zeros((top_n, top_n)) |
|
|
|
for i, j_topic_id in enumerate(judgment_topics): |
|
if j_topic_id == -1: |
|
logging.info(f"Skipping outlier topic in judgment model at index {i}.") |
|
continue |
|
logging.info(f"Processing judgment topic {j_topic_id} at index {i}.") |
|
j_terms = {term for term, _ in judgment_model.get_topic(j_topic_id)} |
|
for j, s_topic_id in enumerate(summary_topics): |
|
if s_topic_id == -1: |
|
logging.info(f"Skipping outlier topic in summary model at index {j}.") |
|
continue |
|
logging.info(f"Processing summary topic {s_topic_id} at index {j}.") |
|
s_terms = {term for term, _ in summary_model.get_topic(s_topic_id)} |
|
|
|
overlap_matrix[i, j] = len(j_terms & s_terms) / len(j_terms | s_terms) |
|
logging.info(f"Calculated Jaccard similarity for judgment topic {j_topic_id} and summary topic {s_topic_id}: {overlap_matrix[i, j]}") |
|
|
|
logging.info("Overlap matrix calculation complete.") |
|
return overlap_matrix |