Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,416 Bytes
4a1bbb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

"""TODO: Add a description here."""


import csv
import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@dataset{marivate_vukosi_2023_7598540, author = {Marivate, Vukosi and Njini, Daniel and Madodonga, Andani and Lastrucci, Richard and Dzingirai, Isheanesu Rajab, Jenalea}, title = {The Vuk'uzenzele South African Multilingual Corpus}, month = feb, year = 2023, publisher = {Zenodo}, doi = {10.5281/zenodo.7598539}, url = {https://doi.org/10.5281/zenodo.7598539} }
"""

_DESCRIPTION = """\
The dataset contains editions from the South African government magazine Vuk'uzenzele. Data was scraped from PDFs that have been placed in the data/raw folder. The PDFS were obtained from the Vuk'uzenzele website.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://arxiv.org/abs/2303.03750"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC 4.0 BY"

_URL = "https://raw.githubusercontent.com/dsfsi/vukuzenzele-nlp/master/data/huggingface/"
_DATAFILE = "data.jsonl"

class VukuzenzeleMonolingualConfig(datasets.BuilderConfig):
    """BuilderConfig for VukuzenzeleMonolingual"""

    def __init__(self, **kwargs):
        """BuilderConfig for Masakhaner.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(VukuzenzeleMonolingualConfig, self).__init__(**kwargs)


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class VukuzenzeleMonolingual(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="afr", version=VERSION, description="Vukuzenzele Afrikaans Dataset"),
        datasets.BuilderConfig(name="eng", version=VERSION, description="Vukuzenzele English Dataset"),
        datasets.BuilderConfig(name="nbl", version=VERSION, description="Vukuzenzele Ndebele Dataset"),
        datasets.BuilderConfig(name="nso", version=VERSION, description="Vukuzenzele Sepedi Dataset"),
        datasets.BuilderConfig(name="sot", version=VERSION, description="Vukuzenzele Sesotho Dataset"),
        datasets.BuilderConfig(name="ssw", version=VERSION, description="Vukuzenzele siSwati Dataset"),
        datasets.BuilderConfig(name="tsn", version=VERSION, description="Vukuzenzele Setswana Dataset"),
        datasets.BuilderConfig(name="tso", version=VERSION, description="Vukuzenzele Xitsonga Dataset"),
        datasets.BuilderConfig(name="ven", version=VERSION, description="Vukuzenzele Tshivenda Dataset"),
        datasets.BuilderConfig(name="xho", version=VERSION, description="Vukuzenzele isiXhosa Dataset"),
        datasets.BuilderConfig(name="zul", version=VERSION, description="Vukuzenzele isiZulu Dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "title": datasets.Value("string"),
                "text": datasets.Value("string"),
                "language_code": datasets.Value("string"),
                "edition": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  
            homepage=_HOMEPAGE,
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
      
        urls = {
            "train": f"{_URL}{self.config.name}/{_DATAFILE}"
        }
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                if 'title' not in data.keys(): continue
                yield key, {
                    "title": data["title"],
                    "text": data["text"],
                    "edition": data["edition"],
                    "language_code": data["language_code"],
                }