haixuantao
commited on
Commit
·
357c750
1
Parent(s):
034b730
Adding latest `WIP`
Browse files- .gitignore +6 -1
- README.md +21 -0
- graphs/dataflow_robot_vlm.yml +25 -8
- operators/chatgpt_op.py +0 -159
- operators/idefics2_op.py +97 -0
- operators/idefics2_utils.py +69 -0
- operators/opencv_stream.py +3 -2
- operators/plot.py +11 -6
- operators/robot.py +72 -40
- tests/test_idefics2.py +110 -0
- tests/test_idefix2.py +0 -154
.gitignore
CHANGED
@@ -3,4 +3,9 @@ graphs/yolov5n.pt
|
|
3 |
operators/__pycache__/
|
4 |
__pycache__/
|
5 |
*.avi
|
6 |
-
*.txt
|
|
|
|
|
|
|
|
|
|
|
|
3 |
operators/__pycache__/
|
4 |
__pycache__/
|
5 |
*.avi
|
6 |
+
*.txt
|
7 |
+
|
8 |
+
|
9 |
+
## TODO:
|
10 |
+
- [ ] Make human direct using voice
|
11 |
+
# - [ ] Make robot talk
|
README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Getting Started
|
2 |
+
|
3 |
+
Create a new conda environment for robomaster
|
4 |
+
|
5 |
+
```bash
|
6 |
+
conda create -n robomaster python=3.8
|
7 |
+
pip install robomaster dora-rs
|
8 |
+
```
|
9 |
+
|
10 |
+
Create a new conda environment for idefics2. This requirements file suppose that your using cu122.
|
11 |
+
|
12 |
+
```bash
|
13 |
+
conda create -n idefics2 python=3.10
|
14 |
+
pip install -r requirements.txt
|
15 |
+
```
|
16 |
+
|
17 |
+
```bash
|
18 |
+
export HF_TOKEN=<TOKEN>
|
19 |
+
dora up
|
20 |
+
dora start graphs/dataflow_robot_vlm.yml --attach --hot-reload
|
21 |
+
```
|
graphs/dataflow_robot_vlm.yml
CHANGED
@@ -11,25 +11,26 @@ nodes:
|
|
11 |
|
12 |
- id: vlm
|
13 |
operator:
|
14 |
-
python: ../operators/
|
15 |
inputs:
|
16 |
image:
|
17 |
source: webcam/image
|
18 |
queue_size: 1
|
19 |
instruction: keyboard/submitted
|
|
|
20 |
outputs:
|
21 |
- assistant_message
|
22 |
|
23 |
- id: robot
|
24 |
operator:
|
25 |
-
python:
|
|
|
|
|
26 |
inputs:
|
27 |
-
tick:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
source: vlm/assistant_message
|
32 |
-
queue_size: 1
|
33 |
|
34 |
- id: webcam
|
35 |
custom:
|
@@ -43,3 +44,19 @@ nodes:
|
|
43 |
outputs:
|
44 |
- buffer
|
45 |
- submitted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
- id: vlm
|
13 |
operator:
|
14 |
+
python: ../operators/idefics2_op.py
|
15 |
inputs:
|
16 |
image:
|
17 |
source: webcam/image
|
18 |
queue_size: 1
|
19 |
instruction: keyboard/submitted
|
20 |
+
control_reply: robot/control_reply
|
21 |
outputs:
|
22 |
- assistant_message
|
23 |
|
24 |
- id: robot
|
25 |
operator:
|
26 |
+
python:
|
27 |
+
source: ../operators/robot.py
|
28 |
+
conda_env: robomaster
|
29 |
inputs:
|
30 |
+
tick: dora/timer/millis/750
|
31 |
+
control: keyboard/submitted
|
32 |
+
outputs:
|
33 |
+
- control_reply
|
|
|
|
|
34 |
|
35 |
- id: webcam
|
36 |
custom:
|
|
|
44 |
outputs:
|
45 |
- buffer
|
46 |
- submitted
|
47 |
+
|
48 |
+
- id: whisper
|
49 |
+
operator:
|
50 |
+
python: ../operators/whisper_op.py
|
51 |
+
inputs:
|
52 |
+
audio: microphone/audio
|
53 |
+
outputs:
|
54 |
+
- text
|
55 |
+
|
56 |
+
- id: microphone
|
57 |
+
operator:
|
58 |
+
python: ../operators/microphone_op.py
|
59 |
+
inputs:
|
60 |
+
record: keyboard/submitted
|
61 |
+
outputs:
|
62 |
+
- audio
|
operators/chatgpt_op.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
from dora import DoraStatus
|
2 |
-
import os
|
3 |
-
import pyarrow as pa
|
4 |
-
|
5 |
-
|
6 |
-
import requests
|
7 |
-
|
8 |
-
import os
|
9 |
-
|
10 |
-
import base64
|
11 |
-
import requests
|
12 |
-
from io import BytesIO
|
13 |
-
import numpy as np
|
14 |
-
import cv2
|
15 |
-
|
16 |
-
|
17 |
-
def encode_numpy_image(np_image):
|
18 |
-
# Convert the NumPy array to a PIL Image
|
19 |
-
cv2.resize(np_image, (512, 512))
|
20 |
-
_, buffer = cv2.imencode(
|
21 |
-
".png", np_image
|
22 |
-
) # You can change '.png' to another format if needed
|
23 |
-
|
24 |
-
# Convert the buffer to a byte stream
|
25 |
-
byte_stream = BytesIO(buffer)
|
26 |
-
|
27 |
-
# Encode the byte stream to base64
|
28 |
-
base64_encoded_image = base64.b64encode(byte_stream.getvalue()).decode("utf-8")
|
29 |
-
return base64_encoded_image
|
30 |
-
|
31 |
-
|
32 |
-
CAMERA_WIDTH = 640
|
33 |
-
CAMERA_HEIGHT = 480
|
34 |
-
|
35 |
-
API_KEY = os.getenv("OPENAI_API_KEY")
|
36 |
-
|
37 |
-
|
38 |
-
MESSAGE_SENDER_TEMPLATE = """
|
39 |
-
You control a robot. Don't get too close to objects.
|
40 |
-
|
41 |
-
{user_message}
|
42 |
-
|
43 |
-
Respond with only one of the following actions:
|
44 |
-
- FORWARD
|
45 |
-
- BACKWARD
|
46 |
-
- TURN_RIGHT
|
47 |
-
- TURN_LEFT
|
48 |
-
- NOD_YES
|
49 |
-
- NOD_NO
|
50 |
-
- STOP
|
51 |
-
|
52 |
-
You're last 5 actions where:
|
53 |
-
{actions}
|
54 |
-
"""
|
55 |
-
|
56 |
-
|
57 |
-
import time
|
58 |
-
|
59 |
-
|
60 |
-
def understand_image(image, user_message, actions):
|
61 |
-
# Getting the base64 string
|
62 |
-
base64_image = encode_numpy_image(image)
|
63 |
-
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}"}
|
64 |
-
|
65 |
-
now = time.time()
|
66 |
-
payload = {
|
67 |
-
"model": "gpt-4-vision-preview",
|
68 |
-
"messages": [
|
69 |
-
{
|
70 |
-
"role": "user",
|
71 |
-
"content": [
|
72 |
-
{
|
73 |
-
"type": "text",
|
74 |
-
"text": MESSAGE_SENDER_TEMPLATE.format(
|
75 |
-
user_message="\n".join(user_message),
|
76 |
-
actions="\n".join(actions[:-5]),
|
77 |
-
),
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"type": "image_url",
|
81 |
-
"image_url": {
|
82 |
-
"url": f"data:image/jpeg;base64,{base64_image}",
|
83 |
-
"detail": "low",
|
84 |
-
},
|
85 |
-
},
|
86 |
-
],
|
87 |
-
}
|
88 |
-
],
|
89 |
-
"max_tokens": 50,
|
90 |
-
}
|
91 |
-
|
92 |
-
response = requests.post(
|
93 |
-
"https://api.openai.com/v1/chat/completions", headers=headers, json=payload
|
94 |
-
)
|
95 |
-
|
96 |
-
print("resp:", time.time() - now)
|
97 |
-
return response.json()["choices"][0]["message"]["content"]
|
98 |
-
|
99 |
-
|
100 |
-
class Operator:
|
101 |
-
def __init__(self):
|
102 |
-
self.actions = []
|
103 |
-
self.instruction = []
|
104 |
-
|
105 |
-
def on_event(
|
106 |
-
self,
|
107 |
-
dora_event,
|
108 |
-
send_output,
|
109 |
-
) -> DoraStatus:
|
110 |
-
if dora_event["type"] == "INPUT":
|
111 |
-
if dora_event["id"] == "image":
|
112 |
-
image = (
|
113 |
-
dora_event["value"]
|
114 |
-
.to_numpy()
|
115 |
-
.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
|
116 |
-
.copy()
|
117 |
-
)
|
118 |
-
output = understand_image(image, self.instruction, self.actions)
|
119 |
-
self.actions.append(output)
|
120 |
-
print("response: ", output, flush=True)
|
121 |
-
|
122 |
-
send_output(
|
123 |
-
"assistant_message",
|
124 |
-
pa.array([f"{output}"]),
|
125 |
-
dora_event["metadata"],
|
126 |
-
)
|
127 |
-
elif dora_event["id"] == "instruction":
|
128 |
-
self.instruction.append(dora_event["value"][0].as_py())
|
129 |
-
print("instructions: ", self.instruction, flush=True)
|
130 |
-
return DoraStatus.CONTINUE
|
131 |
-
|
132 |
-
|
133 |
-
if __name__ == "__main__":
|
134 |
-
op = Operator()
|
135 |
-
|
136 |
-
# Path to the current file
|
137 |
-
current_file_path = __file__
|
138 |
-
|
139 |
-
# Directory of the current file
|
140 |
-
current_directory = os.path.dirname(current_file_path)
|
141 |
-
|
142 |
-
path = current_directory + "/test_image.jpg"
|
143 |
-
|
144 |
-
op.on_event(
|
145 |
-
{
|
146 |
-
"type": "INPUT",
|
147 |
-
"id": "code_modifier",
|
148 |
-
"value": pa.array(
|
149 |
-
[
|
150 |
-
{
|
151 |
-
"path": path,
|
152 |
-
"user_message": "change planning to make gimbal follow bounding box ",
|
153 |
-
},
|
154 |
-
]
|
155 |
-
),
|
156 |
-
"metadata": [],
|
157 |
-
},
|
158 |
-
print,
|
159 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
operators/idefics2_op.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dora import DoraStatus
|
2 |
+
import os
|
3 |
+
import pyarrow as pa
|
4 |
+
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
from idefics2_utils import ask_vlm
|
9 |
+
|
10 |
+
|
11 |
+
from RealtimeTTS import TextToAudioStream, SystemEngine
|
12 |
+
|
13 |
+
engine = SystemEngine()
|
14 |
+
stream = TextToAudioStream(engine)
|
15 |
+
|
16 |
+
CAMERA_WIDTH = 960
|
17 |
+
CAMERA_HEIGHT = 540
|
18 |
+
|
19 |
+
|
20 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
21 |
+
|
22 |
+
import pyttsx3
|
23 |
+
|
24 |
+
engine = pyttsx3.init("espeak")
|
25 |
+
voices = engine.getProperty("voices")
|
26 |
+
engine.setProperty("voice", voices[11].id) # English
|
27 |
+
|
28 |
+
|
29 |
+
def speak(text):
|
30 |
+
engine.say(text)
|
31 |
+
engine.runAndWait()
|
32 |
+
|
33 |
+
|
34 |
+
class Operator:
|
35 |
+
def __init__(self):
|
36 |
+
self.completed = True
|
37 |
+
self.instruction = "What is in the image?"
|
38 |
+
self.last_message = ""
|
39 |
+
|
40 |
+
def on_event(
|
41 |
+
self,
|
42 |
+
dora_event,
|
43 |
+
send_output,
|
44 |
+
) -> DoraStatus:
|
45 |
+
if dora_event["type"] == "INPUT":
|
46 |
+
if dora_event["id"] == "image":
|
47 |
+
if True:
|
48 |
+
image = (
|
49 |
+
dora_event["value"]
|
50 |
+
.to_numpy()
|
51 |
+
.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
|
52 |
+
.copy()
|
53 |
+
)
|
54 |
+
cv2.imshow("frame2", image)
|
55 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
56 |
+
return DoraStatus.CONTINUE
|
57 |
+
output = ask_vlm(image, self.instruction)
|
58 |
+
cv2.putText(
|
59 |
+
image,
|
60 |
+
output,
|
61 |
+
(20, 14 + 15 * 25),
|
62 |
+
FONT,
|
63 |
+
0.5,
|
64 |
+
(190, 250, 0),
|
65 |
+
2,
|
66 |
+
)
|
67 |
+
|
68 |
+
if self.last_message != output:
|
69 |
+
speak(output)
|
70 |
+
print("response: ", output, flush=True)
|
71 |
+
send_output(
|
72 |
+
"assistant_message",
|
73 |
+
pa.array([output]),
|
74 |
+
dora_event["metadata"],
|
75 |
+
)
|
76 |
+
|
77 |
+
# stream.feed(output)
|
78 |
+
|
79 |
+
# stream.play()
|
80 |
+
self.last_message = output
|
81 |
+
self.completed = False
|
82 |
+
else:
|
83 |
+
print("Command not complete", flush=True)
|
84 |
+
elif dora_event["id"] == "instruction":
|
85 |
+
self.instruction = dora_event["value"][0].as_py()
|
86 |
+
print("instructions: ", self.instruction, flush=True)
|
87 |
+
elif dora_event["id"] == "control_reply":
|
88 |
+
control_reply = dora_event["value"][0].as_py()
|
89 |
+
|
90 |
+
if self.last_message == control_reply:
|
91 |
+
self.completed = True
|
92 |
+
else:
|
93 |
+
print(
|
94 |
+
f"expected: {self.last_message}, but got: {control_reply}",
|
95 |
+
flush=True,
|
96 |
+
)
|
97 |
+
return DoraStatus.CONTINUE
|
operators/idefics2_utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
|
7 |
+
|
8 |
+
|
9 |
+
MODE = "quantized"
|
10 |
+
DEVICE = "cuda"
|
11 |
+
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
12 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
13 |
+
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
14 |
+
).input_ids
|
15 |
+
EOS_WORDS_IDS = PROCESSOR.tokenizer(
|
16 |
+
"<end_of_utterance>", add_special_tokens=False
|
17 |
+
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
18 |
+
|
19 |
+
# Load model
|
20 |
+
if MODE == "regular":
|
21 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
22 |
+
"HuggingFaceM4/idefics2-tfrm-compatible",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
trust_remote_code=True,
|
25 |
+
_attn_implementation="flash_attention_2",
|
26 |
+
revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
|
27 |
+
).to(DEVICE)
|
28 |
+
elif MODE == "quantized":
|
29 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
30 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
31 |
+
quant_path, trust_remote_code=True
|
32 |
+
).to(DEVICE)
|
33 |
+
elif MODE == "fused_quantized":
|
34 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
35 |
+
quantization_config = AwqConfig(
|
36 |
+
bits=4,
|
37 |
+
fuse_max_seq_len=4096,
|
38 |
+
modules_to_fuse={
|
39 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
40 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
41 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
42 |
+
"use_alibi": False,
|
43 |
+
"num_attention_heads": 32,
|
44 |
+
"num_key_value_heads": 8,
|
45 |
+
"hidden_size": 4096,
|
46 |
+
},
|
47 |
+
)
|
48 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
49 |
+
quant_path, quantization_config=quantization_config, trust_remote_code=True
|
50 |
+
).to(DEVICE)
|
51 |
+
else:
|
52 |
+
raise ValueError("Unknown mode")
|
53 |
+
|
54 |
+
|
55 |
+
def ask_vlm(image, instruction):
|
56 |
+
prompts = [
|
57 |
+
"User:",
|
58 |
+
image,
|
59 |
+
f"{instruction}.<end_of_utterance>\n",
|
60 |
+
"Assistant:",
|
61 |
+
]
|
62 |
+
inputs = PROCESSOR(prompts)
|
63 |
+
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
64 |
+
|
65 |
+
generated_ids = model.generate(
|
66 |
+
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
67 |
+
)
|
68 |
+
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
69 |
+
return generated_texts[0].split("\nAssistant: ")[1]
|
operators/opencv_stream.py
CHANGED
@@ -7,8 +7,9 @@ node = Node()
|
|
7 |
TCP_STREAM_URL = "tcp://192.168.2.1:40921"
|
8 |
# Global variables, change it to adapt your needs
|
9 |
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
# Create a VideoCapture object using the TCP stream URL
|
14 |
cap = cv2.VideoCapture(TCP_STREAM_URL)
|
|
|
7 |
TCP_STREAM_URL = "tcp://192.168.2.1:40921"
|
8 |
# Global variables, change it to adapt your needs
|
9 |
|
10 |
+
|
11 |
+
CAMERA_WIDTH = 960
|
12 |
+
CAMERA_HEIGHT = 540
|
13 |
|
14 |
# Create a VideoCapture object using the TCP stream URL
|
15 |
cap = cv2.VideoCapture(TCP_STREAM_URL)
|
operators/plot.py
CHANGED
@@ -4,15 +4,15 @@ import cv2
|
|
4 |
from dora import DoraStatus
|
5 |
|
6 |
|
7 |
-
CAMERA_WIDTH =
|
8 |
-
CAMERA_HEIGHT =
|
9 |
|
10 |
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
11 |
|
12 |
writer = cv2.VideoWriter(
|
13 |
"output01.avi",
|
14 |
cv2.VideoWriter_fourcc(*"MJPG"),
|
15 |
-
|
16 |
(CAMERA_WIDTH, CAMERA_HEIGHT),
|
17 |
)
|
18 |
|
@@ -41,9 +41,10 @@ class Operator:
|
|
41 |
image = (
|
42 |
value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy()
|
43 |
)
|
|
|
44 |
|
45 |
cv2.putText(
|
46 |
-
image, self.buffer, (20, 14 + 15 * 25), FONT, 0.
|
47 |
)
|
48 |
|
49 |
i = 0
|
@@ -61,12 +62,13 @@ class Operator:
|
|
61 |
14 + (13 - i) * 25,
|
62 |
),
|
63 |
FONT,
|
64 |
-
0.
|
65 |
color,
|
66 |
2,
|
67 |
)
|
68 |
i += 1
|
69 |
writer.write(image)
|
|
|
70 |
cv2.imshow("frame", image)
|
71 |
if cv2.waitKey(1) & 0xFF == ord("q"):
|
72 |
return DoraStatus.STOP
|
@@ -76,7 +78,10 @@ class Operator:
|
|
76 |
self.submitted += [
|
77 |
{
|
78 |
"role": id,
|
79 |
-
"content": value[0]
|
|
|
|
|
|
|
80 |
}
|
81 |
]
|
82 |
|
|
|
4 |
from dora import DoraStatus
|
5 |
|
6 |
|
7 |
+
CAMERA_WIDTH = 960
|
8 |
+
CAMERA_HEIGHT = 540
|
9 |
|
10 |
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
11 |
|
12 |
writer = cv2.VideoWriter(
|
13 |
"output01.avi",
|
14 |
cv2.VideoWriter_fourcc(*"MJPG"),
|
15 |
+
60,
|
16 |
(CAMERA_WIDTH, CAMERA_HEIGHT),
|
17 |
)
|
18 |
|
|
|
41 |
image = (
|
42 |
value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy()
|
43 |
)
|
44 |
+
cv2.resize(image, (CAMERA_HEIGHT * 2, CAMERA_WIDTH * 2))
|
45 |
|
46 |
cv2.putText(
|
47 |
+
image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2
|
48 |
)
|
49 |
|
50 |
i = 0
|
|
|
62 |
14 + (13 - i) * 25,
|
63 |
),
|
64 |
FONT,
|
65 |
+
0.5,
|
66 |
color,
|
67 |
2,
|
68 |
)
|
69 |
i += 1
|
70 |
writer.write(image)
|
71 |
+
cv2.resize(image, (CAMERA_HEIGHT * 3, CAMERA_WIDTH * 3))
|
72 |
cv2.imshow("frame", image)
|
73 |
if cv2.waitKey(1) & 0xFF == ord("q"):
|
74 |
return DoraStatus.STOP
|
|
|
78 |
self.submitted += [
|
79 |
{
|
80 |
"role": id,
|
81 |
+
"content": value[0]
|
82 |
+
.as_py()
|
83 |
+
.replace("\n", " ")
|
84 |
+
.replace("- ", ""),
|
85 |
}
|
86 |
]
|
87 |
|
operators/robot.py
CHANGED
@@ -12,12 +12,12 @@ CONN = "ap"
|
|
12 |
class Command(Enum):
|
13 |
NOD_YES = [
|
14 |
{"action": "gimbal", "value": [20.0, 0.0]},
|
15 |
-
{"action": "gimbal", "value": [
|
16 |
]
|
17 |
NOD_NO = [
|
18 |
-
{"action": "gimbal", "value": [
|
19 |
-
{"action": "gimbal", "value": [
|
20 |
-
{"action": "gimbal", "value": [
|
21 |
]
|
22 |
FORWARD = [
|
23 |
{
|
@@ -28,29 +28,38 @@ class Command(Enum):
|
|
28 |
BACKWARD = [
|
29 |
{
|
30 |
"action": "control",
|
31 |
-
"value": [-0.5, 0
|
32 |
-
}
|
33 |
]
|
34 |
-
|
35 |
-
{"action": "gimbal", "value": [
|
36 |
{
|
37 |
"action": "control",
|
38 |
-
"value": [0.
|
39 |
},
|
40 |
]
|
41 |
-
|
42 |
-
{"action": "gimbal", "value": [0.0,
|
43 |
{
|
44 |
-
"value": [0.0, 0.0, -45.0, 0.0, 50],
|
45 |
"action": "control",
|
|
|
46 |
},
|
47 |
]
|
48 |
-
|
|
|
49 |
{
|
50 |
-
"value": [0.
|
51 |
"action": "control",
|
52 |
-
}
|
53 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# STOP = [0, 0, 0, 0]
|
55 |
# COMPLETED = [0, 0, 0, 0]
|
56 |
|
@@ -72,40 +81,63 @@ class Operator:
|
|
72 |
), "Could not start video stream"
|
73 |
|
74 |
self.ep_robot.gimbal.recenter().wait_for_completed()
|
|
|
|
|
|
|
75 |
self.backlog = []
|
76 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def on_event(
|
79 |
self,
|
80 |
dora_event: str,
|
81 |
-
send_output: Callable[[str,
|
82 |
) -> DoraStatus:
|
83 |
event_type = dora_event["type"]
|
84 |
if event_type == "INPUT":
|
85 |
-
if
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
if len(self.backlog) > 0:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
elif
|
106 |
-
|
107 |
-
|
108 |
-
cmd = Command.
|
|
|
|
|
|
|
109 |
self.backlog += cmd.value
|
|
|
110 |
|
111 |
return DoraStatus.CONTINUE
|
|
|
12 |
class Command(Enum):
|
13 |
NOD_YES = [
|
14 |
{"action": "gimbal", "value": [20.0, 0.0]},
|
15 |
+
{"action": "gimbal", "value": [-5.0, 0.0]},
|
16 |
]
|
17 |
NOD_NO = [
|
18 |
+
{"action": "gimbal", "value": [-5, -55.0]},
|
19 |
+
{"action": "gimbal", "value": [-5, 55.0]},
|
20 |
+
{"action": "gimbal", "value": [-5.0, 0.0]},
|
21 |
]
|
22 |
FORWARD = [
|
23 |
{
|
|
|
28 |
BACKWARD = [
|
29 |
{
|
30 |
"action": "control",
|
31 |
+
"value": [-0.5, 0, 180.0, 0.6, 30],
|
32 |
+
},
|
33 |
]
|
34 |
+
LEFT = [
|
35 |
+
{"action": "gimbal", "value": [-5, -30.0]},
|
36 |
{
|
37 |
"action": "control",
|
38 |
+
"value": [0.2, -0.2, 30.0, 0.6, 30],
|
39 |
},
|
40 |
]
|
41 |
+
SLIGHT_LEFT = [
|
42 |
+
{"action": "gimbal", "value": [-0.0, -15.0]},
|
43 |
{
|
|
|
44 |
"action": "control",
|
45 |
+
"value": [0.3, -0.1, 15.0, 0.6, 50],
|
46 |
},
|
47 |
]
|
48 |
+
RIGHT = [
|
49 |
+
{"action": "gimbal", "value": [-5, 30.0]},
|
50 |
{
|
51 |
+
"value": [0.2, 0.2, -30.0, 0.6, 30],
|
52 |
"action": "control",
|
53 |
+
},
|
54 |
]
|
55 |
+
SLIGHT_RIGHT = [
|
56 |
+
{"action": "gimbal", "value": [-20.0, 15.0]},
|
57 |
+
{
|
58 |
+
"value": [0.3, 0.1, -15.0, 0.6, 50],
|
59 |
+
"action": "control",
|
60 |
+
},
|
61 |
+
]
|
62 |
+
UNKNOWN = []
|
63 |
# STOP = [0, 0, 0, 0]
|
64 |
# COMPLETED = [0, 0, 0, 0]
|
65 |
|
|
|
81 |
), "Could not start video stream"
|
82 |
|
83 |
self.ep_robot.gimbal.recenter().wait_for_completed()
|
84 |
+
self.event = self.ep_robot.gimbal.moveto(
|
85 |
+
pitch=-5, yaw=0, pitch_speed=50.0, yaw_speed=50.0
|
86 |
+
)
|
87 |
self.backlog = []
|
88 |
+
self.last_control = ""
|
89 |
+
|
90 |
+
def execute_backlog(self):
|
91 |
+
if len(self.backlog) > 0:
|
92 |
+
command = self.backlog.pop(0)
|
93 |
+
if command["action"] == "control":
|
94 |
+
[x, y, z, xy_speed, z_speed] = command["value"]
|
95 |
+
print(command, flush=True)
|
96 |
+
self.event = self.ep_robot.chassis.move(
|
97 |
+
x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
|
98 |
+
)
|
99 |
+
elif command["action"] == "gimbal":
|
100 |
+
[pitch, yaw] = command["value"]
|
101 |
+
print(command, flush=True)
|
102 |
+
self.event = self.ep_robot.gimbal.moveto(
|
103 |
+
pitch=pitch, yaw=yaw, pitch_speed=50.0, yaw_speed=50.0
|
104 |
+
)
|
105 |
|
106 |
def on_event(
|
107 |
self,
|
108 |
dora_event: str,
|
109 |
+
send_output: Callable[[str, pa.Array, Optional[dict]], None],
|
110 |
) -> DoraStatus:
|
111 |
event_type = dora_event["type"]
|
112 |
if event_type == "INPUT":
|
113 |
+
if dora_event["id"] == "tick":
|
114 |
+
if not (
|
115 |
+
self.event is not None
|
116 |
+
and not (self.event._event.isSet() and self.event.is_completed)
|
117 |
+
):
|
118 |
if len(self.backlog) > 0:
|
119 |
+
self.execute_backlog()
|
120 |
+
else:
|
121 |
+
print(f"sending control reply: {self.last_control}", flush=True)
|
122 |
+
send_output("control_reply", pa.array([self.last_control]))
|
123 |
+
elif dora_event["id"] == "control":
|
124 |
+
raw_command = dora_event["value"][0].as_py()
|
125 |
+
print(raw_command, flush=True)
|
126 |
+
self.last_control = raw_command
|
127 |
+
if "but" in raw_command:
|
128 |
+
cmd = Command.NOD_NO
|
129 |
+
elif "right" in raw_command:
|
130 |
+
cmd = Command.RIGHT
|
131 |
+
elif "left" in raw_command:
|
132 |
+
cmd = Command.LEFT
|
133 |
+
elif "forward" in raw_command:
|
134 |
+
cmd = Command.FORWARD
|
135 |
+
elif "behind" in raw_command:
|
136 |
+
cmd = Command.BACKWARD
|
137 |
+
else:
|
138 |
+
cmd = Command.UNKNOWN
|
139 |
+
if len(self.backlog) == 0:
|
140 |
self.backlog += cmd.value
|
141 |
+
self.execute_backlog()
|
142 |
|
143 |
return DoraStatus.CONTINUE
|
tests/test_idefics2.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
|
7 |
+
|
8 |
+
|
9 |
+
MODE = "quantized"
|
10 |
+
DEVICE = "cuda"
|
11 |
+
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
12 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
13 |
+
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
14 |
+
).input_ids
|
15 |
+
EOS_WORDS_IDS = PROCESSOR.tokenizer(
|
16 |
+
"<end_of_utterance>", add_special_tokens=False
|
17 |
+
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
18 |
+
|
19 |
+
# Load model
|
20 |
+
if MODE == "regular":
|
21 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
22 |
+
"HuggingFaceM4/idefics2-tfrm-compatible",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
trust_remote_code=True,
|
25 |
+
_attn_implementation="flash_attention_2",
|
26 |
+
revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
|
27 |
+
).to(DEVICE)
|
28 |
+
elif MODE == "quantized":
|
29 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
30 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
31 |
+
quant_path, trust_remote_code=True
|
32 |
+
).to(DEVICE)
|
33 |
+
elif MODE == "fused_quantized":
|
34 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
35 |
+
quantization_config = AwqConfig(
|
36 |
+
bits=4,
|
37 |
+
fuse_max_seq_len=4096,
|
38 |
+
modules_to_fuse={
|
39 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
40 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
41 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
42 |
+
"use_alibi": False,
|
43 |
+
"num_attention_heads": 32,
|
44 |
+
"num_key_value_heads": 8,
|
45 |
+
"hidden_size": 4096,
|
46 |
+
},
|
47 |
+
)
|
48 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
49 |
+
quant_path,
|
50 |
+
quantization_config=quantization_config,
|
51 |
+
trust_remote_code=True,
|
52 |
+
).to(DEVICE)
|
53 |
+
else:
|
54 |
+
raise ValueError("Unknown mode")
|
55 |
+
|
56 |
+
|
57 |
+
def download_image(url):
|
58 |
+
try:
|
59 |
+
# Send a GET request to the URL to download the image
|
60 |
+
response = requests.get(url)
|
61 |
+
# Check if the request was successful (status code 200)
|
62 |
+
if response.status_code == 200:
|
63 |
+
# Open the image using PIL
|
64 |
+
image = Image.open(BytesIO(response.content))
|
65 |
+
# Return the PIL image object
|
66 |
+
return image
|
67 |
+
else:
|
68 |
+
print(f"Failed to download image. Status code: {response.status_code}")
|
69 |
+
return None
|
70 |
+
except Exception as e:
|
71 |
+
print(f"An error occurred: {e}")
|
72 |
+
return None
|
73 |
+
|
74 |
+
|
75 |
+
# Create inputs
|
76 |
+
image1 = download_image(
|
77 |
+
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def ask_vlm(image, instruction):
|
82 |
+
prompts = [
|
83 |
+
"User:",
|
84 |
+
image,
|
85 |
+
f"{instruction}.<end_of_utterance>\n",
|
86 |
+
"Assistant:",
|
87 |
+
]
|
88 |
+
inputs = PROCESSOR(prompts)
|
89 |
+
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
90 |
+
generated_ids = model.generate(
|
91 |
+
**inputs,
|
92 |
+
bad_words_ids=BAD_WORDS_IDS,
|
93 |
+
max_new_tokens=100,
|
94 |
+
)
|
95 |
+
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
96 |
+
return generated_texts
|
97 |
+
|
98 |
+
|
99 |
+
import time
|
100 |
+
|
101 |
+
model.eval()
|
102 |
+
now = time.time()
|
103 |
+
print(ask_vlm(image1, "What is this?")[0].split("\nAssistant: ")[1])
|
104 |
+
|
105 |
+
print("resp:", time.time() - now)
|
106 |
+
import time
|
107 |
+
|
108 |
+
now = time.time()
|
109 |
+
|
110 |
+
print(ask_vlm(image1, "What is this?")[0].split("\nAssistant: ")[1])
|
tests/test_idefix2.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import requests
|
4 |
-
|
5 |
-
from io import BytesIO
|
6 |
-
from PIL import Image
|
7 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
8 |
-
|
9 |
-
from transformers.image_utils import (
|
10 |
-
to_numpy_array,
|
11 |
-
PILImageResampling,
|
12 |
-
ChannelDimension,
|
13 |
-
)
|
14 |
-
from transformers.image_transforms import resize, to_channel_dimension_format
|
15 |
-
|
16 |
-
|
17 |
-
API_TOKEN = os.getenv("HF_TOKEN")
|
18 |
-
|
19 |
-
DEVICE = torch.device("cuda")
|
20 |
-
PROCESSOR = AutoProcessor.from_pretrained(
|
21 |
-
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
|
22 |
-
token=API_TOKEN,
|
23 |
-
)
|
24 |
-
MODEL = AutoModelForCausalLM.from_pretrained(
|
25 |
-
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
|
26 |
-
token=API_TOKEN,
|
27 |
-
trust_remote_code=True,
|
28 |
-
torch_dtype=torch.bfloat16,
|
29 |
-
).to(DEVICE)
|
30 |
-
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
31 |
-
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
32 |
-
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
33 |
-
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
34 |
-
).input_ids
|
35 |
-
|
36 |
-
|
37 |
-
def convert_to_rgb(image):
|
38 |
-
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
39 |
-
# for transparent images. The call to `alpha_composite` handles this case
|
40 |
-
if image.mode == "RGB":
|
41 |
-
return image
|
42 |
-
|
43 |
-
image_rgba = image.convert("RGBA")
|
44 |
-
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
45 |
-
alpha_composite = Image.alpha_composite(background, image_rgba)
|
46 |
-
alpha_composite = alpha_composite.convert("RGB")
|
47 |
-
return alpha_composite
|
48 |
-
|
49 |
-
|
50 |
-
# The processor is the same as the Idefics processor except for the BILINEAR interpolation,
|
51 |
-
# so this is a hack in order to redefine ONLY the transform method
|
52 |
-
def custom_transform(x):
|
53 |
-
x = convert_to_rgb(x)
|
54 |
-
x = to_numpy_array(x)
|
55 |
-
|
56 |
-
height, width = x.shape[:2]
|
57 |
-
aspect_ratio = width / height
|
58 |
-
if width >= height and width > 980:
|
59 |
-
width = 980
|
60 |
-
height = int(width / aspect_ratio)
|
61 |
-
elif height > width and height > 980:
|
62 |
-
height = 980
|
63 |
-
width = int(height * aspect_ratio)
|
64 |
-
width = max(width, 378)
|
65 |
-
height = max(height, 378)
|
66 |
-
|
67 |
-
x = resize(x, (height, width), resample=PILImageResampling.BILINEAR)
|
68 |
-
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
69 |
-
x = PROCESSOR.image_processor.normalize(
|
70 |
-
x,
|
71 |
-
mean=PROCESSOR.image_processor.image_mean,
|
72 |
-
std=PROCESSOR.image_processor.image_std,
|
73 |
-
)
|
74 |
-
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
75 |
-
x = torch.tensor(x)
|
76 |
-
return x
|
77 |
-
|
78 |
-
|
79 |
-
def download_image(url):
|
80 |
-
try:
|
81 |
-
# Send a GET request to the URL to download the image
|
82 |
-
response = requests.get(url)
|
83 |
-
# Check if the request was successful (status code 200)
|
84 |
-
if response.status_code == 200:
|
85 |
-
# Open the image using PIL
|
86 |
-
image = Image.open(BytesIO(response.content))
|
87 |
-
# Return the PIL image object
|
88 |
-
return image
|
89 |
-
else:
|
90 |
-
print(f"Failed to download image. Status code: {response.status_code}")
|
91 |
-
return None
|
92 |
-
except Exception as e:
|
93 |
-
print(f"An error occurred: {e}")
|
94 |
-
return None
|
95 |
-
|
96 |
-
|
97 |
-
# Create text token inputs
|
98 |
-
image_seq = "<image>" * image_seq_len
|
99 |
-
|
100 |
-
instruction = "What is this?"
|
101 |
-
# Create pixel inputs
|
102 |
-
image = download_image(
|
103 |
-
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
104 |
-
)
|
105 |
-
|
106 |
-
|
107 |
-
def ask_vlm(instruction, image):
|
108 |
-
|
109 |
-
inputs = PROCESSOR.tokenizer(
|
110 |
-
[
|
111 |
-
f"{BOS_TOKEN}<fake_token_around_image>{image_seq}<fake_token_around_image>{instruction}",
|
112 |
-
],
|
113 |
-
return_tensors="pt",
|
114 |
-
add_special_tokens=False,
|
115 |
-
padding=True,
|
116 |
-
)
|
117 |
-
|
118 |
-
raw_images = [
|
119 |
-
[image],
|
120 |
-
]
|
121 |
-
output_images = [
|
122 |
-
[PROCESSOR.image_processor(img, transform=custom_transform) for img in img_list]
|
123 |
-
for img_list in raw_images
|
124 |
-
]
|
125 |
-
total_batch_size = len(output_images)
|
126 |
-
max_num_images = max([len(img_l) for img_l in output_images])
|
127 |
-
max_height = max([i.size(2) for img_l in output_images for i in img_l])
|
128 |
-
max_width = max([i.size(3) for img_l in output_images for i in img_l])
|
129 |
-
padded_image_tensor = torch.zeros(
|
130 |
-
total_batch_size, max_num_images, 3, max_height, max_width
|
131 |
-
)
|
132 |
-
padded_pixel_attention_masks = torch.zeros(
|
133 |
-
total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool
|
134 |
-
)
|
135 |
-
for batch_idx, img_l in enumerate(output_images):
|
136 |
-
for img_idx, img in enumerate(img_l):
|
137 |
-
im_height, im_width = img.size()[2:]
|
138 |
-
padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img
|
139 |
-
padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = (
|
140 |
-
True
|
141 |
-
)
|
142 |
-
|
143 |
-
inputs["pixel_values"] = padded_image_tensor
|
144 |
-
inputs["pixel_attention_mask"] = padded_pixel_attention_masks
|
145 |
-
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
146 |
-
|
147 |
-
generated_ids = MODEL.generate(
|
148 |
-
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
149 |
-
)
|
150 |
-
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
151 |
-
return generated_texts
|
152 |
-
|
153 |
-
|
154 |
-
print(ask_vlm(instruction, image))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|