donfu commited on
Commit
aae6ba6
·
1 Parent(s): 370ce50

Cleanup processing code

Browse files
Files changed (1) hide show
  1. process.py +0 -157
process.py CHANGED
@@ -51,11 +51,6 @@ def process_dataset(dataset):
51
  source = SOURCE.format(dataset)
52
  if os.path.exists(xml_file):
53
  df = xml_to_df(xml_file, source)
54
- # df = filter_only_questions_with_accepted_answers(df)
55
- # df = filter_scores_above(df, QUESTION_SCORE_TRESHOLD, ANSWER_SCORE_TRESHOLD)
56
- # df = clean_tags(df)
57
- # df = convert_html_to_markdown(df)
58
- # df = group_qa(df)
59
  oa = convert_to_oa(df)
60
  save_parquet(oa, dataset)
61
  # upload_hf(dataset)
@@ -148,43 +143,6 @@ def xml_to_df(path: str, source: str):
148
  return df
149
 
150
 
151
- def filter_only_questions_with_accepted_answers(df):
152
- """
153
- Filter only to Questions with Accepted Answers
154
-
155
- Filter dataframe by questions that have accepted answers, should also include
156
- all rows of answers for those questions, even if not accepted.
157
-
158
- Parameters:
159
- df (DataFrame): containing a "AcceptedAnswerId", "Id", and "ParentId" columns
160
-
161
- Returns:
162
- df (DataFrame): current dataframe with filtered results
163
- """
164
- accepted_ids = df[df["AcceptedAnswerId"] != 0]["Id"].tolist()
165
- return df[(df["AcceptedAnswerId"] != 0) | (df["ParentId"].isin(accepted_ids))]
166
-
167
-
168
- def filter_scores_above(
169
- df, question_score_threshold: int = 20, answer_score_threshold: int = 20
170
- ):
171
- """
172
- Filter Dataframe by minimum scores
173
-
174
- Filter Question and Answer columns by score thresholds to trim lower scoring results
175
-
176
- Parameters:
177
- df (DataFrame): containing a "Score" column
178
-
179
- Returns:
180
- df (DataFrame): current dataframe with filtered results
181
- """
182
- return df[
183
- ((df["Score"] >= question_score_threshold) & (df.PostTypeId == 1))
184
- | ((df["Score"] >= answer_score_threshold) & (df.PostTypeId == 2))
185
- ]
186
-
187
-
188
  remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
189
  remove_remaining_links = r"https?:\/\/[^\s]+"
190
 
@@ -200,120 +158,5 @@ def to_markdown(text):
200
  return text
201
 
202
 
203
- def convert_html_to_markdown(df, column: str = "Body"):
204
- """
205
- Convert HTML tags to markdown
206
-
207
- Feeds HTML text body into markdown. Remove final newline from <p> tags
208
-
209
- Parameters:
210
- df (DataFrame): containing a "Body" column with HTML
211
-
212
- Returns:
213
- df (DataFrame): current dataframe with parsed column
214
- """
215
- df.dropna(subset=[column], inplace=True)
216
- df[f"{column}Clean"] = df[column].apply(to_markdown)
217
- return df
218
-
219
-
220
- def clean_tags(df):
221
- """
222
- Convert Tags into Comma separated
223
-
224
- Converts Tag slugs into commas separated tags
225
-
226
- Parameters:
227
- df (DataFrame): containing a "Tags" column with slugs
228
-
229
- Returns:
230
- df (DataFrame): current dataframe with parsed column
231
- """
232
- df["TagsClean"] = (
233
- df["Tags"]
234
- .str.replace("-", " ")
235
- .str.replace("><", ", ")
236
- .str.replace("<", "")
237
- .str.replace(">", "")
238
- )
239
- return df
240
-
241
-
242
- def group_qa(df):
243
- """
244
- Group Questions and Answers
245
- """
246
- questions = df[df.PostTypeId == 1]
247
- answers = df[df.PostTypeId == 2]
248
-
249
- df = pd.merge(
250
- questions,
251
- answers[
252
- [
253
- "Id",
254
- "CreationDate",
255
- "Score",
256
- "ViewCount",
257
- "CommentCount",
258
- "ContentLicense",
259
- "TagsClean",
260
- "BodyClean",
261
- "ParentId",
262
- ]
263
- ],
264
- left_on="Id",
265
- right_on="ParentId",
266
- suffixes=("_q", "_a"),
267
- how="left",
268
- )
269
-
270
- df["AcceptedAnswerFlag"] = df.apply(
271
- lambda row: row["Id_a"] == row["AcceptedAnswerId"], axis=1
272
- )
273
-
274
- df = df.rename(
275
- columns={
276
- "BodyClean_q": "Question",
277
- "Score_q": "QuestionScore",
278
- "TagsClean_q": "QuestionTags",
279
- "BodyClean_a": "Answer",
280
- "Score_a": "AnswerScore",
281
- "ContentLicense_q": "QuestionContentLicense",
282
- "ContentLicense_a": "AnswerContentLicense",
283
- "CreationDate_q": "CreationDate",
284
- }
285
- )
286
-
287
- df = (
288
- df.sort_values(
289
- by=["AcceptedAnswerFlag", "AnswerScore"], ascending=[False, False]
290
- )
291
- .groupby("Question")
292
- .head(MAX_ANSWERS)
293
- .reset_index(drop=True)
294
- )
295
- df = (
296
- df.groupby(
297
- [
298
- "Title",
299
- "Question",
300
- "QuestionScore",
301
- "QuestionTags",
302
- "QuestionContentLicense",
303
- "DataSource",
304
- "CreationDate",
305
- ]
306
- )
307
- .apply(
308
- lambda x: x[["Answer", "AnswerScore", "AcceptedAnswerFlag"]].to_dict(
309
- "records"
310
- )
311
- )
312
- .reset_index()
313
- .rename(columns={0: "Answers"})
314
- )
315
- return df
316
-
317
-
318
  if __name__ == "__main__":
319
  main()
 
51
  source = SOURCE.format(dataset)
52
  if os.path.exists(xml_file):
53
  df = xml_to_df(xml_file, source)
 
 
 
 
 
54
  oa = convert_to_oa(df)
55
  save_parquet(oa, dataset)
56
  # upload_hf(dataset)
 
143
  return df
144
 
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
147
  remove_remaining_links = r"https?:\/\/[^\s]+"
148
 
 
158
  return text
159
 
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  if __name__ == "__main__":
162
  main()