oa-stackexchange / process.py
donfu
Deal with huge files, cleanup, mrege
43219d4
raw
history blame
5.82 kB
#!/usr/bin/env python3
# Simple script to convert StackExchange XML to Open Assistant format
# Original code by https://github.com/b-mc2
import os, gc, glob, sys, re
from bs4 import BeautifulSoup as bs
import pandas as pd
from html2text import html2text
from datasets import load_dataset
from lxml import etree
from tqdm import tqdm
import subprocess
from merge_parquets import merge_parquet_dir
XML_DIR = "./xml"
SOURCE = "stackexchange-{0}"
MAX_ANSWERS = 10
QUESTION_SCORE_TRESHOLD = 0
ANSWER_SCORE_TRESHOLD = 0
HF_DATASET = "donfu/oa-stackexchange"
PARQUET_FILE = "{0}.parquet"
MAX_LENGTH = 1000 # max length of question or answer
def main():
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
for dataset in datasets:
process_dataset(dataset)
def list_cached_datasets():
xml_files = glob.glob(f"{XML_DIR}/*.xml")
datasets = [os.path.splitext(os.path.basename(file))[0] for file in xml_files]
datasets.sort()
return datasets
def process_dataset(dataset):
xml_file = f"{XML_DIR}/{dataset}.xml"
parquet_file = PARQUET_FILE.format(dataset)
source = SOURCE.format(dataset)
if not os.path.exists(xml_file):
print(f"XML file {xml_file} not found, please download first. Skipping...")
elif not os.path.exists(parquet_file):
df = parse_and_convert(xml_file, source)
save_parquet(df, dataset)
# upload_hf(dataset)
else:
print(f"File already converted {xml_file}. Skipping...")
def parse_and_convert(path: str, source: str):
"""
Parse (very large) XML files with sax parser and load it into a pandas Dataframe
"""
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}"))
print(f"Parsing {total_rows} rows from {path}...")
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId"
rows = []
max_process = 10**6
processed = 0
oa_df = pd.DataFrame(columns=["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"])
context = etree.iterparse(path, events=("end",))
for _, element in tqdm(context, total=total_rows):
if element.tag == "row":
if len(element.get("Body")) > MAX_LENGTH:
continue
rows.append(parse_row(element))
processed += 1
element.clear()
while element.getprevious() is not None:
del element.getparent()[0]
if processed % max_process == 0 or processed == total_rows:
df = pd.DataFrame(rows, columns=columns.split())
rows = []
oa = convert_to_oa(df, source)
oa_df = pd.concat([oa_df, oa])
del df
del oa
gc.collect()
return oa_df
def parse_row(element):
return [
int(element.get("Id")),
int(element.get("PostTypeId")),
element.get("Body"),
element.get("Title", ""),
element.get("Tags", ""),
int(element.get("Score", 0)),
int(element.get("AcceptedAnswerId", 0)),
int(element.get("ParentId", 0)),
]
def convert_to_oa(all, source):
"""
Convert dataframe to Open Assistant format with INSTRUCTION, RESPONSE, SOURCE, METADATA columns
Only include questions with an AcceptedAnswerId
"""
questions = all[all["AcceptedAnswerId"] != 0]
merged = pd.merge(
questions,
all,
how="inner",
left_on="AcceptedAnswerId",
right_on="Id",
suffixes=("_q", "_a"),
)
del all
merged["INSTRUCTION"] = (
merged["Title_q"] + "\n" + merged["Body_q"].apply(to_markdown)
)
merged["RESPONSE"] = merged["Body_a"].apply(to_markdown)
merged["SOURCE"] = source
merged["METADATA"] = merged.apply(create_metadata, axis=1)
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
def convert_tags(raw):
return raw.replace("-", " ").replace("><", ", ").replace("<", "").replace(">", "")
def create_metadata(row):
return {
"tags": convert_tags(row["Tags_q"]),
"question_score": row["Score_q"],
"answer_score": row["Score_a"],
}
def save_parquet(df, dataset):
"""
Save Dataframe to Parquet. See here for specs:
https://projects.laion.ai/Open-Assistant/docs/data/datasets#creating-a-dataset-on-hugging-face
"""
parquet_file = PARQUET_FILE.format(dataset)
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
print(f"Converted {len(df)} instructions into {parquet_file}")
def upload_hf(dataset):
"""
Upload to Hugging Face
"""
parquet_file = PARQUET_FILE.format(dataset)
dataset = load_dataset("parquet", data_files=parquet_file, name=dataset)
dataset.push_to_hub(HF_DATASET, max_shard_size="500MB")
print("Uploaded to Hugging Face: " + HF_DATASET)
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
remove_remaining_links = r"https?:\/\/[^\s]+"
def remove_emojis(string):
emoji_pattern = re.compile(
"["
"\U0001F600-\U0001F64F" # emoticons
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F680-\U0001F6FF" # transport & map symbols
"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U00002702-\U000027B0"
"\U000024C2-\U0001F251"
"]+",
flags=re.UNICODE,
)
return emoji_pattern.sub(r"", string)
# Replace HTML content to markdown but remove links
def to_markdown(text):
try:
text = html2text(text, bodywidth=0).strip()
except Exception as e:
print(e)
text = re.sub(r"<[^>]*>", "", str(text))
text = re.sub(remove_markdown_links_pattern, r"\1", text)
text = remove_emojis(text)
return re.sub(remove_remaining_links, "", text)
if __name__ == "__main__":
main()