Datasets:
Languages:
English
Tags:
video understanding
Create gtea.py
Browse files
gtea.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
_DESCRIPTION = """\
|
7 |
+
GTEA is composed of 50 recorded videos of 25 participants making two different mixed salads. The videos are captured by a camera with a top-down view onto the work-surface. The participants are provided with recipe steps which are randomly sampled from a statistical recipe model.
|
8 |
+
"""
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{stein2013combining,
|
12 |
+
title={Combining embedded accelerometers with computer vision for recognizing food preparation activities},
|
13 |
+
author={Stein, Sebastian and McKenna, Stephen J},
|
14 |
+
booktitle={Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing},
|
15 |
+
pages={729--738},
|
16 |
+
year={2013}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_HOMEPAGE = ""
|
21 |
+
|
22 |
+
_LICENSE = "xxx"
|
23 |
+
|
24 |
+
_URLS = {"full": "https://huggingface.co/datasets/dinggd/gtea/resolve/main/gtea.zip"}
|
25 |
+
|
26 |
+
|
27 |
+
class GTEA(datasets.GeneratorBasedBuilder):
|
28 |
+
|
29 |
+
VERSION = datasets.Version("1.0.0")
|
30 |
+
|
31 |
+
BUILDER_CONFIGS = [
|
32 |
+
datasets.BuilderConfig(
|
33 |
+
name="split1", version=VERSION, description="Cross Validation Split1"
|
34 |
+
),
|
35 |
+
datasets.BuilderConfig(
|
36 |
+
name="split2", version=VERSION, description="Cross Validation Split2"
|
37 |
+
),
|
38 |
+
datasets.BuilderConfig(
|
39 |
+
name="split3", version=VERSION, description="Cross Validation Split3"
|
40 |
+
),
|
41 |
+
datasets.BuilderConfig(
|
42 |
+
name="split4", version=VERSION, description="Cross Validation Split4"
|
43 |
+
),
|
44 |
+
]
|
45 |
+
|
46 |
+
DEFAULT_CONFIG_NAME = "1"
|
47 |
+
|
48 |
+
def _info(self):
|
49 |
+
features = datasets.Features(
|
50 |
+
{
|
51 |
+
"video_id": datasets.Value("string"),
|
52 |
+
"video_feature": datasets.Array2D(shape=(None, 2048), dtype="float32"),
|
53 |
+
"video_label": datasets.Sequence(datasets.Value(dtype="int32")),
|
54 |
+
}
|
55 |
+
)
|
56 |
+
|
57 |
+
return datasets.DatasetInfo(
|
58 |
+
description=_DESCRIPTION,
|
59 |
+
features=features,
|
60 |
+
homepage=_HOMEPAGE,
|
61 |
+
license=_LICENSE,
|
62 |
+
citation=_CITATION,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _split_generators(self, dl_manager):
|
66 |
+
urls_to_download = _URLS
|
67 |
+
data_dir = dl_manager.download_and_extract(urls_to_download)["full"]
|
68 |
+
return [
|
69 |
+
datasets.SplitGenerator(
|
70 |
+
name=datasets.Split.TRAIN,
|
71 |
+
gen_kwargs={
|
72 |
+
"filepath": os.path.join(
|
73 |
+
data_dir, f"gtea/splits/train.{self.config.name}.bundle"
|
74 |
+
),
|
75 |
+
"featurefolder": os.path.join(data_dir, "gtea/features"),
|
76 |
+
"gtfolder": os.path.join(data_dir, "gtea/groundTruth"),
|
77 |
+
"mappingpath": os.path.join(data_dir, "gtea/mapping.txt"),
|
78 |
+
},
|
79 |
+
),
|
80 |
+
datasets.SplitGenerator(
|
81 |
+
name=datasets.Split.TEST,
|
82 |
+
gen_kwargs={
|
83 |
+
"filepath": os.path.join(
|
84 |
+
data_dir, f"gtea/splits/test.{self.config.name}.bundle"
|
85 |
+
),
|
86 |
+
"featurefolder": os.path.join(data_dir, "gtea/features"),
|
87 |
+
"gtfolder": os.path.join(data_dir, "gtea/groundTruth"),
|
88 |
+
"mappingpath": os.path.join(data_dir, "gtea/mapping.txt"),
|
89 |
+
},
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
def _generate_examples(self, filepath, featurefolder, gtfolder, mappingpath):
|
94 |
+
with open(mappingpath, "r") as f:
|
95 |
+
actions = f.read().splitlines()
|
96 |
+
actions_dict = {}
|
97 |
+
for a in actions:
|
98 |
+
actions_dict[a.split()[1]] = int(a.split()[0])
|
99 |
+
|
100 |
+
with open(filepath, "r") as f:
|
101 |
+
lines = f.read().splitlines()
|
102 |
+
for key, line in enumerate(lines):
|
103 |
+
vid = line[:-4]
|
104 |
+
featurepath = os.path.join(featurefolder, f"{vid}.npy")
|
105 |
+
gtpath = os.path.join(gtfolder, line)
|
106 |
+
feature = np.load(featurepath).T # T x D
|
107 |
+
with open(gtpath, "r") as f:
|
108 |
+
content = f.read().splitlines()
|
109 |
+
|
110 |
+
label = np.zeros(min(np.shape(feature)[1], len(content)))
|
111 |
+
for i in range(len(label)):
|
112 |
+
label[i] = actions_dict[content[i]]
|
113 |
+
yield key, {
|
114 |
+
"video_id": vid,
|
115 |
+
"video_feature": feature,
|
116 |
+
"video_label": label,
|
117 |
+
}
|