Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
blinjrm commited on
Commit
8084543
·
1 Parent(s): 454a754

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Fashionpedia
3
+ task_categories:
4
+ - object-detection
5
+ language:
6
+ - en
7
+ license:
8
+ - cc-by-4.0
9
+ multilinguality:
10
+ - monolingual
11
+ size_categories:
12
+ - 10K<n<100K
13
+ source_datasets:
14
+ - original
15
+ tags:
16
+ - object-detection
17
+ - fashion
18
+ - computer-vision
19
+ paperswithcode_id: fashionpedia
20
+ ---
21
+
22
+ # Dataset Card for Fashionpedia
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Additional Information](#additional-information)
34
+ - [Licensing Information](#licensing-information)
35
+ - [Citation Information](#citation-information)
36
+ - [Contributions](#contributions)
37
+
38
+ ## Dataset Description
39
+
40
+ - **Homepage:** https://fashionpedia.github.io/home/index.html
41
+ - **Repository:** https://github.com/cvdfoundation/fashionpedia
42
+ - **Paper:** https://arxiv.org/abs/2004.12276
43
+
44
+ ### Dataset Summary
45
+
46
+ Fashionpedia is a dataset mapping out the visual aspects of the fashion world.
47
+ From the paper:
48
+ > Fashionpedia is a new dataset which consists of two parts: (1) an ontology built by fashion experts containing 27 main apparel categories, 19 apparel parts, 294 fine-grained attributes and their relationships; (2) a dataset with everyday and celebrity event fashion images annotated with segmentation masks and their associated per-mask fine-grained attributes, built upon the Fashionpedia ontology.
49
+ Fashionpedia has:
50
+ - 46781 images
51
+ - 342182 bounding-boxes
52
+
53
+ ### Supported Tasks
54
+
55
+ - Object detection
56
+ - Image classification
57
+
58
+ ### Languages
59
+
60
+ All of annotations use English as primary language.
61
+
62
+ ## Dataset Structure
63
+
64
+ The dataset is structured as follows:
65
+ ```py
66
+ DatasetDict({
67
+ train: Dataset({
68
+ features: ['image_id', 'image', 'width', 'height', 'objects'],
69
+ num_rows: 45623
70
+ })
71
+ val: Dataset({
72
+ features: ['image_id', 'image', 'width', 'height', 'objects'],
73
+ num_rows: 1158
74
+ })
75
+ })
76
+ ```
77
+
78
+ ### Data Instances
79
+
80
+ An example of the data for one image is:
81
+ ```py
82
+ {'image_id': 23,
83
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=682x1024>,
84
+ 'width': 682,
85
+ 'height': 1024,
86
+ 'objects': {'bbox_id': [150311, 150312, 150313, 150314],
87
+ 'category': [23, 23, 33, 10],
88
+ 'bbox': [[445.0, 910.0, 505.0, 983.0],
89
+ [239.0, 940.0, 284.0, 994.0],
90
+ [298.0, 282.0, 386.0, 352.0],
91
+ [210.0, 282.0, 448.0, 665.0]],
92
+ 'area': [1422, 843, 373, 56375]}}
93
+ ```
94
+
95
+ With the type of each field being defined as:
96
+ ```py
97
+ {'image_id': Value(dtype='int64'),
98
+ 'image': Image(decode=True),
99
+ 'width': Value(dtype='int64'),
100
+ 'height': Value(dtype='int64'),
101
+ 'objects': Sequence(feature={
102
+ 'bbox_id': Value(dtype='int64'),
103
+ 'category': ClassLabel(num_classes=46, names=['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']),
104
+ 'bbox': Sequence(feature=Value(dtype='float64'), length=4),
105
+ 'area': Value(dtype='int64')},
106
+ length=-1)}
107
+ ```
108
+
109
+ ### Data Fields
110
+
111
+ The dataset has the following fields:
112
+
113
+ - `image_id`: Unique numeric ID of the image.
114
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
115
+ - `width`: Image width.
116
+ - `height`: Image height.
117
+ - `objects`: A dictionary containing bounding box metadata for the objects in the image:
118
+ - `bbox_id`: Unique numeric ID of the bounding box annotation.
119
+ - `category`: The object’s category.
120
+ - `area`: The area of the bounding box.
121
+ - `bbox`: The object’s bounding box (in the Pascal VOC format)
122
+
123
+ ### Data Splits
124
+
125
+ | | Train | Validation | Test |
126
+ |----------------|--------|------------|------|
127
+ | Images | 45623 | 1158 | 0 |
128
+ | Bounding boxes | 333401 | 8781 | 0 |
129
+
130
+ ## Additional Information
131
+
132
+ ### Licensing Information
133
+
134
+ Fashionpedia is licensed under a Creative Commons Attribution 4.0 International License.
135
+
136
+ ### Citation Information
137
+
138
+ ```
139
+ @inproceedings{jia2020fashionpedia,
140
+ title={Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset},
141
+ author={Jia, Menglin and Shi, Mengyun and Sirotenko, Mikhail and Cui, Yin and Cardie, Claire and Hariharan, Bharath and Adam, Hartwig and Belongie, Serge}
142
+ booktitle={European Conference on Computer Vision (ECCV)},
143
+ year={2020}
144
+ }
145
+ ```
146
+
147
+ ### Contributions
148
+
149
+ Thanks to [@blinjrm](https://github.com/blinjrm) for adding this dataset.