Datasets:
image
imagewidth (px) 384
7.02k
| label
class label 2
classes |
---|---|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
|
0multiple_column
|
About dataset
The main purpose of this dataset is to train and evaluate the model used for defining the orientation of the document and the number of text columns in it. As for the model, we chose EffecientNet B0. We constructed this dataset to represent the variety of documents we usually deal with. It contains open data in the form of scientific papers, legal acts, reports, tables, etc. The languages represented in this dataset are: Russian, English, French, Spanish, Portuguese, Arabic, Armenian, Chinese, Georgian, Greek, Italian, Japanese, Korean, and Mongolian. More specifically, it contains 2426 one-column source documents and 1695 multiple-column source documents. These source files are then rotated at four possible angles to cover all possible orientations (0, 90, 180, and 270 degrees).
Formally, document orientation is the angle by which a text document has been rotated relative to its vertical position (the one in which a person can read it). We consider four possible orientations: 0 (vertical position), 90, 180, and 270 degrees.
A document is considered a one-column document if most of the text in it is arranged in one column. Similarly, a document is considered a multi-column document if most of the text is divided into two columns.
Description
The initial repository structure goes as follows:
└─orientation_columns_dataset
├─.gitattributes
├─README.md
└─generate_dataset_orient_classifier.zip
The structure of the generate_dataset_orient_classifier.zip
archive after unzipping goes as follows:
└─generate_dataset_orient_classifier
└─src
├─one_column
└─miltiple_column
├─README.md
└─sctipts
├─gen_dataset.py
└─get_imgs_from_pdf.py
Folders one_column
and miltiple_column
above contain source pictures for the dataset. one_column
folder contains documents with only one text column, and the multiple_column
folder contains documents with two columns of text.
After using the generation scripts gen_dataset.py
and get_imgs_from_pdf.py
, you will get the dataset in its final form, which can be used for training and evaluation of the model. The structure of the output dataset folder should look as follows:
└─columns_orientation_dataset
├─test
└─train
Both the train
and test
folders above contain rotated document pictures and files with the name labels.csv
. These are the dataset markup tables with columns image_name
,orientation
and columns
that represent all the necessary information about the dataset documents. These markup files are generated automatically.
About generation scripts:
scripts/gen_dataset.py
- generates an output dataset for model training and testing. It rotates document images and creates alabel.csv
markup file in each dataset-i
,--input_path_img
: source folder absolute path-o
,--output_path_img
: absolute path for output folder-l
,--output_path_lbl
: absolute path for label file, by default it is contained in output folders
scripts/get_imgs_from_pdf.py
- just to help if you want to add images to the src folder from different pdfs-i
,--input_path_img
: source folder absolute path-o
,--output_path_img
: absolute path for output folder
- Downloads last month
- 51