File size: 12,873 Bytes
a8915e7
 
 
 
 
 
 
 
 
 
 
 
 
9132e42
a8915e7
 
 
 
9132e42
a8915e7
 
9132e42
e5d9cc0
a8915e7
3a1e32a
 
a8915e7
 
9132e42
 
 
 
 
a8915e7
 
9132e42
a8915e7
9132e42
 
a8915e7
 
9132e42
b93028a
3a1e32a
a8915e7
b93028a
a8915e7
f88b4fb
a8915e7
c700dd0
2f5bc40
1c92f54
df33357
c700dd0
df33357
c700dd0
 
 
 
07b35ae
 
df33357
b53de13
4144c8e
b53de13
4144c8e
b53de13
07b35ae
 
 
a0d8c4f
 
 
 
0d4fbc4
21d9e0c
0d4fbc4
a0d8c4f
9132e42
 
a0d8c4f
2996269
8189ddb
2996269
a0d8c4f
 
 
 
0d4fbc4
 
a0d8c4f
 
0d4fbc4
 
a0d8c4f
 
0d4fbc4
 
a0d8c4f
 
0d4fbc4
 
a0d8c4f
 
0d4fbc4
a8915e7
9132e42
 
 
 
c700dd0
 
9883aef
c700dd0
 
 
 
9883aef
 
c700dd0
 
9883aef
 
c700dd0
8d8d175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acca7e3
b07e71f
9203011
9883aef
 
9203011
9883aef
 
 
9203011
 
 
 
 
9883aef
 
 
9203011
 
b07e71f
 
e3dc184
 
9132e42
a8915e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec803ff
8189ddb
ec803ff
 
 
 
 
 
96dddad
ec803ff
7010231
9132e42
 
 
07614e3
9132e42
a8915e7
 
 
 
 
9132e42
a8915e7
9132e42
 
a8915e7
 
c9e8cb4
d787d13
c700dd0
3a1e32a
 
d5f75d3
3a1e32a
ee57365
d7b2191
80d633e
 
 
3a1e32a
80d633e
d7b2191
3a1e32a
df33357
50c7592
 
07b35ae
df33357
07b35ae
df33357
07b35ae
df33357
07b35ae
c700dd0
df33357
 
07b35ae
c700dd0
df33357
 
07b35ae
 
69a246f
bfd94f3
 
 
 
69a246f
bfd94f3
 
 
 
acca7e3
 
 
 
 
 
73f4492
 
 
 
 
acca7e3
 
 
 
 
 
 
 
 
 
 
1c92f54
 
329f237
acca7e3
 
 
c700dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acca7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is tracking data of the 2015-2016 NBA season"""

import csv
import json
import os
import py7zr

import datasets
import requests
import random

import pandas as pd


_CITATION = """\
@misc{Linou2016,
title = {NBA-Player-Movements},
author={Kostya Linou},
publisher={SportVU},
year={2016}
"""


_DESCRIPTION = """\
This dataset is designed to give further easy access to tracking data.
By merging all .7z files into one large .json file, access is easier to retrieve all information at once.
"""

_HOMEPAGE = "https://github.com/linouk23/NBA-Player-Movements/tree/master/"
_URL = "https://github.com/linouk23/NBA-Player-Movements/raw/master/data/2016.NBA.Raw.SportVU.Game.Logs"
_PBP_URL = "https://github.com/sumitrodatta/nba-alt-awards/raw/main/Historical/PBP%20Data/2015-16_pbp.csv"

res = requests.get(_URL)

ITEMS = res.json()['payload']['tree']['items']

def home_away_event_conversion(number):
    if pd.isna(number.item()):
        return None
    if int(number.item()) == 4:
        return "home"
    elif int(number.item()) == 5:
        return "away"
    else:
        return None
        
def identify_offense(row):
    identified_offense_events = [1, 2, 3, 4, 5]
    if int(row['EVENTMSGTYPE'].item()) in identified_offense_events:
        poss_team_id = row['PLAYER1_TEAM_ID'].item()
    elif ("OFF.FOUL" in str(row["HOMEDESCRIPTION"].item())) or ("OFF.FOUL" in str(row["VISITORDESCRIPTION"].item())):
        poss_team_id = row['PLAYER1_TEAM_ID'].item()
    elif int(row['EVENTMSGTYPE'].item()) == 6:
        poss_team_id = row['PLAYER2_TEAM_ID'].item()
    else:
        poss_team_id = None
    return poss_team_id

class NbaTrackingConfig(datasets.BuilderConfig):
    """BuilderConfig for NbaTracking"""

    def __init__(self, samples, **kwargs):
        super().__init__(**kwargs)
        self.samples = samples

class NbaTracking(datasets.GeneratorBasedBuilder):
    """Tracking data for all games of 2015-2016 season in forms of coordinates for players and ball at each moment."""

    items = ITEMS
    _PBP_URL = _PBP_URL
    
    BUILDER_CONFIG_CLASS = NbaTrackingConfig

    BUILDER_CONFIGS = [
        NbaTrackingConfig(
            name = "tiny",
            samples = 5
        ),
        NbaTrackingConfig(
            name = "small",
            samples = 25
        ),
        NbaTrackingConfig(
            name = "medium",
            samples = 100
        ),
        NbaTrackingConfig(
            name = "full",
            samples = len(items)
        )
    ]
    
    def _info(self):
        features = datasets.Features(
            {    
                "gameid": datasets.Value("string"),
                "gamedate": datasets.Value("string"),
                "event_info": {"id": datasets.Value("string"),
                               "type": datasets.Value("int64"),
                               "possession_team_id": datasets.Value("float64"),
                               "desc_home": datasets.Value("string"),
                               "desc_away": datasets.Value("string")
                              },
                "primary_info": {"team": datasets.Value("string"),
                                 "player_id": datasets.Value("float64"),
                                 "team_id": datasets.Value("float64")
                                },
                "secondary_info": {"team": datasets.Value("string"),
                                   "player_id": datasets.Value("float64"),
                                   "team_id": datasets.Value("float64")
                                  },
                "visitor": {
                    "name": datasets.Value("string"),
                    "teamid": datasets.Value("int64"),
                    "abbreviation": datasets.Value("string"),
                    "players": [
                        {
                        "lastname": datasets.Value("string"),
                        "firstname": datasets.Value("string"),
                        "playerid": datasets.Value("int64"),
                        "jersey": datasets.Value("string"),
                        "position": datasets.Value("string")
                        }
                    ]
                },
                "home": {
                    "name": datasets.Value("string"),
                    "teamid": datasets.Value("int64"),
                    "abbreviation": datasets.Value("string"),
                    "players": [
                        {
                        "lastname": datasets.Value("string"),
                        "firstname": datasets.Value("string"),
                        "playerid": datasets.Value("int64"),
                        "jersey": datasets.Value("string"),
                        "position": datasets.Value("string")
                        }
                    ]
                },
                "moments": [
                    {
                        "quarter": datasets.Value("int64"),
                        "game_clock": datasets.Value("float64"),
                        "shot_clock": datasets.Value("float64"),
                        "ball_coordinates": {
                            "x": datasets.Value("float64"),
                            "y": datasets.Value("float64"),
                            "z": datasets.Value("float64")
                        },
                        "player_coordinates": [
                            {
                                "teamid": datasets.Value("int32"),
                                "playerid": datasets.Value("int32"),
                                "x": datasets.Value("float64"),
                                "y": datasets.Value("float64"),
                                "z": datasets.Value("float64")
                            }
                        ]
                    }
                ]
            }
        )
        
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        random.seed(9)
        items = random.sample(self.items, self.config.samples)
        
        _URLS = {}
        for game in items:
          name = game['name'][:-3]
          _URLS[name] = _URL + "/" + name + ".7z"
            
        urls = _URLS
        
        data_dir = dl_manager.download_and_extract(urls)
        
        all_file_paths = {}
        for key, directory_path in data_dir.items():
            all_file_paths[key] = os.path.join(directory_path, os.listdir(directory_path)[0])
            
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepaths": all_file_paths,
                    "split": "train",
                }
            )
        ]

   
    def _generate_examples(self, filepaths, split):
        pbp_out = datasets.DownloadManager().download_and_extract(_PBP_URL)
        pbp = pd.read_csv(pbp_out)
        
        moment_id = 0
        
        for game_title, link in filepaths.items():
            with open(link, encoding="utf-8") as fp:
                game = json.load(fp)
                game_id = game["gameid"]
                game_date = game["gamedate"] 

                for event in game["events"]:
                    event_id = event["eventId"]

                    event_row = pbp.loc[(pbp.GAME_ID == int(game_id)) & (pbp.EVENTNUM == int(event_id))]
                    if len(event_row) != 1:
                        continue

                    event_type = event_row["EVENTMSGTYPE"].item()
                    
                    event_home_desc = event_row["HOMEDESCRIPTION"].item()
                    
                    event_away_desc = event_row["VISITORDESCRIPTION"].item()
                    
                    primary_home_away = home_away_event_conversion(event_row["PERSON1TYPE"])
                    primary_player_id = event_row["PLAYER1_ID"].item()
                    primary_team_id = event_row["PLAYER1_TEAM_ID"].item()
                    
                    secondary_home_away = home_away_event_conversion(event_row["PERSON2TYPE"])
                    secondary_player_id = event_row["PLAYER2_ID"].item()
                    secondary_team_id = event_row["PLAYER2_TEAM_ID"].item()
                    
                    poss_team_id = identify_offense(event_row)
                    
                    visitor_name = event['visitor']['name']
                    visitor_team_id = event['visitor']['teamid']
                    visitor_abbrev = event['visitor']['abbreviation']
                    visitor_players = event['visitor']['players']

                    home_name = event['home']['name']
                    home_team_id = event['home']['teamid']
                    home_abbrev = event['home']['abbreviation']
                    home_players = event['home']['players']

                    moments = [
                        {
                            "quarter": moment[0],
                            "game_clock": moment[2],
                            "shot_clock": moment[3],
                            "ball_coordinates": {
                                "x": moment[5][0][2],
                                "y": moment[5][0][3],
                                "z": moment[5][0][4]
                            },
                            "player_coordinates": [
                                {
                                    "teamid": i[0], 
                                    "playerid": i[1], 
                                    "x": i[2], 
                                    "y": i[3], 
                                    "z": i[4]
                                } for i in moment[5][1:]
                            ]
                        } for moment in event["moments"]
                    ]

                    moment_id += 1
                                
                    yield moment_id, {
                        "gameid": game_id,
                        "gamedate": game_date,
                        "event_info": {
                            "id": event_id,
                            "type": event_type,
                            "possession_team_id": poss_team_id,
                            "desc_home": event_home_desc,
                            "desc_away": event_away_desc
                        },
                        "primary_info": {
                            "team": primary_home_away,
                            "player_id": primary_player_id,
                            "team_id": primary_team_id
                                },
                        "secondary_info": {
                            "team": secondary_home_away,
                            "player_id": secondary_player_id,
                            "team_id": secondary_team_id
                        },
                        "visitor": {
                            "name": visitor_name,
                            "teamid": visitor_team_id,
                            "abbreviation": visitor_abbrev,
                            "players": visitor_players
                        },
                        "home": {
                            "name": home_name,
                            "teamid": home_team_id,
                            "abbreviation": home_abbrev,
                            "players": home_players
                        },
                        "moments": moments
                    }