File size: 12,873 Bytes
a8915e7 9132e42 a8915e7 9132e42 a8915e7 9132e42 e5d9cc0 a8915e7 3a1e32a a8915e7 9132e42 a8915e7 9132e42 a8915e7 9132e42 a8915e7 9132e42 b93028a 3a1e32a a8915e7 b93028a a8915e7 f88b4fb a8915e7 c700dd0 2f5bc40 1c92f54 df33357 c700dd0 df33357 c700dd0 07b35ae df33357 b53de13 4144c8e b53de13 4144c8e b53de13 07b35ae a0d8c4f 0d4fbc4 21d9e0c 0d4fbc4 a0d8c4f 9132e42 a0d8c4f 2996269 8189ddb 2996269 a0d8c4f 0d4fbc4 a0d8c4f 0d4fbc4 a0d8c4f 0d4fbc4 a0d8c4f 0d4fbc4 a0d8c4f 0d4fbc4 a8915e7 9132e42 c700dd0 9883aef c700dd0 9883aef c700dd0 9883aef c700dd0 8d8d175 acca7e3 b07e71f 9203011 9883aef 9203011 9883aef 9203011 9883aef 9203011 b07e71f e3dc184 9132e42 a8915e7 ec803ff 8189ddb ec803ff 96dddad ec803ff 7010231 9132e42 07614e3 9132e42 a8915e7 9132e42 a8915e7 9132e42 a8915e7 c9e8cb4 d787d13 c700dd0 3a1e32a d5f75d3 3a1e32a ee57365 d7b2191 80d633e 3a1e32a 80d633e d7b2191 3a1e32a df33357 50c7592 07b35ae df33357 07b35ae df33357 07b35ae df33357 07b35ae c700dd0 df33357 07b35ae c700dd0 df33357 07b35ae 69a246f bfd94f3 69a246f bfd94f3 acca7e3 73f4492 acca7e3 1c92f54 329f237 acca7e3 c700dd0 acca7e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is tracking data of the 2015-2016 NBA season"""
import csv
import json
import os
import py7zr
import datasets
import requests
import random
import pandas as pd
_CITATION = """\
@misc{Linou2016,
title = {NBA-Player-Movements},
author={Kostya Linou},
publisher={SportVU},
year={2016}
"""
_DESCRIPTION = """\
This dataset is designed to give further easy access to tracking data.
By merging all .7z files into one large .json file, access is easier to retrieve all information at once.
"""
_HOMEPAGE = "https://github.com/linouk23/NBA-Player-Movements/tree/master/"
_URL = "https://github.com/linouk23/NBA-Player-Movements/raw/master/data/2016.NBA.Raw.SportVU.Game.Logs"
_PBP_URL = "https://github.com/sumitrodatta/nba-alt-awards/raw/main/Historical/PBP%20Data/2015-16_pbp.csv"
res = requests.get(_URL)
ITEMS = res.json()['payload']['tree']['items']
def home_away_event_conversion(number):
if pd.isna(number.item()):
return None
if int(number.item()) == 4:
return "home"
elif int(number.item()) == 5:
return "away"
else:
return None
def identify_offense(row):
identified_offense_events = [1, 2, 3, 4, 5]
if int(row['EVENTMSGTYPE'].item()) in identified_offense_events:
poss_team_id = row['PLAYER1_TEAM_ID'].item()
elif ("OFF.FOUL" in str(row["HOMEDESCRIPTION"].item())) or ("OFF.FOUL" in str(row["VISITORDESCRIPTION"].item())):
poss_team_id = row['PLAYER1_TEAM_ID'].item()
elif int(row['EVENTMSGTYPE'].item()) == 6:
poss_team_id = row['PLAYER2_TEAM_ID'].item()
else:
poss_team_id = None
return poss_team_id
class NbaTrackingConfig(datasets.BuilderConfig):
"""BuilderConfig for NbaTracking"""
def __init__(self, samples, **kwargs):
super().__init__(**kwargs)
self.samples = samples
class NbaTracking(datasets.GeneratorBasedBuilder):
"""Tracking data for all games of 2015-2016 season in forms of coordinates for players and ball at each moment."""
items = ITEMS
_PBP_URL = _PBP_URL
BUILDER_CONFIG_CLASS = NbaTrackingConfig
BUILDER_CONFIGS = [
NbaTrackingConfig(
name = "tiny",
samples = 5
),
NbaTrackingConfig(
name = "small",
samples = 25
),
NbaTrackingConfig(
name = "medium",
samples = 100
),
NbaTrackingConfig(
name = "full",
samples = len(items)
)
]
def _info(self):
features = datasets.Features(
{
"gameid": datasets.Value("string"),
"gamedate": datasets.Value("string"),
"event_info": {"id": datasets.Value("string"),
"type": datasets.Value("int64"),
"possession_team_id": datasets.Value("float64"),
"desc_home": datasets.Value("string"),
"desc_away": datasets.Value("string")
},
"primary_info": {"team": datasets.Value("string"),
"player_id": datasets.Value("float64"),
"team_id": datasets.Value("float64")
},
"secondary_info": {"team": datasets.Value("string"),
"player_id": datasets.Value("float64"),
"team_id": datasets.Value("float64")
},
"visitor": {
"name": datasets.Value("string"),
"teamid": datasets.Value("int64"),
"abbreviation": datasets.Value("string"),
"players": [
{
"lastname": datasets.Value("string"),
"firstname": datasets.Value("string"),
"playerid": datasets.Value("int64"),
"jersey": datasets.Value("string"),
"position": datasets.Value("string")
}
]
},
"home": {
"name": datasets.Value("string"),
"teamid": datasets.Value("int64"),
"abbreviation": datasets.Value("string"),
"players": [
{
"lastname": datasets.Value("string"),
"firstname": datasets.Value("string"),
"playerid": datasets.Value("int64"),
"jersey": datasets.Value("string"),
"position": datasets.Value("string")
}
]
},
"moments": [
{
"quarter": datasets.Value("int64"),
"game_clock": datasets.Value("float64"),
"shot_clock": datasets.Value("float64"),
"ball_coordinates": {
"x": datasets.Value("float64"),
"y": datasets.Value("float64"),
"z": datasets.Value("float64")
},
"player_coordinates": [
{
"teamid": datasets.Value("int32"),
"playerid": datasets.Value("int32"),
"x": datasets.Value("float64"),
"y": datasets.Value("float64"),
"z": datasets.Value("float64")
}
]
}
]
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
random.seed(9)
items = random.sample(self.items, self.config.samples)
_URLS = {}
for game in items:
name = game['name'][:-3]
_URLS[name] = _URL + "/" + name + ".7z"
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
all_file_paths = {}
for key, directory_path in data_dir.items():
all_file_paths[key] = os.path.join(directory_path, os.listdir(directory_path)[0])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": all_file_paths,
"split": "train",
}
)
]
def _generate_examples(self, filepaths, split):
pbp_out = datasets.DownloadManager().download_and_extract(_PBP_URL)
pbp = pd.read_csv(pbp_out)
moment_id = 0
for game_title, link in filepaths.items():
with open(link, encoding="utf-8") as fp:
game = json.load(fp)
game_id = game["gameid"]
game_date = game["gamedate"]
for event in game["events"]:
event_id = event["eventId"]
event_row = pbp.loc[(pbp.GAME_ID == int(game_id)) & (pbp.EVENTNUM == int(event_id))]
if len(event_row) != 1:
continue
event_type = event_row["EVENTMSGTYPE"].item()
event_home_desc = event_row["HOMEDESCRIPTION"].item()
event_away_desc = event_row["VISITORDESCRIPTION"].item()
primary_home_away = home_away_event_conversion(event_row["PERSON1TYPE"])
primary_player_id = event_row["PLAYER1_ID"].item()
primary_team_id = event_row["PLAYER1_TEAM_ID"].item()
secondary_home_away = home_away_event_conversion(event_row["PERSON2TYPE"])
secondary_player_id = event_row["PLAYER2_ID"].item()
secondary_team_id = event_row["PLAYER2_TEAM_ID"].item()
poss_team_id = identify_offense(event_row)
visitor_name = event['visitor']['name']
visitor_team_id = event['visitor']['teamid']
visitor_abbrev = event['visitor']['abbreviation']
visitor_players = event['visitor']['players']
home_name = event['home']['name']
home_team_id = event['home']['teamid']
home_abbrev = event['home']['abbreviation']
home_players = event['home']['players']
moments = [
{
"quarter": moment[0],
"game_clock": moment[2],
"shot_clock": moment[3],
"ball_coordinates": {
"x": moment[5][0][2],
"y": moment[5][0][3],
"z": moment[5][0][4]
},
"player_coordinates": [
{
"teamid": i[0],
"playerid": i[1],
"x": i[2],
"y": i[3],
"z": i[4]
} for i in moment[5][1:]
]
} for moment in event["moments"]
]
moment_id += 1
yield moment_id, {
"gameid": game_id,
"gamedate": game_date,
"event_info": {
"id": event_id,
"type": event_type,
"possession_team_id": poss_team_id,
"desc_home": event_home_desc,
"desc_away": event_away_desc
},
"primary_info": {
"team": primary_home_away,
"player_id": primary_player_id,
"team_id": primary_team_id
},
"secondary_info": {
"team": secondary_home_away,
"player_id": secondary_player_id,
"team_id": secondary_team_id
},
"visitor": {
"name": visitor_name,
"teamid": visitor_team_id,
"abbreviation": visitor_abbrev,
"players": visitor_players
},
"home": {
"name": home_name,
"teamid": home_team_id,
"abbreviation": home_abbrev,
"players": home_players
},
"moments": moments
}
|