modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/elonmusk-jack
3edad9deb7a90f81eb1cc3e7c70c8d861423280c
2022-06-13T04:16:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-jack
0
null
transformers
38,100
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-jack/1655093760817/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & jack</div> <div style="text-align: center; font-size: 14px;">@elonmusk-jack</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & jack. | Data | Elon Musk | jack | | --- | --- | --- | | Tweets downloaded | 3200 | 3232 | | Retweets | 147 | 1137 | | Short tweets | 959 | 832 | | Tweets kept | 2094 | 1263 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zwk8y4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-jack's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16z5871k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16z5871k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-jack') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fbinegotiator
26007c335e8c3d271bbc26d2371ee7f94997df40
2022-06-13T04:22:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fbinegotiator
0
null
transformers
38,101
--- language: en thumbnail: http://www.huggingtweets.com/fbinegotiator/1655094146705/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1312911855187181568/W1hAKDaA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Christopher Voss</div> <div style="text-align: center; font-size: 14px;">@fbinegotiator</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Christopher Voss. | Data | Christopher Voss | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 370 | | Short tweets | 98 | | Tweets kept | 2767 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uat42o9x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fbinegotiator's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g9amvgc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g9amvgc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fbinegotiator') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L5
f2d9b621c3cedb02cda71537ff256fed8acb4ddd
2022-06-13T14:19:45.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nestoralvaro
null
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L5
0
null
transformers
38,102
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L5 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.7722 - Rouge2: 0.0701 - Rougel: 0.772 - Rougelsum: 0.7717 - Gen Len: 6.329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 131773 | nan | 0.7722 | 0.0701 | 0.772 | 0.7717 | 6.329 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
iaanimashaun/opus-mt-en-sw-finetuned-en-to-sw
e8058ec9903b036ae58ffb8903d2823feac394e5
2022-06-16T06:40:29.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
iaanimashaun
null
iaanimashaun/opus-mt-en-sw-finetuned-en-to-sw
0
null
transformers
38,103
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-sw-finetuned-en-to-sw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-sw-finetuned-en-to-sw This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-sw](https://huggingface.co/Helsinki-NLP/opus-mt-en-sw) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 113 | 0.9884 | 50.2226 | 19.0434 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
simecek/humandna_DEBERTA_1epoch
01ed779246471e336e6937c26e2c9e02e5666c42
2022-06-13T07:06:03.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/humandna_DEBERTA_1epoch
0
null
transformers
38,104
Entry not found
huggingtweets/demondicekaren
f4fb47bb69e9288d601fd6f6c6b6c216798c0d33
2022-06-13T07:19:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/demondicekaren
0
null
transformers
38,105
--- language: en thumbnail: http://www.huggingtweets.com/demondicekaren/1655104759793/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488027988075507712/FTIBkQRn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">😈🎲 || DEMONDICE</div> <div style="text-align: center; font-size: 14px;">@demondicekaren</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 😈🎲 || DEMONDICE. | Data | 😈🎲 || DEMONDICE | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 371 | | Short tweets | 617 | | Tweets kept | 2258 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fxxzewl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @demondicekaren's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ow01rap) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ow01rap/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/demondicekaren') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sangcamap/sangcamaptest
8a846c2e8b721df6179714595ed7264931ff265f
2022-06-13T17:20:22.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
question-answering
false
sangcamap
null
sangcamap/sangcamaptest
0
null
transformers
38,106
--- license: gpl-3.0 ---
huggingtweets/ruinsman
1c067ff2fb97b78f5425601e0ad6de2fc38a4b20
2022-06-13T09:33:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ruinsman
0
null
transformers
38,107
--- language: en thumbnail: http://www.huggingtweets.com/ruinsman/1655112758889/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428391928110911499/qWeZuRbL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ManAmongTheRuins</div> <div style="text-align: center; font-size: 14px;">@ruinsman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ManAmongTheRuins. | Data | ManAmongTheRuins | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 424 | | Short tweets | 213 | | Tweets kept | 2547 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3evn1l2w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ruinsman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/apc372yb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/apc372yb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ruinsman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/salgotrader
6392dae0ca80d3d3526ff9352fe879451d352f09
2022-06-13T14:46:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/salgotrader
0
null
transformers
38,108
--- language: en thumbnail: http://www.huggingtweets.com/salgotrader/1655131582645/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521075169611112448/S_w82Ewg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">0xPatrician.eth</div> <div style="text-align: center; font-size: 14px;">@salgotrader</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 0xPatrician.eth. | Data | 0xPatrician.eth | | --- | --- | | Tweets downloaded | 910 | | Retweets | 250 | | Short tweets | 84 | | Tweets kept | 576 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f275xqv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @salgotrader's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ljt0uhcw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ljt0uhcw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/salgotrader') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ryo0634/bert-base-log_linear-dependency-0
dd79b8943265b08fb085fee23a5efdd7e8720a18
2022-06-13T15:00:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/bert-base-log_linear-dependency-0
0
null
transformers
38,109
Entry not found
sdugar/cross-en-de-fr-minilm-384d-sentence-transformer
369c22a4907fd3e63e7b4f58b97e310dbb33a4b1
2022-06-13T16:51:13.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
sdugar
null
sdugar/cross-en-de-fr-minilm-384d-sentence-transformer
0
null
transformers
38,110
--- license: mit ---
kravchenko/uk-mt5-small-gec
3c7ee9608074378b4225944e5a54423e4235dd1b
2022-06-13T16:29:10.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-small-gec
0
null
transformers
38,111
Entry not found
simecek/DNAMobileBert
ce054e936cccefab743d3437df9d74469323efc6
2022-06-14T16:23:31.000Z
[ "pytorch", "tensorboard", "mobilebert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNAMobileBert
0
null
transformers
38,112
Entry not found
kravchenko/uk-mt5-base-gec
b2c55c45d4db1b961faa7b8043d1b175ca7fdee9
2022-06-13T16:31:43.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-base-gec
0
null
transformers
38,113
Entry not found
kravchenko/uk-mt5-large-gec
fc922cf49a155b489e53288137f23e0526916e82
2022-06-13T16:39:46.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-large-gec
0
null
transformers
38,114
Entry not found
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2
45b541b07e13f1d4fe92b1f5d2fa8c98395fda4e
2022-06-14T02:06:07.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nestoralvaro
null
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2
0
null
transformers
38,115
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0127 - Rouge2: 0.0 - Rougel: 0.0128 - Rougelsum: 0.0129 - Gen Len: 6.329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 131773 | nan | 0.0127 | 0.0 | 0.0128 | 0.0129 | 6.329 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mailenpellegrino/transformerRuperta
baa9279e6e95b66c4e613eeb56f966addd5f3d07
2022-06-13T18:19:40.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mailenpellegrino
null
mailenpellegrino/transformerRuperta
0
null
transformers
38,116
Entry not found
mcalcagno/mcd101-finedtuned-beto-xnli
77d9dc44315d2cab074e3678484a78cffc74a712
2022-06-13T18:23:45.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
mcalcagno
null
mcalcagno/mcd101-finedtuned-beto-xnli
0
null
transformers
38,117
Entry not found
micamorales/roberta-NLI-simple
ef1e8e206424f19266285517f5b6deb234905671
2022-06-13T18:20:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
micamorales
null
micamorales/roberta-NLI-simple
0
null
transformers
38,118
Entry not found
micamorales/roberta-NLI-simple2
e791abf9d525beac9895c2ca65d63f3415e24ad0
2022-06-13T18:27:40.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
micamorales
null
micamorales/roberta-NLI-simple2
0
null
transformers
38,119
Entry not found
income/jpq-question_encoder-base-msmarco-contriever
09594e60bc9934fc8ecd0f123c14304495ebe83c
2022-06-13T21:00:45.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-question_encoder-base-msmarco-contriever
0
null
transformers
38,120
--- license: apache-2.0 ---
jacklin/DeLADE-CLS-P
4f82e5ddf097de89f4f866f47c3189245d50ff0a
2022-06-13T21:42:41.000Z
[ "pytorch", "arxiv:2112.04666" ]
null
false
jacklin
null
jacklin/DeLADE-CLS-P
0
null
null
38,121
This model, (DeLADE+[CLS])+, is trained by fusing neural lexical and semantic components in single transformer using DistilBERT as a backbone using hard negative mining and knowledge distillation with ColBERT teacher, which is detailed in the below paper. *[A Dense Representation Framework for Lexical and Semantic Matching](https://arxiv.org/pdf/2112.04666.pdf)* Sheng-Chieh Lin and Jimmy Lin. You can find the usage of the model in our [DHR repo](https://github.com/jacklin64/DHR): (1) [Inference on MSMARCO Passage Ranking](https://github.com/castorini/DHR/blob/main/docs/msmarco-passage-train-eval.md); (2) [Inference on BEIR datasets](https://github.com/castorini/DHR/blob/main/docs/beir-eval.md).
micamorales/roberta-NLI-abs2
c5135ea951469f365e01c5172500c5174ba3469d
2022-06-13T21:12:14.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
micamorales
null
micamorales/roberta-NLI-abs2
0
null
transformers
38,122
Entry not found
huggingtweets/honiemun
15f9f1e720ba63dc0e22aea866d434e8bebf03ce
2022-06-13T23:11:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/honiemun
0
null
transformers
38,123
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509372264424296448/HVPI1lQu_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">𝘏𝘰𝘯π˜ͺ𝘦 β™‘</div> <div style="text-align: center; font-size: 14px;">@honiemun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 𝘏𝘰𝘯π˜ͺ𝘦 β™‘. | Data | 𝘏𝘰𝘯π˜ͺ𝘦 β™‘ | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 231 | | Short tweets | 381 | | Tweets kept | 2595 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/teqt0sk7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @honiemun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bqoay71) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bqoay71/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/honiemun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
geronimo/RobertaBNE2
f5069c098d5c485be25b565ec11f2d934dee8b8e
2022-06-14T20:35:43.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
geronimo
null
geronimo/RobertaBNE2
0
null
transformers
38,124
Entry not found
huggingtweets/horse_js
b2887f889e51e8124f3efe8b8133913a17170037
2022-06-14T05:59:52.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/horse_js
0
null
transformers
38,125
--- language: en thumbnail: http://www.huggingtweets.com/horse_js/1655186387828/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1844491454/horse-js_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Horse JS</div> <div style="text-align: center; font-size: 14px;">@horse_js</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Horse JS. | Data | Horse JS | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 1 | | Short tweets | 163 | | Tweets kept | 3036 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ucaep55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @horse_js's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/213qs19z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/213qs19z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/horse_js') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
winson/custom-resnet50d
a5b507c389136f5ef50754d20fceff3086dbec1c
2022-06-14T09:34:53.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
winson
null
winson/custom-resnet50d
0
null
transformers
38,126
Entry not found
mshoaibsarwar/pegasus-pdm-news
74fd9c4784ec251ab5ad7210992a8587e1da3df8
2022-06-14T14:54:33.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:mshoaibsarwar/autotrain-data-pdm-news", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
mshoaibsarwar
null
mshoaibsarwar/pegasus-pdm-news
0
1
transformers
38,127
saiharsha/vit-base-beans
9718aa042724a7a57613c543e87e69e6613decb6
2022-06-14T09:54:53.000Z
[ "pytorch", "vit", "image-classification", "dataset:beans", "transformers", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
saiharsha
null
saiharsha/vit-base-beans
0
null
transformers
38,128
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9699248120300752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1824 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.672 | 1.0 | 44 | 0.5672 | 0.9398 | | 0.411 | 2.0 | 88 | 0.3027 | 0.9699 | | 0.2542 | 3.0 | 132 | 0.2078 | 0.9699 | | 0.1886 | 4.0 | 176 | 0.1882 | 0.9699 | | 0.1931 | 5.0 | 220 | 0.1824 | 0.9699 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Waleed-bin-Qamar/ConvNext-For-Covid-Classification
41e33d9daf4481ca75aec8a99986c0b3dcd97f43
2022-06-14T11:14:27.000Z
[ "pytorch", "convnext", "image-classification", "transformers", "license:afl-3.0" ]
image-classification
false
Waleed-bin-Qamar
null
Waleed-bin-Qamar/ConvNext-For-Covid-Classification
0
null
transformers
38,129
--- license: afl-3.0 ---
sdugar/cross-en-de-fr-xlmr-768d-sentence-transformer
c2c60c8b610be019fff69ce80f5b4f19d0d59bd4
2022-06-15T06:40:04.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
sdugar
null
sdugar/cross-en-de-fr-xlmr-768d-sentence-transformer
0
null
transformers
38,130
--- license: mit ---
lmqg/t5-small-squadshifts-new_wiki
a0b198126757cf64b66231f6227691a9d49cf705
2022-06-14T10:33:35.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-new_wiki
0
null
transformers
38,131
Entry not found
lmqg/t5-small-squadshifts-amazon
998ff2b330fe510b89b261a0a390a844ba7bf2bf
2022-06-14T10:38:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-amazon
0
null
transformers
38,132
Entry not found
sdugar/test
9d36bbf943618db48ca68cbe2f877a9783cd97e3
2022-06-14T10:45:34.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
sdugar
null
sdugar/test
0
null
transformers
38,133
--- license: mit ---
huggingtweets/iamekagra
161c2257e78b20d2d4946fc1e562d4576caab581
2022-06-14T11:39:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/iamekagra
0
null
transformers
38,134
--- language: en thumbnail: http://www.huggingtweets.com/iamekagra/1655206726797/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1436804952119132162/47MeY1N1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ekagra Sinha</div> <div style="text-align: center; font-size: 14px;">@iamekagra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ekagra Sinha. | Data | Ekagra Sinha | | --- | --- | | Tweets downloaded | 487 | | Retweets | 69 | | Short tweets | 69 | | Tweets kept | 349 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ceh71sg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamekagra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rf0li8b0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rf0li8b0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamekagra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/duckybhai
47a05932f28c79ee9ecbc4de7fb36b24681be3f7
2022-06-14T11:44:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/duckybhai
0
null
transformers
38,135
--- language: en thumbnail: http://www.huggingtweets.com/duckybhai/1655207092084/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1494814887410909195/1_cZ1OGN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Saad Ur Rehman</div> <div style="text-align: center; font-size: 14px;">@duckybhai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Saad Ur Rehman. | Data | Saad Ur Rehman | | --- | --- | | Tweets downloaded | 2045 | | Retweets | 158 | | Short tweets | 233 | | Tweets kept | 1654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e0w83ypv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @duckybhai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tc4ee4o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tc4ee4o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/duckybhai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/imrankhanpti
8ba96dcb73b6110e22f62440d3a7d89b430efb07
2022-06-14T12:28:35.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/imrankhanpti
0
null
transformers
38,136
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526278959746392069/t3sMBz94_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Imran Khan</div> <div style="text-align: center; font-size: 14px;">@imrankhanpti</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Imran Khan. | Data | Imran Khan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 28 | | Short tweets | 8 | | Tweets kept | 3214 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s8u3tpn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imrankhanpti's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/g9j8i8kg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/g9j8i8kg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imrankhanpti') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mgtoxd/wav2vec2test
3331578689a38133a54cc8071249bc25e5979e0f
2022-06-14T14:48:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mgtoxd
null
mgtoxd/wav2vec2test
0
null
transformers
38,137
Entry not found
huggingtweets/lukaesch
56b24ee7b0e767631d18882d7f8ad42e835ce688
2022-06-14T16:33:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lukaesch
0
null
transformers
38,138
--- language: en thumbnail: http://www.huggingtweets.com/lukaesch/1655224388749/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/635525362471038977/hSfNBIhy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lukas (SoTrusty.com) 🌎</div> <div style="text-align: center; font-size: 14px;">@lukaesch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lukas (SoTrusty.com) 🌎. | Data | Lukas (SoTrusty.com) 🌎 | | --- | --- | | Tweets downloaded | 1051 | | Retweets | 326 | | Short tweets | 60 | | Tweets kept | 665 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v5uo1xq4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lukaesch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31s1ya5a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31s1ya5a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lukaesch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ndaheim/cima_joint_model
ad6c1a6e5819c196fd90f65004936456e248c5a0
2022-06-14T17:13:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ndaheim
null
ndaheim/cima_joint_model
0
null
transformers
38,139
Entry not found
mcalcagno/mcd101-finedtuned-roberta-xnli
349dd648e1717aada151734ee8c90a9c6b6881ac
2022-06-14T17:41:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mcalcagno
null
mcalcagno/mcd101-finedtuned-roberta-xnli
0
null
transformers
38,140
Entry not found
kravchenko/uk-mt5-base-gec-tokenized
381c5aa038dd1d5903dba8ec77f0f0632d29020a
2022-06-14T20:31:16.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-base-gec-tokenized
0
null
transformers
38,141
Entry not found
nateraw/koala-panda-wombat
3d16d91577b4cc716027007254bf9bb99f384cd2
2022-06-14T20:31:04.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/koala-panda-wombat
0
null
transformers
38,142
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: koala-panda-wombat results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9850746393203735 --- # koala-panda-wombat Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### koala ![koala](images/koala.jpg) #### panda ![panda](images/panda.jpg) #### wombat ![wombat](images/wombat.jpg)
geronimo/RobertaBNE23
92fde9cf4a14aecdeed8ed1f606703a5af5d974c
2022-06-14T20:53:46.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
geronimo
null
geronimo/RobertaBNE23
0
null
transformers
38,143
Entry not found
huggingtweets/rangersfc
f6706468764c53493cc056347049aa39a7aaee7f
2022-06-14T20:58:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rangersfc
0
null
transformers
38,144
--- language: en thumbnail: http://www.huggingtweets.com/rangersfc/1655240322192/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513529336107839491/OQuphidQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rangers Football Club</div> <div style="text-align: center; font-size: 14px;">@rangersfc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rangers Football Club. | Data | Rangers Football Club | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 315 | | Short tweets | 338 | | Tweets kept | 2597 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3150wqc2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rangersfc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bzvo1hp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bzvo1hp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rangersfc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mcalcagno/mcd101-finedtuned-recognaibert-xnli
8ea8d7667ff2ccbf37498e072aaa09fde25376ce
2022-06-14T22:14:24.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
mcalcagno
null
mcalcagno/mcd101-finedtuned-recognaibert-xnli
0
null
transformers
38,145
Entry not found
lmqg/t5-base-squadshifts-new_wiki
13c68e3c881f0676a961795cbc5a66ca7a282407
2022-06-15T00:00:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-new_wiki
0
null
transformers
38,146
Entry not found
lmqg/t5-base-squadshifts-nyt
d79e5f0cf6d7039b2fc7864696a61f63d06e3ceb
2022-06-15T00:03:05.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-nyt
0
null
transformers
38,147
Entry not found
steven123/Teeth_B
d5e5b89568da3988b303885b94dbbb60534c3177
2022-06-15T00:31:50.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
steven123
null
steven123/Teeth_B
0
null
transformers
38,148
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Teeth_B results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6800000071525574 --- # Teeth_B Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
phunc/t5-small-finetuned-xsum
c84b0833663721b8db58392fee40d5557239329e
2022-06-15T07:18:50.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
phunc
null
phunc/t5-small-finetuned-xsum
0
null
transformers
38,149
Entry not found
mgtoxd/tsttst
e320939176933d28c32d6af787ea32f21fbd7307
2022-06-15T13:19:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mgtoxd
null
mgtoxd/tsttst
0
null
transformers
38,150
Entry not found
shurafa16/opus-mt-ar-en-finetuned-ar-to-en
f4e3d1bb1a8662f0e9d73ef14413eb7af5c71403
2022-06-18T14:11:53.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:news_commentary", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
shurafa16
null
shurafa16/opus-mt-ar-en-finetuned-ar-to-en
0
null
transformers
38,151
--- license: apache-2.0 tags: - generated_from_trainer datasets: - news_commentary metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: news_commentary type: news_commentary args: ar-en metrics: - name: Bleu type: bleu value: 32.8872 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Bleu: 32.8872 - Gen Len: 56.084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 188 | 0.7407 | 30.7259 | 56.296 | | No log | 2.0 | 376 | 0.6927 | 32.2038 | 58.602 | | 0.8066 | 3.0 | 564 | 0.6898 | 33.1091 | 57.72 | | 0.8066 | 4.0 | 752 | 0.6925 | 33.0842 | 56.574 | | 0.8066 | 5.0 | 940 | 0.6933 | 32.8872 | 56.084 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
winson/distilbert-base-uncased-finetuned-imdb-accelerate
e671d13fce19a8e976e636af2d76915e8e638bcb
2022-06-25T13:10:32.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
winson
null
winson/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
38,152
Entry not found
flyswot/test2
1a1a1386da9dea81029e16071651cda3abeabb1c
2022-06-15T15:49:17.000Z
[ "pytorch", "convnext", "image-classification", "transformers", "generated_from_trainer", "model-index" ]
image-classification
false
flyswot
null
flyswot/test2
0
null
transformers
38,153
--- tags: - generated_from_trainer model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [flyswot/convnext-tiny-224_flyswot](https://huggingface.co/flyswot/convnext-tiny-224_flyswot) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.1 | 23 | 0.1128 | 0.9787 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
xin811/dummy-t5-small-finetuned-en-zh
8f1a83be43f853afc97dee8f3ca39c5b7ac59077
2022-06-15T13:47:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xin811
null
xin811/dummy-t5-small-finetuned-en-zh
0
null
transformers
38,154
Entry not found
ouiame/T5_mlsum
795d06f64dd84bb086ffee897152ab58573a2754
2022-06-16T05:31:30.000Z
[ "pytorch", "mt5", "text2text-generation", "fr", "dataset:ouiame/autotrain-data-trainproject", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ouiame
null
ouiame/T5_mlsum
0
null
transformers
38,155
--- tags: autotrain language: fr widget: - text: "I love AutoTrain πŸ€—" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 976.8219757938544 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232789 - CO2 Emissions (in grams): 976.8219757938544 ## Validation Metrics - Loss: 1.7047555446624756 - Rouge1: 20.2108 - Rouge2: 7.8633 - RougeL: 16.9554 - RougeLsum: 17.3178 - Gen Len: 18.9874 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232789 ```
income/jpq-gpl-dbpedia-entity-document_encoder-base-msmarco-distilbert-tas-b
71ba1b044acf7b842dfbe2cfd91b971a11a28edd
2022-06-15T17:08:10.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-dbpedia-entity-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,156
--- license: apache-2.0 ---
income/jpq-gpl-fever-question_encoder-base-msmarco-distilbert-tas-b
e07b38ac708d8146775fa5be19b8d14ad72f85c0
2022-06-15T17:08:46.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-fever-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,157
--- license: apache-2.0 ---
income/jpq-gpl-fever-document_encoder-base-msmarco-distilbert-tas-b
122c12b86bcec5e0ae27977a6e40e0eea55d25b1
2022-06-15T17:10:19.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-fever-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,158
--- license: apache-2.0 ---
income/jpq-gpl-hotpotqa-document_encoder-base-msmarco-distilbert-tas-b
a9af1edeea3c5e8ee61edc9d9a0d3754e58073a6
2022-06-15T17:18:18.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-hotpotqa-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,159
--- license: apache-2.0 ---
income/jpq-gpl-quora-document_encoder-base-msmarco-distilbert-tas-b
9764717bcaf6998087032cb7fd6eab8438eca968
2022-06-15T17:32:42.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-quora-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,160
--- license: apache-2.0 ---
income/jpq-gpl-robust04-question_encoder-base-msmarco-distilbert-tas-b
2bc8b96125b944fb76c9a0c03ef632320549ed27
2022-06-15T17:33:15.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-robust04-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,161
--- license: apache-2.0 ---
huggingtweets/_mohamads
656fc6298ab310b3d7aacac55af0f5c5b31da3f9
2022-06-15T17:37:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/_mohamads
0
null
transformers
38,162
--- language: en thumbnail: http://www.huggingtweets.com/_mohamads/1655314541919/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522920330960027648/Z5piAxnG_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🧬 Ω…Ψ­Ω…Ψ― Ψ§Ω„Ψ²Ω‡Ψ±Ψ§Ω†ΩŠ</div> <div style="text-align: center; font-size: 14px;">@_mohamads</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🧬 Ω…Ψ­Ω…Ψ― Ψ§Ω„Ψ²Ω‡Ψ±Ψ§Ω†ΩŠ. | Data | 🧬 Ω…Ψ­Ω…Ψ― Ψ§Ω„Ψ²Ω‡Ψ±Ψ§Ω†ΩŠ | | --- | --- | | Tweets downloaded | 1108 | | Retweets | 75 | | Short tweets | 90 | | Tweets kept | 943 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y8wg10zm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_mohamads's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jm1spua) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jm1spua/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_mohamads') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
income/jpq-gpl-robust04-document_encoder-base-msmarco-distilbert-tas-b
37ae74036461e78d70a848e1cfeb8f1fe8101986
2022-06-15T17:34:22.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-robust04-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,163
--- license: apache-2.0 ---
income/jpq-gpl-scifact-question_encoder-base-msmarco-distilbert-tas-b
46eb424a137ad025c67fd70f1db63a3660a1db32
2022-06-15T17:37:16.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-scifact-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,164
--- license: apache-2.0 ---
income/jpq-gpl-signal1m-question_encoder-base-msmarco-distilbert-tas-b
2a1b94cf078a357eb92a632fcc63e0e292fed97e
2022-06-15T17:39:14.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-signal1m-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,165
--- license: apache-2.0 ---
income/jpq-gpl-signal1m-document_encoder-base-msmarco-distilbert-tas-b
60c4c3e53c8a30907b499fa224be31e3f5de5d0d
2022-06-15T17:42:28.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-signal1m-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,166
--- license: apache-2.0 ---
income/jpq-gpl-trec-covid-document_encoder-base-msmarco-distilbert-tas-b
c58b63cbb75783de7594fc08909227961a13836f
2022-06-15T17:43:34.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-trec-covid-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,167
--- license: apache-2.0 ---
lmqg/t5-large-squadshifts-new_wiki
191bb8eb51e2138b616da80b695c066888351ca3
2022-06-16T03:47:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-new_wiki
0
null
transformers
38,168
Entry not found
kcarnold/inquisitive2
d90e688bfa08040454d6c785b43f75c83a02f7e1
2022-06-15T19:55:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
kcarnold
null
kcarnold/inquisitive2
0
null
transformers
38,169
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: inquisitive2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # inquisitive2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.3.0 - Tokenizers 0.12.1
liux3790/autotrain-journals-covid-990032813
38860543b33056598fc3ee233170c8525c00aa2c
2022-06-15T19:09:50.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:liux3790/autotrain-data-journals-covid", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
liux3790
null
liux3790/autotrain-journals-covid-990032813
0
null
transformers
38,170
huggingtweets/yemeen
6961464c661d0d1f22c778196c8841934e78f4fe
2022-06-15T21:27:04.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/yemeen
0
null
transformers
38,171
--- language: en thumbnail: http://www.huggingtweets.com/yemeen/1655328324400/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438226079030947845/pwH4SUlU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">π•π•–π•žπ•–π•–π•Ÿ</div> <div style="text-align: center; font-size: 14px;">@yemeen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from π•π•–π•žπ•–π•–π•Ÿ. | Data | π•π•–π•žπ•–π•–π•Ÿ | | --- | --- | | Tweets downloaded | 2911 | | Retweets | 1038 | | Short tweets | 198 | | Tweets kept | 1675 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3it77r2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yemeen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39fvs51l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39fvs51l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yemeen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
income/jpq-gpl-trec-news-document_encoder-base-msmarco-distilbert-tas-b
cf589b23a8e9e94e3d3e1b67d0db05ef0e307a7e
2022-06-15T21:53:59.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-trec-news-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,172
--- license: apache-2.0 ---
income/jpq-gpl-webis-touche2020-question_encoder-base-msmarco-distilbert-tas-b
ddbc62a6fa654a98930b40ef94842c93621ca826
2022-06-15T21:54:42.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-webis-touche2020-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,173
--- license: apache-2.0 ---
income/jpq-genq-arguana-document_encoder-base-msmarco-distilbert-tas-b
858475f3c91184a9c8fa12c301a45a840673350d
2022-06-15T21:58:21.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-arguana-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,174
--- license: apache-2.0 ---
income/jpq-genq-trec-news-question_encoder-base-msmarco-distilbert-tas-b
c0fe5f6212f26c6018d42a01c11197db31defce7
2022-06-15T21:58:49.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-trec-news-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,175
--- license: apache-2.0 ---
income/jpq-genq-trec-news-document_encoder-base-msmarco-distilbert-tas-b
dec697141e0122247c241a4eda5e6627c83f678d
2022-06-15T21:59:20.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-trec-news-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,176
--- license: apache-2.0 ---
income/jpq-genq-fever-document_encoder-base-msmarco-distilbert-tas-b
3e1341cd91621512b4b4c8fc3d972316db31ff7c
2022-06-15T22:05:11.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-fever-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,177
--- license: apache-2.0 ---
income/jpq-genq-fiqa-question_encoder-base-msmarco-distilbert-tas-b
c05f1995f342847e4125f9e9a9974002902ae1b5
2022-06-15T22:06:17.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-fiqa-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,178
--- license: apache-2.0 ---
income/jpq-genq-nq-document_encoder-base-msmarco-distilbert-tas-b
ecf3a134aa1a6bf4e764b95d2b5eb520cb95072b
2022-06-15T22:33:31.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-nq-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,179
--- license: apache-2.0 ---
income/jpq-genq-robust04-question_encoder-base-msmarco-distilbert-tas-b
f3eb85c1793891857737857bac267bd99d5f54ea
2022-06-15T22:47:31.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-robust04-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,180
--- license: apache-2.0 ---
income/jpq-genq-robust04-document_encoder-base-msmarco-distilbert-tas-b
e4fb83af6aa9d64099ce7258e71721c98d9f1996
2022-06-15T22:48:04.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-robust04-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,181
--- license: apache-2.0 ---
income/jpq-genq-scifact-question_encoder-base-msmarco-distilbert-tas-b
3b94da5682b523e5928d982e7d8667e49f4b0cd2
2022-06-15T22:49:37.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-scifact-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,182
--- license: apache-2.0 ---
huggingtweets/hotdogsladies
c82eaea6774869d6b5e611a36fa717254b8504ea
2022-06-15T23:01:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hotdogsladies
0
null
transformers
38,183
--- language: en thumbnail: http://www.huggingtweets.com/hotdogsladies/1655334112277/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474526156430798849/0Z_zfYqH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Merlin Mann</div> <div style="text-align: center; font-size: 14px;">@hotdogsladies</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Merlin Mann. | Data | Merlin Mann | | --- | --- | | Tweets downloaded | 314 | | Retweets | 41 | | Short tweets | 48 | | Tweets kept | 225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/epnyc8a1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotdogsladies's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bjnvmjn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bjnvmjn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotdogsladies') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/skysports
253cd8e09402a83c171443967cdeb17a363a1bbd
2022-06-15T23:05:03.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/skysports
0
null
transformers
38,184
--- language: en thumbnail: http://www.huggingtweets.com/skysports/1655334298376/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483397012657688577/19JEENoX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sky Sports</div> <div style="text-align: center; font-size: 14px;">@skysports</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sky Sports. | Data | Sky Sports | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 720 | | Short tweets | 21 | | Tweets kept | 2509 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m4jcaji/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @skysports's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4psw7x27) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4psw7x27/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/skysports') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kravchenko/uk-mt5-large-gec-tokenized
ea3448561272e1fcaba7590d084c3f6c7b2760dd
2022-06-15T23:32:14.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-large-gec-tokenized
0
null
transformers
38,185
Entry not found
huggingtweets/pronewchaos
af96dbb4e11e39a7207e173773f60c1f5395ff1a
2022-06-16T04:13:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pronewchaos
0
null
transformers
38,186
--- language: en thumbnail: http://www.huggingtweets.com/pronewchaos/1655352793305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519208550865653760/gxiNIWdv_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Saitoshi Nanomoto πŸŒ‘βš›οΈπŸŸ₯</div> <div style="text-align: center; font-size: 14px;">@pronewchaos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Saitoshi Nanomoto πŸŒ‘βš›οΈπŸŸ₯. | Data | Saitoshi Nanomoto πŸŒ‘βš›οΈπŸŸ₯ | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 18 | | Short tweets | 617 | | Tweets kept | 2615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b2f6bkt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pronewchaos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lho9s4n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lho9s4n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pronewchaos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/acai28
5bf8bf83d7bc931c8c5fa616841d2c72fb0da05d
2022-06-16T03:39:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/acai28
0
null
transformers
38,187
--- language: en thumbnail: http://www.huggingtweets.com/acai28/1655350773093/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1527251112604184576/3dKVjGwK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">alec</div> <div style="text-align: center; font-size: 14px;">@acai28</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from alec. | Data | alec | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 165 | | Short tweets | 488 | | Tweets kept | 2592 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rd31m5h3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @acai28's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w8y3ix5h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w8y3ix5h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/acai28') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jhliu/ClinicalNoteBERT-base-uncased-NTD-MIMIC-segment
4ca0f1b96c50615052cc0279ad29f3d7113a5828
2022-06-16T04:22:15.000Z
[ "pytorch", "bert", "transformers" ]
null
false
jhliu
null
jhliu/ClinicalNoteBERT-base-uncased-NTD-MIMIC-segment
0
null
transformers
38,188
Entry not found
Rakesh111/hindi_model
8ef93aec6d2f3077a04317f7bc2b5853f91371b1
2022-06-16T07:05:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Rakesh111
null
Rakesh111/hindi_model
0
null
transformers
38,189
sayanmandal/t5-small_6_3-hi_en-en_mix
2d0a952450dbe8674f65f88501c324ed5dc254ed
2022-06-16T14:54:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sayanmandal
null
sayanmandal/t5-small_6_3-hi_en-en_mix
0
null
transformers
38,190
Entry not found
huggingtweets/minusgn
053884b36a36f6cbc3074522f8a3cd110a93ba1a
2022-06-16T09:01:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/minusgn
0
null
transformers
38,191
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1081285419512127488/Mkb9FgN3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Isak Vik</div> <div style="text-align: center; font-size: 14px;">@minusgn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Isak Vik. | Data | Isak Vik | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 190 | | Short tweets | 550 | | Tweets kept | 2482 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dy32g00/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @minusgn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3njlvz02) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3njlvz02/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/minusgn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ndaheim/cima_ungrounded_joint_model
8ad164dd0f6f7712080f614c36469cff0f476895
2022-06-16T09:29:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ndaheim
null
ndaheim/cima_ungrounded_joint_model
0
null
transformers
38,192
Entry not found
anuragiiser/convnext-tiny-finetuned-mri
d5dcdeca0dffcce0ba8e063ffcad59affeb32598
2022-06-28T09:53:31.000Z
[ "pytorch", "convnext", "image-classification", "transformers" ]
image-classification
false
anuragiiser
null
anuragiiser/convnext-tiny-finetuned-mri
0
null
transformers
38,193
philmunz/poc_dl
cc4b3d77874b7deee3980227bec6ec977d699018
2022-06-16T14:32:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
philmunz
null
philmunz/poc_dl
0
null
transformers
38,194
Entry not found
huggingtweets/basilhalperin-ben_golub-tylercowen
9bb4e000b2208d21132bba7379a15f14d32051a3
2022-06-16T17:09:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/basilhalperin-ben_golub-tylercowen
0
null
transformers
38,195
--- language: en thumbnail: http://www.huggingtweets.com/basilhalperin-ben_golub-tylercowen/1655399323629/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483290763056320512/oILN7yPo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1043847779355897857/xyZk8v-m_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1284936824075550723/ix2eGZd7_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tylercowen & Basil Halperin & Ben Golub πŸ‡ΊπŸ‡¦</div> <div style="text-align: center; font-size: 14px;">@basilhalperin-ben_golub-tylercowen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tylercowen & Basil Halperin & Ben Golub πŸ‡ΊπŸ‡¦. | Data | tylercowen | Basil Halperin | Ben Golub πŸ‡ΊπŸ‡¦ | | --- | --- | --- | --- | | Tweets downloaded | 2642 | 1024 | 3247 | | Retweets | 2065 | 80 | 1009 | | Short tweets | 43 | 60 | 390 | | Tweets kept | 534 | 884 | 1848 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4x0ck2xi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @basilhalperin-ben_golub-tylercowen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/basilhalperin-ben_golub-tylercowen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
income/jpq-genq-signal1m-question_encoder-base-msmarco-distilbert-tas-b
1d75ae8ae6d83decea0d7407e566a201b78e37fc
2022-06-16T17:45:36.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-signal1m-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,196
--- license: apache-2.0 ---
income/jpq-genq-signal1m-document_encoder-base-msmarco-distilbert-tas-b
2c0a9fa150723063b5990ca7fba0ffb4b20950ad
2022-06-16T17:46:02.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-signal1m-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,197
--- license: apache-2.0 ---
income/jpq-genq-trec-covid-question_encoder-base-msmarco-distilbert-tas-b
5c2de9edaf2e5a8aedb9c5025892dd964e2a806d
2022-06-16T17:46:35.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-trec-covid-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,198
--- license: apache-2.0 ---
income/jpq-genq-trec-covid-document_encoder-base-msmarco-distilbert-tas-b
1a4d6d3c793db42d2bc71627d39685d4fd25ec5a
2022-06-16T17:47:01.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-trec-covid-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,199
--- license: apache-2.0 ---