File size: 3,255 Bytes
fcc0222
 
 
 
 
ef0f90a
fcc0222
 
 
 
 
 
 
ef0f90a
 
fcc0222
243fc1f
 
de8bb50
ef0f90a
de8bb50
 
243fc1f
 
 
 
fcc0222
73fd2fd
 
38b692a
f2ad4e1
 
9c15515
f2ad4e1
73fd2fd
 
 
38b692a
3e28a50
fcc0222
 
38b692a
de8bb50
38b692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8bb50
243fc1f
 
0cef317
 
 
 
 
 
 
38b692a
243fc1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
pretty_name: retspraksis (Danish legal information)
language:
  - da
license: cc0-1.0
license_name: CC-0
size_categories:
  - 1-10k
task_categories:
  - text-generation
  - fill-mask
task_ids:
  - language-modeling
source_datasets:
  - danish-foundation-models/danish-gigaword
---
# Dataset Card for retspraksis 

<!-- START-SHORT DESCRIPTION -->
Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis).
<!-- END-SHORT DESCRIPTION -->


It encompasses the body of legal decisions made by Danish courts, which play a significant role in interpreting and applying the law.


## Dataset Description


<!-- START-DESC-STATS -->
- **Language**: dan, dansk, Danish
- **Number of samples**: 4.41K
- **Number of tokens (Llama 3)**: 57.08M
- **Average document length (characters)**: 46323.67
<!-- END-DESC-STATS -->



## Dataset Structure
An example from the dataset looks as follows.


<!-- START-SAMPLE -->
```py
{
  "text": "                             højesterets dom\n                        afsagt torsdag den 6. december [...]",
  "source": "retspraksis",
  "id": "retspraksis_517",
  "added": "2020-09-24",
  "created": "2000-01-01, 2022-01-01",
  "license": "Creative Commons Legal Code\n\nCC0 1.0 Universal",
  "domain": "Legal",
  "metadata": {
    "source-pretty": "retspraksis (Danish legal information)"
  }
}
```

### Data Fields

An entry in the dataset consists of the following fields:

- `text`(`str`): The content of the document.
- `source` (`str`): The source of the document (see [Source Data](#source-data)).
- `id` (`str`): An unique identifier for each document.
- `added` (`str`): An date for when the document was added to this collection.
- `created` (`str`): An date range for when the document was originally created.
- `license` (`str`): The license of the document. The licenses vary according to the source. 
- `domain` (`str`): The domain of the source
- `metadata/source-pretty` (`str`): The long form version of the short-form source name
- `metadata/*`: Potentially additional metadata
<!-- END-SAMPLE -->


### Dataset Statistics

<!-- START-DATASET PLOTS -->
<img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" />
<img>
<!-- END-DATASET PLOTS -->


## Additional Information


### Citation Information

This dataset was initially published as part of the [Danish gigaword](https://huggingface.co/danish-foundation-models). We recommend that you cite and reference it if you use this dataset:

> Derczynski, L., Ciosici, M. R., et al. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021).

```bash
@inproceedings{dagw,
 title = {{The Danish Gigaword Corpus}},
 author = {Leon Derczynski and Manuel R. Ciosici and Rebekah Baglini and Morten H. Christiansen and Jacob Aarup Dalsgaard and Riccardo Fusaroli and Peter Juel Henrichsen and Rasmus Hvingelby and Andreas Kirkedal and Alex Speed Kjeldsen and Claus Ladefoged and Finn Årup Nielsen and Jens Madsen and Malte Lau Petersen and Jonathan Hvithamar Rystrøm and Daniel Varab},
 year = 2021,
 booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics},
 publisher = {NEALT}
}
```