jeebench / inference.py
daman1209arora's picture
Upload 3 files
8ce189e
import os
from tqdm import tqdm
import json
import os
import openai
from tqdm import tqdm
import argparse
import multiprocessing
from copy import deepcopy
from functools import partial
prompt_library = {
"MCQ": "In this problem, only one option will be correct. Give a detailed solution and end the solution with the final answer.",
"MCQ(multiple)": "In this problem, multiple options can be correct. Give a detailed solution and end the solution with the final answer.",
"Integer": "In this problem, the final answer will be a non-negative integer. Give a detailed solution and end the solution with the final answer.",
"Numeric": "In this problem, the final will be a numeric value. Give the numerical answer correct upto the 2nd decimal digit. Give a detailed solution and end the solution with the final answer.",
}
few_shot_examples = json.load(open('data/few_shot_examples.json'))
def write_in_file(response_file, response_dict, question, mode, model_nickname):
if os.path.exists(response_file):
with open(response_file, 'r') as infile:
responses = json.load(infile)
else:
responses = []
found = False
for i, old_resp in enumerate(responses):
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']:
responses[i][f"{model_nickname}_{mode}_response" ] = response_dict[f"{model_nickname}_{mode}_response"]
found = True
break
if not found:
responses.append(response_dict)
json.dump(sorted(responses, key=lambda elem: (elem['description'], elem['index'])), open(response_file, 'w'), indent=4)
print(f"####UPDATED {response_file}, Current size : {len(responses)}####")
def get_response(question,model, model_nickname, mode, response_file, lock):
response_dict = deepcopy(question)
prefix_prompt = prompt_library[question['type']]
suffix_prompt = ""
if mode in ['CoT', 'CoT+SC', 'CoT+Exam'] :
suffix_prompt = "Let's think step by step.\n"
ques = question["question"]
stripped_ques = ques.replace("\n\n", "\n").strip()
if mode in ['CoT+OneShot', 'CoT', 'CoT+SC', 'CoT+Exam']:
if mode == 'CoT+Exam':
if response_dict['type'] in ['MCQ', 'MCQ(multiple)']:
if response_dict['type'] == 'MCQ':
exam_prompt = "If the answer is wrong, you'll be given -1 marks. If the answer is correct, you'll be given +3 marks. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks."
else:
exam_prompt = "If any of the options in the final answer is wrong, you'll be given -2 marks. If all the options are correct, you'll be given +4 marks. If some of the options are correct, you'll be given +1 for each correct option. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks."
prompt = prefix_prompt + " " + exam_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt
else:
print("No point doing this for Numeric/Integer questions since there is no negative marking...")
breakpoint()
else:
if mode == 'CoT+OneShot':
ex = few_shot_examples[question['subject']][question['type']]
prompt = prefix_prompt + "\n\n" + "Problem: " + ex['problem'] + "\nSolution: " + ex['solution'] + "\n\n" + "Problem: " + stripped_ques + "\nSolution: "
else:
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt
else:
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + suffix_prompt
prompt = prompt.strip()
response_dict[f"prompt"] = prompt
num_retries = 0
print(f'Question: {question["description"]}, Index: {question["index"]}, Model: {model_nickname}, Mode: {mode}, query begins')
while True:
try:
if model in ["text-davinci-003", "text-davinci-002", 'davinci-002']:
response = openai.Completion.create(
model=model,
prompt=prompt,
max_tokens=2048,
temperature=0 if mode in ['CoT', 'normal', 'CoT+Exam'] else 0.5,
n=1 if mode in ['CoT', 'normal', 'CoT+Exam'] else 3
)
else:
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": ""},
{"role": "user", "content": prompt}
],
max_tokens=2048,
temperature=0 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 0.5,
n=1 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 8
)
lock.acquire()
response_dict[f"{model_nickname}_{mode}_response"] = response
write_in_file(response_file, response_dict, question, mode, model_nickname)
lock.release()
break
except Exception as e:
num_retries += 1
print("Failure!", e)
return
def main():
'''
The code can restart from the already done questions in case there is a failure midpoint.
'''
args = argparse.ArgumentParser()
args.add_argument('--model', default='gpt-3.5-turbo')
args.add_argument('--data', default='data/dataset.json')
args.add_argument('--mode', default='normal')
args.add_argument('--num_procs', default=1, type=int)
args.add_argument('--max_questions', default=1, type=int)
args = args.parse_args()
openai.organization = os.getenv("OPENAI_ORG")
openai.api_key = os.getenv("OPENAI_API_KEY")
model_nickname = {
"davinci-002": "davinci-002",
"text-davinci-003": "GPT3",
"gpt-3.5-turbo": "GPT3.5",
"gpt-4-0613": "GPT4_0613",
"gpt-4-0314": "GPT4"
}
assert args.model in model_nickname.keys()
assert args.mode in ['normal', 'CoT', 'CoT+OneShot', 'CoT+Exam', 'CoT+SC']
out_file_dir = f'responses/{model_nickname[args.model]}_{args.mode}_responses'
out_file = os.path.join(out_file_dir, 'responses.json')
questions = json.load(open(args.data))
rem_ques = []
if os.path.exists(out_file):
for question in tqdm(questions[:args.max_questions]):
if os.path.exists(out_file):
with open(out_file, 'r') as infile:
responses = json.load(infile)
found = False
for i, old_resp in enumerate(responses):
if question['type'] in ['Numeric', 'Integer'] and args.mode == 'CoT+Exam':
found = True
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']:
found = all([old_resp.get(
f"{model_nickname[args.model]}_{args.mode}_response", False) for model in [args.model]])
if found:
print("This question has already been done")
else:
rem_ques.append(question)
else:
os.makedirs(out_file_dir, exist_ok=True)
if args.mode == 'CoT+Exam':
rem_ques = []
for q in questions:
if q['type'] in ['MCQ', 'MCQ(multiple)']:
rem_ques.append(q)
else:
rem_ques = questions[:args.max_questions]
print(f"There are {len(rem_ques)} problems remaining")
manager = multiprocessing.Manager()
lock = manager.Lock()
pool = multiprocessing.Pool(args.num_procs)
f = partial(get_response, model=args.model, model_nickname=model_nickname[args.model], mode=args.mode, response_file=out_file, lock=lock)
pool.map(f, rem_ques)
if __name__ == '__main__':
main()