Upload build_dataset.py
Browse files- build_dataset.py +148 -0
build_dataset.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@InProceedings{huggingface:dataset,
|
25 |
+
title = {Ember2018},
|
26 |
+
author=Christian Williams
|
27 |
+
},
|
28 |
+
year={2023}
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
This dataset is from the EMBER 2018 Malware Analysis dataset
|
34 |
+
"""
|
35 |
+
_HOMEPAGE = "https://github.com/elastic/ember"
|
36 |
+
_LICENSE = ""
|
37 |
+
_URLS = {
|
38 |
+
"text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/"
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class EMBERConfig(datasets.GeneratorBasedBuilder):
|
43 |
+
VERSION = datasets.Version("1.1.0")
|
44 |
+
BUILDER_CONFIGS = [
|
45 |
+
datasets.BuilderConfig(
|
46 |
+
name="text_classification",
|
47 |
+
version=VERSION, description="This part of my dataset covers text classification"
|
48 |
+
)
|
49 |
+
]
|
50 |
+
|
51 |
+
DEFAULT_CONFIG_NAME = "text_classification"
|
52 |
+
|
53 |
+
def _info(self):
|
54 |
+
if self.config.name == "text_classification":
|
55 |
+
features = datasets.Features(
|
56 |
+
{
|
57 |
+
"input": datasets.Value("string"),
|
58 |
+
"label": datasets.Value("string"),
|
59 |
+
"x": datasets.features.Sequence(
|
60 |
+
datasets.Value("float32")
|
61 |
+
),
|
62 |
+
"y": datasets.Value("float32"),
|
63 |
+
"appeared": datasets.Value("string"),
|
64 |
+
"avclass": datasets.Value("string"),
|
65 |
+
"subset": datasets.Value("string"),
|
66 |
+
"sha256": datasets.Value("string")
|
67 |
+
}
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
features = datasets.Features(
|
71 |
+
{
|
72 |
+
"input": datasets.Value("string"),
|
73 |
+
"label": datasets.Value("string"),
|
74 |
+
"x": datasets.features.Sequence(
|
75 |
+
datasets.Value("float32")
|
76 |
+
),
|
77 |
+
"y": datasets.Value("float32"),
|
78 |
+
"appeared": datasets.Value("string"),
|
79 |
+
"avclass": datasets.Value("string"),
|
80 |
+
"subset": datasets.Value("string"),
|
81 |
+
"sha256": datasets.Value("string")
|
82 |
+
}
|
83 |
+
)
|
84 |
+
return datasets.DatasetInfo(
|
85 |
+
description=_DESCRIPTION,
|
86 |
+
features=features,
|
87 |
+
homepage=_HOMEPAGE,
|
88 |
+
license=_LICENSE,
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
urls = _URLS[self.config.name]
|
94 |
+
data_dir = dl_manager.download_and_extract(urls)
|
95 |
+
return [
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name=datasets.Split.TRAIN,
|
98 |
+
gen_kwargs={
|
99 |
+
"filepaths": os.path.join(data_dir, "ember2018_train_*.jsonl"),
|
100 |
+
"split": "train",
|
101 |
+
},
|
102 |
+
),
|
103 |
+
# datasets.SplitGenerator(
|
104 |
+
# name=datasets.Split.VALIDATION,
|
105 |
+
# gen_kwargs={
|
106 |
+
# "filepaths": os.path.join(data_dir, "*_valid_*.jsonl"),
|
107 |
+
# "split": "valid",
|
108 |
+
# },
|
109 |
+
# ),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TEST,
|
112 |
+
gen_kwargs={
|
113 |
+
"filepaths": os.path.join(data_dir, "ember2018_test_*.jsonl"),
|
114 |
+
"split": "test"
|
115 |
+
},
|
116 |
+
)
|
117 |
+
]
|
118 |
+
|
119 |
+
|
120 |
+
def _generate_examples(self, filepaths, split):
|
121 |
+
key = 0
|
122 |
+
for id, filepath in enumerate(filepaths[split]):
|
123 |
+
with open(filepath[id], encoding="utf-8") as f:
|
124 |
+
data_list = json.load(f)
|
125 |
+
for data in data_list:
|
126 |
+
key += 1
|
127 |
+
if self.config.name == "text_classification":
|
128 |
+
yield key, {
|
129 |
+
"input": data["input"],
|
130 |
+
"label": data["label"],
|
131 |
+
"x": data["x"],
|
132 |
+
"y": data["y"],
|
133 |
+
"appeared": data["appeared"],
|
134 |
+
"avclass": data["avclass"],
|
135 |
+
"subset": data["subset"],
|
136 |
+
"sha256": data["sha256"]
|
137 |
+
}
|
138 |
+
else:
|
139 |
+
yield key, {
|
140 |
+
"input": data["input"],
|
141 |
+
"label": data["label"],
|
142 |
+
"x": data["x"],
|
143 |
+
"y": data["y"],
|
144 |
+
"appeared": data["appeared"],
|
145 |
+
"avclass": data["avclass"],
|
146 |
+
"subset": data["subset"],
|
147 |
+
"sha256": data["sha256"]
|
148 |
+
}
|