Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
1K - 10K
ArXiv:
License:
Commit
•
d91d9da
1
Parent(s):
fe509be
Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (bebe30d541c5944d1900657388326face7d8812a)
- Delete loading script (c2853bbb70e18da7953996bf33465086465d0541)
- Delete legacy dataset_infos.json (f98f1bf072f7fc0e2b12ac83692c8136e8081b8e)
- README.md +8 -3
- data/train-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- medical_questions_pairs.py +0 -83
README.md
CHANGED
@@ -34,10 +34,15 @@ dataset_info:
|
|
34 |
'1': 1
|
35 |
splits:
|
36 |
- name: train
|
37 |
-
num_bytes:
|
38 |
num_examples: 3048
|
39 |
-
download_size:
|
40 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
41 |
---
|
42 |
|
43 |
# Dataset Card for [medical_questions_pairs]
|
|
|
34 |
'1': 1
|
35 |
splits:
|
36 |
- name: train
|
37 |
+
num_bytes: 701642
|
38 |
num_examples: 3048
|
39 |
+
download_size: 313704
|
40 |
+
dataset_size: 701642
|
41 |
+
configs:
|
42 |
+
- config_name: default
|
43 |
+
data_files:
|
44 |
+
- split: train
|
45 |
+
path: data/train-*
|
46 |
---
|
47 |
|
48 |
# Dataset Card for [medical_questions_pairs]
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fdd6d8ac7bc25f0a4c6ae1b324dd3e730b78965b14abd830f6cb1869b27594f
|
3 |
+
size 313704
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors.\n", "citation": "", "homepage": "https://github.com/curai/medical-question-pair-dataset", "license": "", "features": {"dr_id": {"dtype": "int32", "id": null, "_type": "Value"}, "question_1": {"dtype": "string", "id": null, "_type": "Value"}, "question_2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": [0, 1], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "medical_questions_pairs", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 701650, "num_examples": 3048, "dataset_name": "medical_questions_pairs"}}, "download_checksums": {"https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv": {"num_bytes": 665688, "checksum": "94ecd609a9ca9350e1cff2438aa55a034762f01c1a68732aaae3e4be7b03cf57"}}, "download_size": 665688, "post_processing_size": null, "dataset_size": 701650, "size_in_bytes": 1367338}}
|
|
|
|
medical_questions_pairs.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Medical Question Pairs (MQP) Dataset"""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
# TODO: Add BibTeX citation
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
@misc{mccreery2020effective,
|
27 |
-
title={Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
|
28 |
-
author={Clara H. McCreery and Namit Katariya and Anitha Kannan and Manish Chablani and Xavier Amatriain},
|
29 |
-
year={2020},
|
30 |
-
eprint={2008.13546},
|
31 |
-
archivePrefix={arXiv},
|
32 |
-
primaryClass={cs.IR}
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
|
37 |
-
_DESCRIPTION = """\
|
38 |
-
This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors.
|
39 |
-
"""
|
40 |
-
|
41 |
-
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset"
|
42 |
-
|
43 |
-
_LICENSE = ""
|
44 |
-
|
45 |
-
|
46 |
-
_URL = "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv"
|
47 |
-
|
48 |
-
|
49 |
-
class MedicalQuestionsPairs(datasets.GeneratorBasedBuilder):
|
50 |
-
"""Medical Question Pairs (MQP) Dataset"""
|
51 |
-
|
52 |
-
def _info(self):
|
53 |
-
features = datasets.Features(
|
54 |
-
{
|
55 |
-
"dr_id": datasets.Value("int32"),
|
56 |
-
"question_1": datasets.Value("string"),
|
57 |
-
"question_2": datasets.Value("string"),
|
58 |
-
"label": datasets.features.ClassLabel(num_classes=2, names=[0, 1]),
|
59 |
-
}
|
60 |
-
)
|
61 |
-
return datasets.DatasetInfo(
|
62 |
-
description=_DESCRIPTION,
|
63 |
-
features=features,
|
64 |
-
homepage=_HOMEPAGE,
|
65 |
-
license=_LICENSE,
|
66 |
-
citation=_CITATION,
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
data_file = dl_manager.download_and_extract(_URL)
|
71 |
-
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]
|
72 |
-
|
73 |
-
def _generate_examples(self, filepath):
|
74 |
-
"""Yields examples."""
|
75 |
-
with open(filepath, encoding="utf-8") as f:
|
76 |
-
data = csv.reader(f)
|
77 |
-
for id_, row in enumerate(data):
|
78 |
-
yield id_, {
|
79 |
-
"dr_id": row[0],
|
80 |
-
"question_1": row[1],
|
81 |
-
"question_2": row[2],
|
82 |
-
"label": row[3],
|
83 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|