Datasets:
Commit
·
8d29e11
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/short/1.1.0/dummy_data.zip +3 -0
- reddit_tifu.py +135 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"short": {"description": "\nReddit dataset, where TIFU denotes the name of subbreddit /r/tifu.\nAs defined in the publication, styel \"short\" uses title as summary and\n\"long\" uses tldr as summary.\n\nFeatures includes:\n - document: post text without tldr.\n - tldr: tldr line.\n - title: trimmed title without tldr.\n - ups: upvotes.\n - score: score.\n - num_comments: number of comments.\n - upvote_ratio: upvote ratio.\n", "citation": "\n@misc{kim2018abstractive,\n title={Abstractive Summarization of Reddit Posts with Multi-level Memory Networks},\n author={Byeongchang Kim and Hyunwoo Kim and Gunhee Kim},\n year={2018},\n eprint={1811.00783},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/ctr4si/MMN", "license": "", "features": {"ups": {"dtype": "float32", "id": null, "_type": "Value"}, "num_comments": {"dtype": "float32", "id": null, "_type": "Value"}, "upvote_ratio": {"dtype": "float32", "id": null, "_type": "Value"}, "score": {"dtype": "float32", "id": null, "_type": "Value"}, "documents": {"dtype": "string", "id": null, "_type": "Value"}, "tldr": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": {"input": "documents", "output": "title"}, "builder_name": "reddit_tifu", "config_name": "short", "version": {"version_str": "1.1.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 137755713, "num_examples": 79740, "dataset_name": "reddit_tifu"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1ffWfITKFMJeqjT8loC8aiCLRNJpc_XnF": {"num_bytes": 670607856, "checksum": "f175cafe348e0521c2424cd419c934d10c6af613ed8cbe8eaa8cfbaa06377f1a"}}, "download_size": 670607856, "dataset_size": 137755713, "size_in_bytes": 808363569}, "long": {"description": "\nReddit dataset, where TIFU denotes the name of subbreddit /r/tifu.\nAs defined in the publication, styel \"short\" uses title as summary and\n\"long\" uses tldr as summary.\n\nFeatures includes:\n - document: post text without tldr.\n - tldr: tldr line.\n - title: trimmed title without tldr.\n - ups: upvotes.\n - score: score.\n - num_comments: number of comments.\n - upvote_ratio: upvote ratio.\n", "citation": "\n@misc{kim2018abstractive,\n title={Abstractive Summarization of Reddit Posts with Multi-level Memory Networks},\n author={Byeongchang Kim and Hyunwoo Kim and Gunhee Kim},\n year={2018},\n eprint={1811.00783},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/ctr4si/MMN", "license": "", "features": {"ups": {"dtype": "float32", "id": null, "_type": "Value"}, "num_comments": {"dtype": "float32", "id": null, "_type": "Value"}, "upvote_ratio": {"dtype": "float32", "id": null, "_type": "Value"}, "score": {"dtype": "float32", "id": null, "_type": "Value"}, "documents": {"dtype": "string", "id": null, "_type": "Value"}, "tldr": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": {"input": "documents", "output": "tldr"}, "builder_name": "reddit_tifu", "config_name": "long", "version": {"version_str": "1.1.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 92005782, "num_examples": 42139, "dataset_name": "reddit_tifu"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1ffWfITKFMJeqjT8loC8aiCLRNJpc_XnF": {"num_bytes": 670607856, "checksum": "f175cafe348e0521c2424cd419c934d10c6af613ed8cbe8eaa8cfbaa06377f1a"}}, "download_size": 670607856, "dataset_size": 92005782, "size_in_bytes": 762613638}}
|
dummy/short/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0983e1244341f452576a6867edaeba637d30d0d73c84faab801b31a5321e57cd
|
3 |
+
size 430
|
reddit_tifu.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Reddit TIFU dataset using tifu or tldr from subreddit tifu."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """
|
27 |
+
@misc{kim2018abstractive,
|
28 |
+
title={Abstractive Summarization of Reddit Posts with Multi-level Memory Networks},
|
29 |
+
author={Byeongchang Kim and Hyunwoo Kim and Gunhee Kim},
|
30 |
+
year={2018},
|
31 |
+
eprint={1811.00783},
|
32 |
+
archivePrefix={arXiv},
|
33 |
+
primaryClass={cs.CL}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """
|
38 |
+
Reddit dataset, where TIFU denotes the name of subbreddit /r/tifu.
|
39 |
+
As defined in the publication, styel "short" uses title as summary and
|
40 |
+
"long" uses tldr as summary.
|
41 |
+
|
42 |
+
Features includes:
|
43 |
+
- document: post text without tldr.
|
44 |
+
- tldr: tldr line.
|
45 |
+
- title: trimmed title without tldr.
|
46 |
+
- ups: upvotes.
|
47 |
+
- score: score.
|
48 |
+
- num_comments: number of comments.
|
49 |
+
- upvote_ratio: upvote ratio.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_URL = "https://drive.google.com/uc?export=download&id=1ffWfITKFMJeqjT8loC8aiCLRNJpc_XnF"
|
53 |
+
|
54 |
+
_DOCUMENT = "documents"
|
55 |
+
_TITLE = "title"
|
56 |
+
_TLDR = "tldr"
|
57 |
+
_ADDITIONAL_FEATURES = ["ups", "num_comments", "score", "upvote_ratio"]
|
58 |
+
|
59 |
+
|
60 |
+
class RedditTifuConfig(datasets.BuilderConfig):
|
61 |
+
"""BuilderConfig for RedditTifu."""
|
62 |
+
|
63 |
+
def __init__(self, summary_key=None, **kwargs):
|
64 |
+
"""BuilderConfig for RedditTifu.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
summary_key: key string of summary in downloaded json file.
|
68 |
+
**kwargs: keyword arguments forwarded to super.
|
69 |
+
"""
|
70 |
+
# Version 1.1.0 remove empty document and summary strings.
|
71 |
+
super(RedditTifuConfig, self).__init__(version=datasets.Version("1.1.0"), **kwargs)
|
72 |
+
self.summary_key = summary_key
|
73 |
+
|
74 |
+
|
75 |
+
class RedditTifu(datasets.GeneratorBasedBuilder):
|
76 |
+
"""Reddit TIFU Dataset."""
|
77 |
+
|
78 |
+
BUILDER_CONFIGS = [
|
79 |
+
RedditTifuConfig(
|
80 |
+
name="short",
|
81 |
+
summary_key=_TITLE,
|
82 |
+
description="Using title as summary.",
|
83 |
+
),
|
84 |
+
RedditTifuConfig(
|
85 |
+
name="long",
|
86 |
+
summary_key=_TLDR,
|
87 |
+
description="Using TLDR as summary.",
|
88 |
+
),
|
89 |
+
]
|
90 |
+
|
91 |
+
def _info(self):
|
92 |
+
features = {
|
93 |
+
"ups": datasets.Value("float32"),
|
94 |
+
"num_comments": datasets.Value("float32"),
|
95 |
+
"upvote_ratio": datasets.Value("float32"),
|
96 |
+
"score": datasets.Value("float32"),
|
97 |
+
}
|
98 |
+
features.update({k: datasets.Value("string") for k in [_DOCUMENT, _TLDR, _TITLE]})
|
99 |
+
return datasets.DatasetInfo(
|
100 |
+
description=_DESCRIPTION,
|
101 |
+
features=datasets.Features(features),
|
102 |
+
supervised_keys=(_DOCUMENT, self.config.summary_key),
|
103 |
+
homepage="https://github.com/ctr4si/MMN",
|
104 |
+
citation=_CITATION,
|
105 |
+
)
|
106 |
+
|
107 |
+
def _split_generators(self, dl_manager):
|
108 |
+
"""Returns SplitGenerators."""
|
109 |
+
dl_path = dl_manager.download_and_extract(_URL)
|
110 |
+
return [
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TRAIN,
|
113 |
+
gen_kwargs={"path": dl_path},
|
114 |
+
)
|
115 |
+
]
|
116 |
+
|
117 |
+
def _generate_examples(self, path=None):
|
118 |
+
"""Yields examples."""
|
119 |
+
with open(path, "rb") as f:
|
120 |
+
for i, line in enumerate(f):
|
121 |
+
# keys are 'title_tokenized','permalink','title','url','num_comments',
|
122 |
+
# 'tldr'(optional),'created_utc','trimmed_title_tokenized','ups',
|
123 |
+
# 'selftext_html','score','upvote_ratio','tldr_tokenized'(optional),
|
124 |
+
# 'selftext','trimmed_title','selftext_without_tldr_tokenized',
|
125 |
+
# 'id','selftext_without_tldr'
|
126 |
+
d = json.loads(line)
|
127 |
+
r = {
|
128 |
+
_DOCUMENT: d["selftext_without_tldr"].strip(),
|
129 |
+
_TITLE: d["trimmed_title"].strip(),
|
130 |
+
_TLDR: (d["tldr"] or "").strip(),
|
131 |
+
}
|
132 |
+
r.update({k: d[k] for k in _ADDITIONAL_FEATURES})
|
133 |
+
# skip if document or summary is empty
|
134 |
+
if r[_DOCUMENT] and r[self.config.summary_key]:
|
135 |
+
yield i, r
|