|
import os |
|
|
|
import datasets as ds |
|
import pytest |
|
|
|
|
|
@pytest.fixture |
|
def dataset_path() -> str: |
|
return "PubLayNet.py" |
|
|
|
|
|
@pytest.mark.skipif( |
|
condition=bool(os.environ.get("CI", False)), |
|
reason=( |
|
"Because this loading script downloads a large dataset, " |
|
"we will skip running it on CI." |
|
), |
|
) |
|
@pytest.mark.parametrize( |
|
argnames=("decode_rle"), |
|
argvalues=(False, True), |
|
) |
|
@pytest.mark.parametrize( |
|
argnames=("expected_num_train", "expected_num_valid", "expected_num_test"), |
|
argvalues=((335703, 11245, 11405),), |
|
) |
|
def test_load_dataset( |
|
dataset_path: str, |
|
decode_rle: bool, |
|
expected_num_train: int, |
|
expected_num_valid: int, |
|
expected_num_test: int, |
|
): |
|
dataset = ds.load_dataset(path=dataset_path, decode_rle=decode_rle) |
|
assert dataset["train"].num_rows == expected_num_train |
|
assert dataset["validation"].num_rows == expected_num_valid |
|
assert dataset["test"].num_rows == expected_num_test |
|
|