File size: 4,924 Bytes
8347ae6
 
 
 
 
 
 
 
d253280
8347ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d253280
 
8347ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cdla-permissive-1.0
multilinguality:
- monolingual
pretty_name: PubLayNet
size_categories: []
source_datasets:
- original
tags:
- graphic design
- layout-generation
task_categories:
- image-classification
- image-segmentation
- image-to-text
- question-answering
- other
- multiple-choice
- token-classification
- tabular-to-text
- object-detection
- table-question-answering
- text-classification
- table-to-text
task_ids:
- multi-label-image-classification
- multi-class-image-classification
- semantic-segmentation
- image-captioning
- extractive-qa
- closed-domain-qa
- multiple-choice-qa
- named-entity-recognition
---

# Dataset Card for PubLayNet

[![CI](https://github.com/shunk031/huggingface-datasets_PubLayNet/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_PubLayNet/actions/workflows/ci.yaml)

## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://developer.ibm.com/exchanges/data/all/publaynet/
- **Repository:** https://github.com/shunk031/huggingface-datasets_PubLayNet
- **Paper (Preprint):** https://arxiv.org/abs/1908.07836
- **Paper (ICDAR2019):** https://ieeexplore.ieee.org/document/8977963

### Dataset Summary

PubLayNet is a dataset for document layout analysis. It contains images of research papers and articles and annotations for various elements in a page such as "text", "list", "figure" etc in these research paper images. The dataset was obtained by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

```python
import datasets as ds

dataset = ds.load_dataset(
    path="shunk031/PubLayNet",
    decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
```

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

- [CDLA-Permissive](https://cdla.io/permissive-1-0/)

### Citation Information


```bibtex
@inproceedings{zhong2019publaynet,
  title={Publaynet: largest dataset ever for document layout analysis},
  author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
  booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
  pages={1015--1022},
  year={2019},
  organization={IEEE}
}
```

### Contributions

Thanks to [ibm-aur-nlp/PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) for creating this dataset.