|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Vystadial 2016 Czech automatic speech recognition dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{11234/1-1740, |
|
title = {Vystadial 2016 – Czech data}, |
|
author = {Pl{\'a}tek, Ond{\v r}ej and Du{\v s}ek, Ond{\v r}ej and Jur{\v c}{\'{\i}}{\v c}ek, Filip}, |
|
url = {http://hdl.handle.net/11234/1-1740}, |
|
note = {{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University}, |
|
copyright = {Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)}, |
|
year = {2016} } |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is the Czech data collected during the `VYSTADIAL` project. It is an extension of the 'Vystadial 2013' Czech part data release. The dataset comprises of telephone conversations in Czech, developed for training acoustic models for automatic speech recognition in spoken dialogue systems. |
|
""" |
|
|
|
_URL = "https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1740" |
|
_DL_URL = "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-1740/data_voip_cs_2016.tar.gz" |
|
|
|
|
|
class Vystadial2016ASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Vysadial 2016.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Vystadial2016ASRConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
|
|
class Vystadial2016ASR(datasets.GeneratorBasedBuilder): |
|
"""Vystadial 2016 dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 256 |
|
DEFAULT_CONFIG_NAME = "all" |
|
BUILDER_CONFIGS = [ |
|
Vystadial2016ASRConfig(name="all", description="All samples."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(_DL_URL) |
|
|
|
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} |
|
|
|
return [ datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"files": dl_manager.iter_archive(archive_path), |
|
"local_extracted_archive": local_extracted_archive, |
|
}, |
|
), ] |
|
|
|
def _generate_examples(self, files, local_extracted_archive): |
|
"""Generate examples from a Vystadial2016 archive_path.""" |
|
key = 0 |
|
samples = {} |
|
transcripts = {} |
|
id_transcripts = b'' |
|
id_samples = b'' |
|
for path, f in files: |
|
if path.endswith(".wav"): |
|
id_ = path.split('/')[-1][:-4] |
|
id_samples = bytes(a ^ b for a, b in itertools.zip_longest(id_.encode('utf-8'), id_samples, fillvalue=0)) |
|
audio_data = f.read() |
|
audio_file = f"{id_}.wav" |
|
audio_file = ( |
|
os.path.join(local_extracted_archive, audio_file) |
|
if local_extracted_archive |
|
else audio_file ) |
|
samples[id_] = {'audio': audio_file, 'bytes': audio_data, 'file': path} |
|
elif path.endswith(".trn"): |
|
id_ = path.split('/')[-1][:-8] |
|
id_transcripts = bytes(a ^ b for a, b in itertools.zip_longest(id_.encode('utf-8') , id_transcripts, fillvalue=0)) |
|
lines = f.readlines() |
|
if not lines: |
|
continue |
|
line = lines[0].decode("utf-8").strip() |
|
transcripts[id_] = line |
|
|
|
if (samples and len(samples) == len(transcripts) |
|
and id_samples == id_transcripts): |
|
for id_, sample in samples.items(): |
|
audio = {"path": sample["audio"], "bytes": sample["bytes"]} |
|
yield key, {'audio': audio, 'file': sample['audio'], 'text': transcripts[id_]} |
|
key += 1 |
|
samples = {} |
|
transcripts = {} |
|
|