File size: 6,845 Bytes
dd131c1 502cc05 dd131c1 502cc05 6bbbd78 dd131c1 6425e7e dd131c1 6425e7e e8e3222 0aeffca 5885acd dd131c1 0aeffca dd131c1 e8e3222 dd131c1 e8e3222 dd131c1 9ad2154 dd131c1 6425e7e dd131c1 0aeffca dd131c1 9ad2154 5885acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
annotations_creators:
- found
language_creators:
- expert-generated
- machine-generated
language:
- cs
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-san-francisco-restaurants
task_categories:
- text2text-generation
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
- language-modeling
- masked-language-modeling
paperswithcode_id: czech-restaurant-information
pretty_name: Czech Restaurant
tags:
- intent-to-text
---
# Dataset Card for Czech Restaurant
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Czech restaurants homepage](https://github.com/UFAL-DSG/cs_restaurant_dataset)
- **Paper:** [Czech restaurants on Arxiv](https://arxiv.org/abs/1910.05298)
### Dataset Summary
This is a dataset for NLG in task-oriented spoken dialogue systems with Czech as the target language. It originated as a translation of the [English San Francisco Restaurants dataset](https://www.repository.cam.ac.uk/handle/1810/251304) by Wen et al. (2015). The domain is restaurant information in Prague, with random/fictional values. It includes input dialogue acts and the corresponding outputs in Czech.
### Supported Tasks and Leaderboards
- `other-intent-to-text`: The dataset can be used to train a model for data-to-text generation: from a desired dialogue act, the model must produce textual output that conveys this intention.
### Languages
The entire dataset is in Czech, translated from the English San Francisco dataset by professional translators.
## Dataset Structure
### Data Instances
Example of a data instance:
```
{
"da": "?request(area)",
"delex_da": "?request(area)",
"text": "Jakou lokalitu hledáte ?",
"delex_text": "Jakou lokalitu hledáte ?"
}
```
### Data Fields
- `da`: input dialogue act
- `delex_da`: input dialogue act, delexicalized
- `text`: output text
- `delex_text`: output text, delexicalized
### Data Splits
The order of the instances is random; the split is roughly 3:1:1 between train, development, and test, ensuring that the different sections don't share the same DAs (so the generators need to generalize to unseen DAs), but they share as many generic different DA types as possible (e.g., confirm, inform_only_match etc.). DA types that only have a single corresponding DA (e.g., bye()) are included in the training set.
The training, development, and test set contain 3569, 781, and 842 instances, respectively.
## Dataset Creation
### Curation Rationale
While most current neural NLG systems do not explicitly contain language-specific components and are thus capable of multilingual generation in principle, there has been little work to test these capabilities experimentally. This goes hand in hand with the scarcity of non-English training datasets for NLG – the only data-to-text NLG set known to us is a small sportscasting Korean dataset (Chenet al., 2010), which only contains a limited number of named entities, reducing the need for their inflection. Since most generators are only tested on English, they do not need to handle grammar complexities not present in English. A prime example is the delexicalization technique used by most current generators. We create a novel dataset for Czech delexicalized generation; this extends the typical task of data-to-text NLG by requiring attribute value inflection. We choose Czech as an example of a morphologically complex language with a large set of NLP tools readily available.
### Source Data
#### Initial Data Collection and Normalization
The original data was collected from the [English San Francisco Restaurants dataset](https://www.repository.cam.ac.uk/handle/1810/251304) by Wen et al. (2015).
#### Who are the source language producers?
The original data was produced in interactions between Amazon Mechanical Turk workers and themed around San Francisco restaurants. This data was then translated into Czech and localized to Prague restaurants by professional translators.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
This data does not contain personal information.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Ondřej Dušek, Filip Jurčíček, Josef Dvořák, Petra Grycová, Matěj Hejda, Jana Olivová, Michal Starý, Eva Štichová, Charles University. This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic under the grant agreement LK11221 and core research funding, SVV project 260 333, and GAUK grant 2058214 of Charles University in Prague. It used language resources stored and distributed by the LINDAT/CLARIN project of the Ministry of Education, Youth and Sports of the Czech Republic (project LM2015071).
### Licensing Information
[Creative Commons 4.0 BY-SA](https://creativecommons.org/licenses/by-sa/4.0/)
### Citation Information
```
@article{DBLP:journals/corr/abs-1910-05298,
author = {Ondrej Dusek and
Filip Jurcicek},
title = {Neural Generation for Czech: Data and Baselines},
journal = {CoRR},
volume = {abs/1910.05298},
year = {2019},
url = {http://arxiv.org/abs/1910.05298},
archivePrefix = {arXiv},
eprint = {1910.05298},
timestamp = {Wed, 16 Oct 2019 16:25:53 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-05298.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@TevenLeScao](https://github.com/TevenLeScao) for adding this dataset. |