codeShare commited on
Commit
20c0474
·
verified ·
1 Parent(s): 54d13b7

Upload sd_token_similarity_calculator.ipynb

Browse files
Google Colab Notebooks/sd_token_similarity_calculator.ipynb CHANGED
@@ -271,7 +271,7 @@
271
  {
272
  "cell_type": "code",
273
  "source": [
274
- "# @title 🚫 Penalize similarity to Prompt text_encoding (optional)\n",
275
  "neg_prompt = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write something to avoid\"}\n",
276
  "\n",
277
  "neg_strength = 1 # @param {type:\"slider\", min:0, max:5, step:0.01}\n",
@@ -377,8 +377,6 @@
377
  "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
378
  "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
379
  "\n",
380
- "if image_NEG != \"\":\n",
381
- "\n",
382
  "# Get text features for user input\n",
383
  "inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
384
  "text_features_A = model.get_text_features(**inputs)\n",
@@ -519,13 +517,14 @@
519
  "\n",
520
  "if(not compact_Output):\n",
521
  " if(print_Descriptions):\n",
522
- " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ' + __prompts)\n",
 
523
  " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
524
  " print('')\n",
525
  " else:\n",
526
- " print(__prompts)\n",
527
  "else:\n",
528
- " print(__prompts)\n",
529
  "#-------#\n",
530
  "\n",
531
  "\n",
@@ -704,6 +703,81 @@
704
  "execution_count": null,
705
  "outputs": []
706
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707
  {
708
  "cell_type": "code",
709
  "source": [
 
271
  {
272
  "cell_type": "code",
273
  "source": [
274
+ "# @title 📝🚫 Penalize similarity to Prompt text_encoding (optional)\n",
275
  "neg_prompt = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write something to avoid\"}\n",
276
  "\n",
277
  "neg_strength = 1 # @param {type:\"slider\", min:0, max:5, step:0.01}\n",
 
377
  "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
378
  "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
379
  "\n",
 
 
380
  "# Get text features for user input\n",
381
  "inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
382
  "text_features_A = model.get_text_features(**inputs)\n",
 
517
  "\n",
518
  "if(not compact_Output):\n",
519
  " if(print_Descriptions):\n",
520
+ " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
521
+ " for i in range(N) : print(__prompts)\n",
522
  " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
523
  " print('')\n",
524
  " else:\n",
525
+ " for i in range(N) : print(__prompts)\n",
526
  "else:\n",
527
+ " for i in range(N) : print(__prompts)\n",
528
  "#-------#\n",
529
  "\n",
530
  "\n",
 
703
  "execution_count": null,
704
  "outputs": []
705
  },
706
+ {
707
+ "cell_type": "code",
708
+ "source": [
709
+ "# @title ⚙️🖼️ Print the results (Advanced)\n",
710
+ "list_size = 1000 # @param {type:'number'}\n",
711
+ "start_at_index = 0 # @param {type:'number'}\n",
712
+ "print_Similarity = True # @param {type:\"boolean\"}\n",
713
+ "print_Prompts = True # @param {type:\"boolean\"}\n",
714
+ "print_Prefix = True # @param {type:\"boolean\"}\n",
715
+ "print_Descriptions = True # @param {type:\"boolean\"}\n",
716
+ "compact_Output = True # @param {type:\"boolean\"}\n",
717
+ "newline_Separator = True # @param {type:\"boolean\"}\n",
718
+ "\n",
719
+ "\n",
720
+ "import random\n",
721
+ "# @markdown -----------\n",
722
+ "# @markdown Mix with...\n",
723
+ "list_size2 = 1000 # @param {type:'number'}\n",
724
+ "start_at_index2 = 10000 # @param {type:'number'}\n",
725
+ "rate_percent = 50 # @param {type:\"slider\", min:0, max:100, step:1}\n",
726
+ "\n",
727
+ "# @markdown -----------\n",
728
+ "# @markdown Repeat output N times\n",
729
+ "\n",
730
+ "N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
731
+ "\n",
732
+ "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
733
+ "RANGE = list_size\n",
734
+ "separator = '|'\n",
735
+ "if newline_Separator : separator = separator + '\\n'\n",
736
+ "\n",
737
+ "_prompts = '{'\n",
738
+ "_sims = '{'\n",
739
+ "for _index in range(start_at_index + RANGE):\n",
740
+ " if _index < start_at_index : continue\n",
741
+ " index = indices[_index]\n",
742
+ "\n",
743
+ " prompt = prompts[f'{index}']\n",
744
+ " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
745
+ "\n",
746
+ " #Remove duplicates\n",
747
+ " if _prompts.find(prompt + separator)<=-1:\n",
748
+ " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
749
+ " #-------#\n",
750
+ " _prompts = _prompts.replace(prompt + separator,'')\n",
751
+ " _prompts = _prompts + prompt + separator\n",
752
+ " #------#\n",
753
+ "#------#\n",
754
+ "__prompts = (_prompts + '}').replace(separator + '}', '}')\n",
755
+ "__sims = (_sims + '}').replace(separator + '}', '}')\n",
756
+ "#------#\n",
757
+ "\n",
758
+ "if(not print_Prompts): __prompts = ''\n",
759
+ "if(not print_Similarity): __sims = ''\n",
760
+ "\n",
761
+ "if(not compact_Output):\n",
762
+ " if(print_Descriptions):\n",
763
+ " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
764
+ " for i in range(N) : print(__prompts)\n",
765
+ " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
766
+ " print('')\n",
767
+ " else:\n",
768
+ " for i in range(N) : print(__prompts)\n",
769
+ "else:\n",
770
+ " for i in range(N) : print(__prompts)\n",
771
+ "#-------#\n",
772
+ "\n",
773
+ "\n"
774
+ ],
775
+ "metadata": {
776
+ "id": "6FEmV02tArrh"
777
+ },
778
+ "execution_count": null,
779
+ "outputs": []
780
+ },
781
  {
782
  "cell_type": "code",
783
  "source": [