Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -25,20 +25,11 @@
|
|
25 |
"id": "cRV2YWomjMBU"
|
26 |
}
|
27 |
},
|
28 |
-
{
|
29 |
-
"cell_type": "markdown",
|
30 |
-
"source": [
|
31 |
-
"THIS IS AN OLD VERSION OF THE CLIP INTERROGATOR.\n",
|
32 |
-
"\n",
|
33 |
-
"YOU WILL FIND THE UP TO DATE VERSION HERE:https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data/tree/main/Google%20Colab%20Jupyter%20Notebooks"
|
34 |
-
],
|
35 |
-
"metadata": {
|
36 |
-
"id": "9slWHq0JIX6D"
|
37 |
-
}
|
38 |
-
},
|
39 |
{
|
40 |
"cell_type": "code",
|
41 |
"source": [
|
|
|
|
|
42 |
"import os\n",
|
43 |
"home_directory = '/content/'\n",
|
44 |
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
@@ -69,18 +60,17 @@
|
|
69 |
" %cd {home_directory}\n",
|
70 |
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
|
71 |
" loaded = True\n",
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
"#------#\n",
|
76 |
-
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
77 |
-
"with open(f'prompts.json', 'r') as f:\n",
|
78 |
-
" data = json.load(f)\n",
|
79 |
-
" _df = pd.DataFrame({'count': data})['count']\n",
|
80 |
-
" prompts = {\n",
|
81 |
-
" key : value for key, value in _df.items()\n",
|
82 |
-
" }\n",
|
83 |
-
"#-------#\n",
|
84 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
85 |
"with open(f'reference_prompts.json', 'r') as f:\n",
|
86 |
" data = json.load(f)\n",
|
@@ -95,28 +85,11 @@
|
|
95 |
" target_urls = {\n",
|
96 |
" key : value for key, value in _df.items()\n",
|
97 |
" }\n",
|
98 |
-
"from transformers import AutoTokenizer\n",
|
99 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
100 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
101 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
102 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
103 |
-
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
104 |
-
"\n",
|
105 |
-
"index = 0\n",
|
106 |
-
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
107 |
-
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
|
108 |
-
"for key in vocab_encodings:\n",
|
109 |
-
" index = index + 1;\n",
|
110 |
-
"#------#\n",
|
111 |
-
"NUM_VOCAB_ITEMS = index\n",
|
112 |
"\n",
|
113 |
-
"index = 0\n",
|
114 |
-
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
115 |
-
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
|
116 |
-
" index = index + 1;\n",
|
117 |
"#------#\n",
|
118 |
-
"
|
119 |
-
"\n"
|
|
|
120 |
],
|
121 |
"metadata": {
|
122 |
"id": "TC5lMJrS1HCC"
|
@@ -124,74 +97,151 @@
|
|
124 |
"execution_count": null,
|
125 |
"outputs": []
|
126 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
{
|
128 |
"cell_type": "code",
|
129 |
"source": [
|
130 |
-
"# @
|
131 |
-
"# @
|
132 |
-
"index = 213 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
133 |
"PROMPT_INDEX = index\n",
|
134 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
135 |
"url = target_urls[f'{PROMPT_INDEX}']\n",
|
136 |
"if url.find('perchance')>-1:\n",
|
137 |
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
138 |
"#------#\n",
|
|
|
|
|
|
|
139 |
"# @markdown ⚖️ 🖼️ encoding <-----?-----> 📝 encoding </div> <br>\n",
|
140 |
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
141 |
-
"
|
142 |
-
"prompt_strength = torch.tensor(math.pow(10 ,log_strength_1-1)).to(dtype = torch.float32)\n",
|
143 |
-
"reference = torch.zeros(768).to(dtype = torch.float32)\n",
|
144 |
-
"\n",
|
145 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
146 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
147 |
-
"reference = torch.add(reference,
|
148 |
-
"reference = torch.add(reference,
|
149 |
"references = '' # Clear up memory\n",
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
|
155 |
-
|
156 |
-
"
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
-
"
|
173 |
-
"\n",
|
174 |
-
"
|
175 |
-
"
|
176 |
-
|
177 |
-
|
178 |
-
"
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
186 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
188 |
-
"
|
189 |
-
"
|
190 |
-
" blacklist
|
191 |
" txt = _txt.lower().strip()\n",
|
192 |
" if len(txt)<min_wordcount: return True\n",
|
193 |
" if txt.isnumeric(): return True\n",
|
194 |
-
"
|
195 |
" for item in list(blacklist.split(',')):\n",
|
196 |
" if item.strip() == '' : continue\n",
|
197 |
" if txt.find(item.strip())> -1 : return True\n",
|
@@ -203,76 +253,112 @@
|
|
203 |
" if found:break\n",
|
204 |
" #------#\n",
|
205 |
" return not found\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
"\n",
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
"
|
213 |
-
"
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"
|
217 |
-
"\n",
|
218 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
"\n",
|
220 |
-
"
|
|
|
|
|
|
|
|
|
221 |
"\n",
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
225 |
-
"
|
|
|
|
|
|
|
|
|
|
|
226 |
"\n",
|
227 |
-
"if (enable):\n",
|
228 |
-
" reference = reference/reference.norm(p=2, dim=-1, keepdim=True)\n",
|
229 |
-
" %cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
230 |
-
" sims = torch.matmul(vocab_encodings.dequantize(),reference.t())\n",
|
231 |
-
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
232 |
"\n",
|
233 |
-
"
|
234 |
-
"
|
235 |
-
"
|
236 |
-
"
|
237 |
-
"
|
238 |
-
"
|
239 |
-
"
|
240 |
-
"
|
241 |
-
"
|
242 |
-
"
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"
|
246 |
-
"
|
247 |
-
"
|
248 |
-
" variance = torch.add(variance, difference_to_average * difference_to_average)\n",
|
249 |
-
" if (key>=start_at_index + list_size) : break\n",
|
250 |
-
" #--------#\n",
|
251 |
-
" variance = variance * (1/max(1, list_size))\n",
|
252 |
-
" variance= variance.clone().detach();\n",
|
253 |
-
" print(f'The variance for the selected range is {math.sqrt(variance.item())} units from average')\n",
|
254 |
-
" #--------#\n",
|
255 |
-
"#---#\n",
|
256 |
-
"output = '{'\n",
|
257 |
-
"for _index in range(list_size):\n",
|
258 |
-
" tmp = prompts[f'{indices[min(_index+start_at_index,NUM_VOCAB_ITEMS-1)].item()}']\n",
|
259 |
-
" if isBlacklisted(tmp , SKIP): continue\n",
|
260 |
-
" tmp = fix_bad_symbols(tmp)\n",
|
261 |
-
" if output.find(tmp)>-1:continue\n",
|
262 |
-
" output = output + tmp + '|'\n",
|
263 |
"#---------#\n",
|
264 |
-
"
|
265 |
-
"print('')\n",
|
266 |
-
"print('')\n",
|
267 |
-
"for iter in range(N):\n",
|
268 |
-
" print(output)\n",
|
269 |
-
"#-------#\n",
|
270 |
-
"print('')\n",
|
271 |
-
"print('')\n",
|
272 |
-
"image or print('No image found')"
|
273 |
],
|
274 |
"metadata": {
|
275 |
-
"id": "
|
276 |
},
|
277 |
"execution_count": null,
|
278 |
"outputs": []
|
@@ -280,89 +366,50 @@
|
|
280 |
{
|
281 |
"cell_type": "code",
|
282 |
"source": [
|
283 |
-
"
|
284 |
-
"
|
285 |
-
"sorted , indices = torch.sort(
|
286 |
-
"
|
287 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
],
|
289 |
"metadata": {
|
290 |
-
"id": "
|
291 |
},
|
292 |
"execution_count": null,
|
293 |
"outputs": []
|
294 |
},
|
295 |
{
|
296 |
-
"cell_type": "
|
297 |
"source": [
|
298 |
-
"
|
299 |
-
"list_size = 1000 # @param {type:'number'}\n",
|
300 |
-
"start_at_index = 0 # @param {type:'number'}\n",
|
301 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
302 |
-
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
303 |
-
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
304 |
-
"compact_Output = True # @param {type:\"boolean\"}\n",
|
305 |
-
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
306 |
-
"\n",
|
307 |
-
"import random\n",
|
308 |
-
"# @markdown -----------\n",
|
309 |
-
"# @markdown Mix with...\n",
|
310 |
-
"list_size2 = 1000 # @param {type:'number'}\n",
|
311 |
-
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
312 |
-
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
313 |
-
"\n",
|
314 |
-
"# @markdown -----------\n",
|
315 |
-
"# @markdown Repeat output N times\n",
|
316 |
-
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
317 |
-
"\n",
|
318 |
-
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
319 |
-
"RANGE = list_size\n",
|
320 |
-
"separator = '|'\n",
|
321 |
-
"if newline_Separator : separator = separator + '\\n'\n",
|
322 |
-
"\n",
|
323 |
-
"_prompts = ''\n",
|
324 |
-
"_sims = ''\n",
|
325 |
-
"for _index in range(start_at_index + RANGE):\n",
|
326 |
-
" if _index < start_at_index : continue\n",
|
327 |
-
" index = indices[_index].item()\n",
|
328 |
-
"\n",
|
329 |
-
" prompt = prompts[f'{index}']\n",
|
330 |
-
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
331 |
-
"\n",
|
332 |
-
" #Remove duplicates\n",
|
333 |
-
" if _prompts.find(prompt + separator)<=-1:\n",
|
334 |
-
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
335 |
-
" #-------#\n",
|
336 |
-
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
337 |
-
" _prompts = _prompts + prompt + separator\n",
|
338 |
-
" #------#\n",
|
339 |
-
"#------#\n",
|
340 |
-
"__prompts = fix_bad_symbols(__prompts)\n",
|
341 |
-
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
342 |
-
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
343 |
-
"#------#\n",
|
344 |
-
"\n",
|
345 |
-
"if(not print_Prompts): __prompts = ''\n",
|
346 |
-
"if(not print_Similarity): __sims = ''\n",
|
347 |
-
"\n",
|
348 |
-
"if(not compact_Output):\n",
|
349 |
-
" if(print_Descriptions):\n",
|
350 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
351 |
-
" for i in range(N) : print(__prompts)\n",
|
352 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
353 |
-
" print('')\n",
|
354 |
-
" else:\n",
|
355 |
-
" for i in range(N) : print(__prompts)\n",
|
356 |
-
"else:\n",
|
357 |
-
" for i in range(N) : print(__prompts)\n",
|
358 |
-
"#-------#"
|
359 |
],
|
360 |
"metadata": {
|
361 |
-
"id": "
|
362 |
-
|
363 |
-
},
|
364 |
-
"execution_count": null,
|
365 |
-
"outputs": []
|
366 |
},
|
367 |
{
|
368 |
"cell_type": "markdown",
|
@@ -605,59 +652,54 @@
|
|
605 |
{
|
606 |
"cell_type": "code",
|
607 |
"source": [
|
608 |
-
"# @title \t⚄
|
609 |
-
"\n",
|
610 |
-
"def get_num_vocab_items(_url):\n",
|
611 |
-
" num_vocab_items = 0\n",
|
612 |
-
" for item in _url.split('_'):\n",
|
613 |
-
" if item.find('safetensors')>-1: num_vocab_items = int(item.replace('.safetensors', ''))\n",
|
614 |
-
" #------#\n",
|
615 |
-
" return num_vocab_items-1\n",
|
616 |
"\n",
|
|
|
|
|
|
|
617 |
"\n",
|
618 |
-
"
|
619 |
-
"
|
620 |
-
" _SCALE = torch.tensor(0.0043).to(dot_dtype)\n",
|
621 |
-
" _DIM = 768\n",
|
622 |
-
" _vocab = {}\n",
|
623 |
-
" #----#\n",
|
624 |
-
" inputs = tokenizer(text = _ref.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
625 |
-
" ref = model.get_text_features(**inputs)[0]\n",
|
626 |
-
" ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
|
627 |
-
" #-----#\n",
|
628 |
-
" num_vocab_items = 0\n",
|
629 |
-
" for url in urls:\n",
|
630 |
-
" num_vocab_items = num_vocab_items + get_num_vocab_items(url)\n",
|
631 |
-
" #------#\n",
|
632 |
-
" vocab = torch.zeros(num_vocab_items , _DIM).to(torch.uint8)\n",
|
633 |
" prompts = {}\n",
|
634 |
-
"
|
635 |
-
"
|
636 |
-
"
|
637 |
-
"
|
638 |
-
"
|
639 |
-
"
|
640 |
-
"
|
641 |
-
"
|
642 |
-
"
|
643 |
-
"
|
644 |
-
"
|
645 |
-
"
|
646 |
-
"
|
647 |
-
"
|
648 |
-
" for index in range(
|
649 |
-
"
|
650 |
-
"
|
651 |
-
"
|
652 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
" #-------#\n",
|
654 |
-
"
|
655 |
-
"
|
656 |
-
"\n"
|
|
|
|
|
|
|
|
|
|
|
657 |
],
|
658 |
"metadata": {
|
659 |
"cellView": "form",
|
660 |
-
"id": "
|
661 |
},
|
662 |
"execution_count": null,
|
663 |
"outputs": []
|
@@ -665,31 +707,14 @@
|
|
665 |
{
|
666 |
"cell_type": "code",
|
667 |
"source": [
|
668 |
-
"
|
669 |
-
"
|
670 |
-
"
|
671 |
-
"
|
672 |
-
"
|
673 |
-
"\n",
|
674 |
-
" #'/content/fusion-t2i-generator-data/clip_vocab_q0043_541291.safetensors' , '/content/fusion-t2i-generator-data/lyrics_vocab_q0043_41905.safetensors' , '/content/fusion-t2i-generator-data/names_vocab_q0043_162977.safetensors' , '/content/fusion-t2i-generator-data/r34_vocab_q0043_96166.safetensors' ]\n",
|
675 |
-
"\n",
|
676 |
-
"indices , prompts , sims = get_similiar(ref , urls , LIST_SIZE)\n",
|
677 |
-
"\n",
|
678 |
-
"index = 0\n",
|
679 |
-
"_prompts = {}\n",
|
680 |
-
"for index in range(203662):\n",
|
681 |
-
" try:\n",
|
682 |
-
" key = prompts[f'{indices[index].item()}']\n",
|
683 |
-
" print(key)\n",
|
684 |
-
" except: print('Not found!')\n",
|
685 |
-
" #_prompts[f'{key}'] = sims[key].item()\n",
|
686 |
-
" index = index + 1\n",
|
687 |
-
" if index>LIST_SIZE:break\n",
|
688 |
-
"\n"
|
689 |
],
|
690 |
"metadata": {
|
691 |
-
"
|
692 |
-
"id": "Azz1kCza6LB3"
|
693 |
},
|
694 |
"execution_count": null,
|
695 |
"outputs": []
|
|
|
25 |
"id": "cRV2YWomjMBU"
|
26 |
}
|
27 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"source": [
|
31 |
+
"# @title ⚄ Initialize\n",
|
32 |
+
"\n",
|
33 |
"import os\n",
|
34 |
"home_directory = '/content/'\n",
|
35 |
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
|
|
60 |
" %cd {home_directory}\n",
|
61 |
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
|
62 |
" loaded = True\n",
|
63 |
+
"\n",
|
64 |
+
"from transformers import AutoTokenizer\n",
|
65 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
66 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
67 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
68 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
69 |
+
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
70 |
+
"\n",
|
71 |
+
"%cd {home_directory + 'fusion-t2i-generator-data/'}\n",
|
72 |
+
"!unzip reference.zip\n",
|
73 |
"#------#\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
75 |
"with open(f'reference_prompts.json', 'r') as f:\n",
|
76 |
" data = json.load(f)\n",
|
|
|
85 |
" target_urls = {\n",
|
86 |
" key : value for key, value in _df.items()\n",
|
87 |
" }\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
"\n",
|
|
|
|
|
|
|
|
|
89 |
"#------#\n",
|
90 |
+
"dot_dtype = torch.float32\n",
|
91 |
+
"dim = 768\n",
|
92 |
+
"reference = torch.zeros(dim).to(dtype = dot_dtype)"
|
93 |
],
|
94 |
"metadata": {
|
95 |
"id": "TC5lMJrS1HCC"
|
|
|
97 |
"execution_count": null,
|
98 |
"outputs": []
|
99 |
},
|
100 |
+
{
|
101 |
+
"cell_type": "markdown",
|
102 |
+
"source": [
|
103 |
+
"Feel free to skip these cells if you do not plan on using them\n"
|
104 |
+
],
|
105 |
+
"metadata": {
|
106 |
+
"id": "Xf9zoq-Za3wi"
|
107 |
+
}
|
108 |
+
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
"source": [
|
112 |
+
"# @markdown 🖼️+📝 Choose a pre-encoded reference (optional)\n",
|
113 |
+
"index = 657 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
|
|
114 |
"PROMPT_INDEX = index\n",
|
115 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
116 |
"url = target_urls[f'{PROMPT_INDEX}']\n",
|
117 |
"if url.find('perchance')>-1:\n",
|
118 |
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
119 |
"#------#\n",
|
120 |
+
"try: reference\n",
|
121 |
+
"except: reference = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
122 |
+
"if reference == '': reference = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
123 |
"# @markdown ⚖️ 🖼️ encoding <-----?-----> 📝 encoding </div> <br>\n",
|
124 |
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
125 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
|
|
|
|
|
|
126 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
127 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
128 |
+
"reference = torch.add(reference, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
|
129 |
+
"reference = torch.add(reference, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
|
130 |
"references = '' # Clear up memory\n",
|
131 |
+
"ref = reference.clone().detach()\n",
|
132 |
+
"#------#\n",
|
133 |
+
"print(f'Prompt for this image : \\n\\n \"{prompt} \" \\n\\n')\n",
|
134 |
+
"image"
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"id": "BwrEs5zVB0Sb"
|
138 |
+
},
|
139 |
+
"execution_count": null,
|
140 |
+
"outputs": []
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"source": [
|
145 |
+
"# @markdown 🖼️ Upload your own image for use as reference via URL (optional)\n",
|
146 |
+
"URL = '' # @param {type:'string' ,placeholder:'paste an url here'}\n",
|
147 |
+
"image = Image.open(requests.get(URL, stream=True).raw)\n",
|
148 |
+
"#---------#\n",
|
149 |
+
"# Get image features\n",
|
150 |
+
"inputs = processor(images=image, return_tensors=\"pt\")\n",
|
151 |
+
"image_features = model.get_image_features(**inputs)\n",
|
152 |
+
"image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
153 |
+
"#-----#\n",
|
154 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
155 |
+
"ref = ref + math.pow(10,log_strength-1)*image_features\n",
|
156 |
+
"image"
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"id": "IqUsiQw2HU2C"
|
160 |
+
},
|
161 |
+
"execution_count": null,
|
162 |
+
"outputs": []
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"source": [
|
167 |
+
"# @markdown 🖼️ Upload your own image in the /content/ folder for use as reference (optional)\n",
|
168 |
+
"FILENAME = '' # @param {type:'string' ,placeholder:'IMG_123.png'}\n",
|
169 |
+
"import cv2\n",
|
170 |
+
"image = cv2.imread(FILENAME)\n",
|
171 |
+
"image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
172 |
"\n",
|
173 |
+
"#---------#\n",
|
174 |
+
"# Get image features\n",
|
175 |
+
"inputs = processor(images=image, return_tensors=\"pt\")\n",
|
176 |
+
"image_features = model.get_image_features(**inputs)\n",
|
177 |
+
"image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
178 |
+
"#-----#\n",
|
179 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
180 |
+
"ref = ref + math.pow(10,log_strength-1)*image_features\n",
|
181 |
+
"image"
|
182 |
+
],
|
183 |
+
"metadata": {
|
184 |
+
"id": "I_-GOwFPKkha"
|
185 |
+
},
|
186 |
+
"execution_count": null,
|
187 |
+
"outputs": []
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "markdown",
|
191 |
+
"source": [
|
192 |
+
"Save the reference prior to running the Interrogator"
|
193 |
+
],
|
194 |
+
"metadata": {
|
195 |
+
"id": "zeu6JcM-mk9z"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"source": [
|
201 |
+
"# @title ⚄ Save the reference\n",
|
202 |
+
"try: ref\n",
|
203 |
+
"except: ref = torch.zeros(dim)\n",
|
204 |
+
"_ref = {}\n",
|
205 |
+
"_ref['weights'] = ref.to(dot_dtype)\n",
|
206 |
+
"%cd /content/\n",
|
207 |
+
"save_file(_ref , 'reference.safetensors' )"
|
208 |
+
],
|
209 |
+
"metadata": {
|
210 |
+
"id": "lOQuTPfBMK82"
|
211 |
+
},
|
212 |
+
"execution_count": null,
|
213 |
+
"outputs": []
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"source": [
|
218 |
+
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
219 |
+
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
220 |
+
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
221 |
+
"# @markdown -----\n",
|
222 |
+
"# @markdown Select vocab\n",
|
223 |
+
"general = False # @param {type:\"boolean\"}\n",
|
224 |
+
"civit9 = True # @param {type:\"boolean\"}\n",
|
225 |
+
"fanfic1 = False # @param {type:\"boolean\"}\n",
|
226 |
+
"fanfic2 = False # @param {type:\"boolean\"}\n",
|
227 |
+
"# @markdown -----\n",
|
228 |
+
"# @title ⚄ New interrogator code using quantized text corpus\n",
|
229 |
+
"%cd /content/\n",
|
230 |
+
"_ref = load_file('reference.safetensors' )\n",
|
231 |
+
"ref = _ref['weights'].to(dot_dtype)\n",
|
232 |
+
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
233 |
+
"POS1 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
234 |
+
"POS2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
235 |
+
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
236 |
+
"SKIP = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
237 |
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
238 |
+
"def isBlacklisted(_txt):\n",
|
239 |
+
" blacklist = SKIP.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
|
240 |
+
" if blacklist == '': return False\n",
|
241 |
" txt = _txt.lower().strip()\n",
|
242 |
" if len(txt)<min_wordcount: return True\n",
|
243 |
" if txt.isnumeric(): return True\n",
|
244 |
+
" #-----#\n",
|
245 |
" for item in list(blacklist.split(',')):\n",
|
246 |
" if item.strip() == '' : continue\n",
|
247 |
" if txt.find(item.strip())> -1 : return True\n",
|
|
|
253 |
" if found:break\n",
|
254 |
" #------#\n",
|
255 |
" return not found\n",
|
256 |
+
"# @markdown -----\n",
|
257 |
+
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
258 |
+
"_POS1 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
259 |
+
"_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
260 |
+
"_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
261 |
+
"# @markdown -----\n",
|
262 |
+
"for _item in POS1.split(','):\n",
|
263 |
+
" item = _item.strip()\n",
|
264 |
+
" if item == '':continue\n",
|
265 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
266 |
+
" ref = ref + math.pow(10,_POS1-1) * model.get_text_features(**inputs)[0]\n",
|
267 |
+
"#-------#\n",
|
268 |
+
"for _item in POS2.split(','):\n",
|
269 |
+
" item = _item.strip()\n",
|
270 |
+
" if item == '':continue\n",
|
271 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
272 |
+
" ref = ref + math.pow(10,_POS2-1) * model.get_text_features(**inputs)[0]\n",
|
273 |
+
"#-------#\n",
|
274 |
+
"for _item in NEG.split(','):\n",
|
275 |
+
" item = _item.strip()\n",
|
276 |
+
" if item == '':continue\n",
|
277 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
278 |
+
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
279 |
+
"#------#\n",
|
280 |
+
"ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
|
281 |
+
"vocab_to_load = ''\n",
|
282 |
+
"if (general): vocab_to_load = vocab_to_load + 'general , '\n",
|
283 |
+
"if (civit9): vocab_to_load = vocab_to_load + 'civit9 , '\n",
|
284 |
+
"if (fanfic1): vocab_to_load = vocab_to_load + 'fanfic1 , '\n",
|
285 |
+
"if (fanfic2): vocab_to_load = vocab_to_load + 'fanfic2 , '\n",
|
286 |
+
"vocab_to_load = (vocab_to_load +'}').replace(' , }' , '')\n",
|
287 |
+
"multi = vocab_to_load.find(',')>-1\n",
|
288 |
"\n",
|
289 |
+
"#-----#\n",
|
290 |
+
"prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text'\n",
|
291 |
+
"encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text_encodings'\n",
|
292 |
+
"#----#\n",
|
293 |
+
"scale = 0.0043\n",
|
294 |
+
"size = 0\n",
|
295 |
+
"#------#\n",
|
296 |
+
"total_items = 0\n",
|
297 |
+
"for filename in os.listdir(prompts_folder):\n",
|
298 |
+
" if (not general and filename.find('general')>-1):continue\n",
|
299 |
+
" if (not civit9 and filename.find('civit9')>-1):continue\n",
|
300 |
+
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
|
301 |
+
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
|
302 |
+
" size = size + LIST_SIZE\n",
|
303 |
+
"#-------#\n",
|
304 |
+
"similiar_sims = torch.zeros(size)\n",
|
305 |
+
"similiar_prompts = {}\n",
|
306 |
+
"_index = 0\n",
|
307 |
+
"#-------#\n",
|
308 |
+
"similiar_encodings = {}\n",
|
309 |
+
"for filename in os.listdir(prompts_folder):\n",
|
310 |
+
" if (not general and filename.find('general')>-1):continue\n",
|
311 |
+
" if (not civit9 and filename.find('civit9')>-1):continue\n",
|
312 |
+
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
|
313 |
+
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
|
314 |
+
" #------#\n",
|
315 |
+
" root_filename = filename.replace('.json', '')\n",
|
316 |
+
" %cd {prompts_folder}\n",
|
317 |
+
" prompts = {}\n",
|
318 |
+
" with open(f'{root_filename}.json', 'r') as f:\n",
|
319 |
+
" data = json.load(f).items()\n",
|
320 |
+
" for key,value in data:\n",
|
321 |
+
" prompts[key] = value\n",
|
322 |
+
" num_items = int(prompts['num_items'])\n",
|
323 |
+
" total_items = total_items + num_items\n",
|
324 |
"\n",
|
325 |
+
" #------#\n",
|
326 |
+
" try:vocab_loaded\n",
|
327 |
+
" except:\n",
|
328 |
+
" vocab_loaded = 'first'\n",
|
329 |
+
" #-----#\n",
|
330 |
"\n",
|
331 |
+
" if vocab_loaded == 'first' or (vocab_loaded != vocab_to_load and not multi):\n",
|
332 |
+
" %cd {encodings_folder}\n",
|
333 |
+
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
|
334 |
+
" text_encodings = torch.zeros(num_items , dim)\n",
|
335 |
+
" tmp = torch.ones(dim).to(dot_dtype)\n",
|
336 |
+
" for index in range(num_items):\n",
|
337 |
+
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
|
338 |
+
" vocab_loaded = vocab_to_load\n",
|
339 |
+
" #------#\n",
|
340 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
341 |
"\n",
|
342 |
+
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
|
343 |
+
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
|
344 |
+
" #-----#\n",
|
345 |
+
" for index in range(LIST_SIZE + START_AT):\n",
|
346 |
+
" if index<START_AT: continue\n",
|
347 |
+
" key = indices[index].item()\n",
|
348 |
+
" try:prompt = prompts[f'{key}']\n",
|
349 |
+
" except:continue\n",
|
350 |
+
" if(isBlacklisted(prompt)):continue\n",
|
351 |
+
" #-------#\n",
|
352 |
+
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
|
353 |
+
" similiar_prompts[f'{_index}'] = prompt\n",
|
354 |
+
" _index = _index + 1\n",
|
355 |
+
" #-------#\n",
|
356 |
+
" continue\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
"#---------#\n",
|
358 |
+
"print(f'\\n\\nProcessed entire list of {total_items} items to find closest match. Saved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST SIZE} items. \\n\\n')\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
],
|
360 |
"metadata": {
|
361 |
+
"id": "kOYZ8Ajn-DD8"
|
362 |
},
|
363 |
"execution_count": null,
|
364 |
"outputs": []
|
|
|
366 |
{
|
367 |
"cell_type": "code",
|
368 |
"source": [
|
369 |
+
"\n",
|
370 |
+
"# @title ⚄ Printing results from text corpus\n",
|
371 |
+
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
|
372 |
+
"include_similiarity = False # @param {type:\"boolean\"}\n",
|
373 |
+
"print_as_list = False # @param {type:\"boolean\"}\n",
|
374 |
+
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
375 |
+
"\n",
|
376 |
+
"if(print_as_list):\n",
|
377 |
+
" for index in range(LIST_SIZE):\n",
|
378 |
+
" key = indices[index].item()\n",
|
379 |
+
" sim = similiar_sims[key].item()\n",
|
380 |
+
" prompt = similiar_prompts[f'{key}']\n",
|
381 |
+
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
|
382 |
+
" else: print(f'{prompt}')\n",
|
383 |
+
"#-------#\n",
|
384 |
+
"else:\n",
|
385 |
+
" prompt = ''\n",
|
386 |
+
" for iter in range(N):\n",
|
387 |
+
" prompt = prompt + '{'\n",
|
388 |
+
" for index in range(LIST_SIZE):\n",
|
389 |
+
" key = indices[index].item()\n",
|
390 |
+
" sim = similiar_sims[key].item()\n",
|
391 |
+
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
|
392 |
+
" #-----#\n",
|
393 |
+
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
394 |
+
" #------#\n",
|
395 |
+
" print(f'\\ Similiar prompts: \\n\\n {prompt} \\n\\n')\n",
|
396 |
+
" image\n",
|
397 |
+
"#-----#\n"
|
398 |
],
|
399 |
"metadata": {
|
400 |
+
"id": "XOMkIKc9-wZz"
|
401 |
},
|
402 |
"execution_count": null,
|
403 |
"outputs": []
|
404 |
},
|
405 |
{
|
406 |
+
"cell_type": "markdown",
|
407 |
"source": [
|
408 |
+
"OTHER STUFF BELOW - Code for the modules below are work-in-progress."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
],
|
410 |
"metadata": {
|
411 |
+
"id": "FRIqYJDEebpf"
|
412 |
+
}
|
|
|
|
|
|
|
413 |
},
|
414 |
{
|
415 |
"cell_type": "markdown",
|
|
|
652 |
{
|
653 |
"cell_type": "code",
|
654 |
"source": [
|
655 |
+
"# @title \t⚄ Quick fix for normalizing encoded text corpus tensors\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
"\n",
|
657 |
+
"import os\n",
|
658 |
+
"my_mkdirs('/content/output')\n",
|
659 |
+
"my_mkdirs('/content/output/text_encodings')\n",
|
660 |
"\n",
|
661 |
+
"for filename in os.listdir(f'{prompts_folder}'):\n",
|
662 |
+
" %cd {prompts_folder}\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
" prompts = {}\n",
|
664 |
+
" with open(f'{filename}', 'r') as f:\n",
|
665 |
+
" data = json.load(f).items()\n",
|
666 |
+
" for key,value in data:\n",
|
667 |
+
" prompts[key] = value\n",
|
668 |
+
" #------#\n",
|
669 |
+
" num_items = int(prompts['num_items'])\n",
|
670 |
+
"\n",
|
671 |
+
" %cd {encodings_folder}\n",
|
672 |
+
" enc_filename = filename.replace('json', 'safetensors')\n",
|
673 |
+
" _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
|
674 |
+
" text_encodings = torch.zeros(num_items , dim)\n",
|
675 |
+
" tmp = torch.ones(dim)\n",
|
676 |
+
" tmp2 = torch.tensor(1/0.0043)\n",
|
677 |
+
" zero_point = 0\n",
|
678 |
+
" for index in range(num_items):\n",
|
679 |
+
" text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
|
680 |
+
" text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
|
681 |
+
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
|
682 |
+
" less_than_zero = test<0\n",
|
683 |
+
" while(torch.any(less_than_zero).item()):\n",
|
684 |
+
" zero_point = zero_point + 1\n",
|
685 |
+
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
|
686 |
+
" less_than_zero = test<0\n",
|
687 |
+
" #------#\n",
|
688 |
+
" _text_encodings[index][0] = zero_point\n",
|
689 |
+
" _text_encodings[index][1:dim+1] = test\n",
|
690 |
" #-------#\n",
|
691 |
+
" %cd /content/output/text_encodings\n",
|
692 |
+
"\n",
|
693 |
+
" tmp = {}\n",
|
694 |
+
" tmp['weights'] = _text_encodings.to(torch.uint8)\n",
|
695 |
+
" tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
|
696 |
+
" tmp['scale'] = torch.tensor(0.0043)\n",
|
697 |
+
" save_file(tmp , f'{enc_filename}')\n",
|
698 |
+
"#------#"
|
699 |
],
|
700 |
"metadata": {
|
701 |
"cellView": "form",
|
702 |
+
"id": "9qgHW1Wr7kZn"
|
703 |
},
|
704 |
"execution_count": null,
|
705 |
"outputs": []
|
|
|
707 |
{
|
708 |
"cell_type": "code",
|
709 |
"source": [
|
710 |
+
"# Check the average value for this set\n",
|
711 |
+
"sims = torch.matmul(vocab_encodings.dequantize(),average.t())\n",
|
712 |
+
"sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
713 |
+
"for index in range(10):\n",
|
714 |
+
" print(prompts[f'{indices[index].item()}'])"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
],
|
716 |
"metadata": {
|
717 |
+
"id": "XNHz0hfhHRUu"
|
|
|
718 |
},
|
719 |
"execution_count": null,
|
720 |
"outputs": []
|