Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,640 Bytes
24925b9
 
 
 
 
 
 
 
 
63a7fe9
24925b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dbb5f
24925b9
 
 
 
 
 
 
 
 
 
 
 
5854a60
 
 
 
63a7fe9
a5dbb5f
9f52e0a
24925b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d66144f
24925b9
 
a5dbb5f
24925b9
 
 
62391ed
 
 
 
9f52e0a
24925b9
 
 
9f52e0a
62391ed
 
 
 
24925b9
 
 
 
 
 
 
 
 
 
51d3b65
24925b9
38ab900
 
b74cb80
24925b9
df2a6a4
24925b9
9f52e0a
df2a6a4
b74cb80
df2a6a4
 
62391ed
df2a6a4
 
 
62391ed
df2a6a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Universal Text Classification Dataset (UTCD)"""


import os
import json
from os.path import join as os_join
from typing import List

import datasets
from huggingface_hub import hf_hub_download

_DESCRIPTION = """
UTCD is a compilation of 18 classification datasets spanning 3 categories of Sentiment, 
Intent/Dialogue and Topic classification. UTCD focuses on the task of zero-shot text classification where the 
candidate labels are descriptive of the text being classified. UTCD consists of ~ 6M/800K train/test examples. 
"""

# TODO: citation

_URL = "https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master"
_URL_ZIP = "https://huggingface.co/datasets/claritylab/UTCD/raw/main/datasets.zip"

_VERSION = datasets.Version('0.0.1')


class UtcdConfig(datasets.BuilderConfig):
    """BuilderConfig for SuperGLUE."""

    def __init__(self, domain: str, normalize_aspect: bool = False, **kwargs):
        """BuilderConfig for UTCD.
        Args:
          domain: `string`, dataset domain, one of [`in`, `out`].
          normalize_aspect: `bool`, if True, an aspect-normalized version of the dataset is returned.
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 0.0.1: Initial version.
        super(UtcdConfig, self).__init__(version=_VERSION, **kwargs)
        assert domain in ['in', 'out']
        self.domain = domain
        self.normalize_aspect = normalize_aspect

    def to_dir_name(self):
        """
        :return: directory name for the dataset files for this config stored on hub
        """
        domain_str = 'in-domain' if self.domain == 'in' else 'out-of-domain'
        prefix = 'aspect-normalized-' if self.normalize_aspect else ''
        return f'{prefix}{domain_str}'


# for getting dataset viewer working on hub, don't have write access to /.cache
config_fnm = hf_hub_download(
    repo_id='claritylab/utcd', filename='_utcd_info.json', cache_dir=os.path.dirname(__file__), repo_type='dataset'
)
with open(config_fnm) as f:
    _config = json.load(f)
_split2hf_split = dict(train=datasets.Split.TRAIN, eval=datasets.Split.VALIDATION, test=datasets.Split.TEST)


class Utcd(datasets.GeneratorBasedBuilder):
    """UTCD: Universal Text Classification Dataset. Version 0.0."""

    VERSION = _VERSION

    BUILDER_CONFIGS = [
        UtcdConfig(
            name='in-domain',
            description='All in-domain datasets.',
            domain='in',
            normalize_aspect=False
        ),
        UtcdConfig(
            name='aspect-normalized-in-domain',
            description='Aspect-normalized version of all in-domain datasets.',
            domain='in',
            normalize_aspect=True
        ),
        UtcdConfig(
            name='out-of-domain',
            description='All out-of-domain datasets.',
            domain='out',
            normalize_aspect=False
        ),
        UtcdConfig(
            name='aspect-normalized-out-of-domain',
            description='Aspect-normalized version of all out-of-domain datasets.',
            domain='out',
            normalize_aspect=True
        )
    ]
    DEFAULT_CONFIG_NAME = 'in-domain'

    def _get_dataset_names(self):
        return [dnm for dnm, d_dset in _config.items() if d_dset['domain'] == self.config.domain]

    def _info(self):
        dnms = self._get_dataset_names()
        # labels = [_config[dnm]['splits'][split]['labels'] for dnm in dnms for split in ['train', 'test']]
        # labels = sorted(set().union(*labels))  # drop duplicate labels across datasets
        aspects = [d['aspect'] for dnm, d in _config.items()]
        aspects = sorted(set(aspects))  # drop duplicate aspects

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                text=datasets.Value(dtype='string'),
                # labels=datasets.Sequence(feature=datasets.ClassLabel(names=labels), length=-1),  # for multi-label
                labels=datasets.Sequence(feature=datasets.Value(dtype='string'), length=-1),
                dataset_name=datasets.ClassLabel(names=dnms),
                aspect=datasets.ClassLabel(names=aspects)
            ),
            homepage=_URL
            # TODO: citation
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        # for aspect-normalized versions of the dataset, we include a validation set
        splits = ['train', 'eval', 'test'] if self.config.normalize_aspect else ['train', 'test']
        dnms = self._get_dataset_names()
        dir_nm = self.config.to_dir_name()
        # TODO: update root dataset naming version & dataset split naming

        base_path = dl_manager.download_and_extract('datasets.zip')
        split2paths = {s: [os_join(base_path, f'{dir_nm}_split', dnm, f'{s}.json') for dnm in dnms] for s in splits}
        # order of dataset file paths will be deterministic for deterministic dataset name ordering
        return [
            datasets.SplitGenerator(name=_split2hf_split[s], gen_kwargs=dict(filepath=split2paths[s])) for s in splits
        ]

    def _generate_examples(self, filepath: List[str]):
        id_ = 0
        for path in filepath:  # each file for one split of one dataset
            dnm = path.split(os.sep)[-2]
            aspect = _config[dnm]['aspect']
            with open(path, encoding='utf-8') as fl:
                dset = json.load(fl)
                for txt, labels in dset.items():
                    yield id_, dict(text=txt, labels=labels, dataset_name=dnm, aspect=aspect)
                    id_ += 1