Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""PolEmo2 dataset.""" | |
from dataclasses import dataclass | |
from typing import List, Dict, Generator, Union, Optional, Tuple | |
import datasets | |
_DESCRIPTION = """PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL.""" | |
_CITATION = """ | |
@inproceedings{kocon-etal-2019-multi, | |
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews", | |
author = "Koco{\'n}, Jan and | |
Mi{\l}kowski, Piotr and | |
Za{\'s}ko-Zieli{\'n}ska, Monika", | |
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", | |
month = nov, | |
year = "2019", | |
address = "Hong Kong, China", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/K19-1092", | |
doi = "10.18653/v1/K19-1092", | |
pages = "980--991",} | |
""" | |
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/710" | |
_LICENSE = "CC-BY-4.0" | |
_DOMAINS = [ | |
"all", | |
"hotels", | |
"medicine", | |
"products", | |
"reviews", | |
] | |
_OUT_DOMAINS = ["Nhotels", "Nmedicine", "Nproducts", "Nreviews"] | |
_CONFIGS_TEXT = ["text", "sentence"] | |
_LABELS = ["zero", "minus", "plus", "amb"] | |
URL_PATH = ( | |
"https://huggingface.co/datasets/clarin-pl/polemo2-official/resolve/main/data" | |
) | |
_URLS = { | |
cfg: { | |
**{ | |
domain: { | |
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt" | |
for split_type in ["train", "dev", "test"] | |
} | |
for domain in _DOMAINS | |
}, | |
**{ | |
domain: { | |
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt" | |
for split_type in ["train", "dev"] | |
} | |
for domain in _OUT_DOMAINS | |
}, | |
} | |
for cfg in _CONFIGS_TEXT | |
} | |
class PolEmo2Config(datasets.BuilderConfig): | |
text_cfg: Optional[str] = None | |
domain: Optional[str] = None | |
train_domains: Optional[List[str]] = None | |
dev_domains: Optional[List[str]] = None | |
test_domains: Optional[List[str]] = None | |
class PolEmo2(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIG_CLASS = PolEmo2Config | |
BUILDER_CONFIGS = [ | |
*[ | |
PolEmo2Config( | |
name=f"{domain}_{text_type}", | |
domain=domain, | |
text_cfg=text_type, | |
train_domains=[domain], | |
dev_domains=[domain], | |
test_domains=[domain], | |
) | |
for domain in _DOMAINS | |
for text_type in _CONFIGS_TEXT | |
] | |
] | |
DEFAULT_CONFIG_NAME = "all_text" | |
def _info(self) -> datasets.DatasetInfo: | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"target": datasets.features.ClassLabel( | |
names=_LABELS, num_classes=len(_LABELS) | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE | |
) | |
def _get_files_by_domains(self, domains: List[str], split: str) -> List[str]: | |
return [_URLS[self.config.text_cfg][domain][split] for domain in domains] | |
def _split_generators( | |
self, dl_manager: datasets.DownloadManager | |
) -> List[datasets.SplitGenerator]: | |
files = { | |
"train": dl_manager.download_and_extract( | |
self._get_files_by_domains( | |
domains=self.config.train_domains, split="train" | |
) | |
), | |
"dev": dl_manager.download_and_extract( | |
self._get_files_by_domains(domains=self.config.dev_domains, split="dev") | |
), | |
"test": dl_manager.download_and_extract( | |
self._get_files_by_domains( | |
domains=self.config.test_domains, split="test" | |
) | |
), | |
} | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": files["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": files["dev"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": files["test"]}, | |
), | |
] | |
def _generate_examples( | |
self, filepath: Union[str, List[str]] | |
) -> Generator[Tuple[int, Dict[str, str]], None, None]: | |
gid = 0 | |
for path in filepath: | |
with open(path, "r", encoding="utf-8") as f: | |
for line in f: | |
splitted_line = line.split(" ") | |
yield gid, { | |
"text": " ".join(splitted_line[:-1]), | |
"target": ( | |
splitted_line[-1] | |
.strip() | |
.replace("minus_m", "minus") | |
.replace("plus_m", "plus") | |
.split("_")[-1] | |
), | |
} | |
gid += 1 | |