Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
100K - 1M
License:
File size: 5,904 Bytes
0d6e52b bd70953 0d6e52b bd70953 0d6e52b bd70953 0d6e52b bd70953 0d6e52b fa2dc33 0d6e52b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""PolEmo2 dataset."""
from dataclasses import dataclass
from typing import List, Dict, Generator, Union, Optional, Tuple
import datasets
_DESCRIPTION = """PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL."""
_CITATION = """
@inproceedings{kocon-etal-2019-multi,
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
author = "Koco{\'n}, Jan and
Mi{\l}kowski, Piotr and
Za{\'s}ko-Zieli{\'n}ska, Monika",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/K19-1092",
doi = "10.18653/v1/K19-1092",
pages = "980--991",}
"""
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/710"
_LICENSE = "CC-BY-4.0"
_DOMAINS = [
"all",
"hotels",
"medicine",
"products",
"reviews",
]
_OUT_DOMAINS = ["Nhotels", "Nmedicine", "Nproducts", "Nreviews"]
_CONFIGS_TEXT = ["text", "sentence"]
_LABELS = ["zero", "minus", "plus", "amb"]
URL_PATH = (
"https://huggingface.co/datasets/clarin-pl/polemo2-official/resolve/main/data"
)
_URLS = {
cfg: {
**{
domain: {
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt"
for split_type in ["train", "dev", "test"]
}
for domain in _DOMAINS
},
**{
domain: {
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt"
for split_type in ["train", "dev"]
}
for domain in _OUT_DOMAINS
},
}
for cfg in _CONFIGS_TEXT
}
@dataclass
class PolEmo2Config(datasets.BuilderConfig):
text_cfg: Optional[str] = None
domain: Optional[str] = None
train_domains: Optional[List[str]] = None
dev_domains: Optional[List[str]] = None
test_domains: Optional[List[str]] = None
class PolEmo2(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = PolEmo2Config
BUILDER_CONFIGS = [
*[
PolEmo2Config(
name=f"{domain}_{text_type}",
domain=domain,
text_cfg=text_type,
train_domains=[domain],
dev_domains=[domain],
test_domains=[domain],
)
for domain in _DOMAINS
for text_type in _CONFIGS_TEXT
]
]
DEFAULT_CONFIG_NAME = "all_text"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"target": datasets.features.ClassLabel(
names=_LABELS, num_classes=len(_LABELS)
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _get_files_by_domains(self, domains: List[str], split: str) -> List[str]:
return [_URLS[self.config.text_cfg][domain][split] for domain in domains]
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
files = {
"train": dl_manager.download_and_extract(
self._get_files_by_domains(
domains=self.config.train_domains, split="train"
)
),
"dev": dl_manager.download_and_extract(
self._get_files_by_domains(domains=self.config.dev_domains, split="dev")
),
"test": dl_manager.download_and_extract(
self._get_files_by_domains(
domains=self.config.test_domains, split="test"
)
),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": files["dev"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files["test"]},
),
]
def _generate_examples(
self, filepath: Union[str, List[str]]
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
gid = 0
for path in filepath:
with open(path, "r", encoding="utf-8") as f:
for line in f:
splitted_line = line.split(" ")
yield gid, {
"text": " ".join(splitted_line[:-1]),
"target": (
splitted_line[-1]
.strip()
.replace("minus_m", "minus")
.replace("plus_m", "plus")
.split("_")[-1]
),
}
gid += 1
|