File size: 5,352 Bytes
d0dc513
 
 
 
 
d934cf6
d0dc513
d934cf6
d0dc513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802e35d
 
 
 
 
 
d0dc513
 
 
 
 
 
 
 
 
7f8004e
 
 
 
 
 
 
 
d0dc513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
annotations_creators: 
- expert-generated 
language_creators: 
- other
language: 
- pl
license: 
- cc-by-sa-4.0
multilinguality: 
- monolingual
pretty_name: 'Polemo2'
size_categories: 
- 8K
- 1K<n<10K
source_datasets: 
- original
task_categories: 
- text-classification
task_ids: 
- sentiment-classification
---

# Polemo2

## Description

The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197,046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is annotated with four labels: positive, negative, neutral, or ambiguous.

## Tasks (input, output and metrics)

The task is to predict the correct label of the review.

**Input** ('*text*' column): sentence

**Output** ('*target*' column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)

**Domain**: Online reviews

**Measurements**: Accuracy, F1 Macro

**Example**: 

Input: `Na samym wejściu hotel śmierdzi . W pokojach jest pleśń na ścianach , brudny dywan . W łazience śmierdzi chemią , hotel nie grzeje w pokojach panuje chłód . Wyposażenie pokoju jest stare , kran się rusza , drzwi na balkon nie domykają się . Jedzenie jest w małych ilościach i nie smaczne . Nie polecam nikomu tego hotelu .`

Input (translated by DeepL): `At the very entrance the hotel stinks . In the rooms there is mold on the walls , dirty carpet . The bathroom smells of chemicals , the hotel does not heat in the rooms are cold . The room furnishings are old , the faucet moves , the door to the balcony does not close . The food is in small quantities and not tasty . I would not recommend this hotel to anyone .`

Output:  `1` (negative)

## Data splits

| Subset | Cardinality |
|--------|------------:|
| train  |        6573 |
| val    |         823 |
| test   |         820 |

## Class distribution

| Class   |   train |          dev |   test |
|:--------|--------:|-------------:|-------:|
| minus   |  0.3756 |       0.3694 | 0.4134 |
| plus    |  0.2775 |       0.2868 | 0.2768 |
| amb     |  0.1991 |       0.1883 | 0.1659 |
| zero    |  0.1477 |       0.1555 | 0.1439 |

## Citation

```
@inproceedings{kocon-etal-2019-multi,
    title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
    author = "Koco{\'n}, Jan  and
      Mi{\l}kowski, Piotr  and
      Za{\'s}ko-Zieli{\'n}ska, Monika",
    booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K19-1092",
    doi = "10.18653/v1/K19-1092",
    pages = "980--991",
    abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
}
```

## License

```
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
```

## Links

[HuggingFace](https://huggingface.co/datasets/clarin-pl/polemo2-official)

[Source](https://clarin-pl.eu/dspace/handle/11321/710)

[Paper](https://aclanthology.org/K19-1092/)

## Examples

### Loading

```python
from pprint import pprint

from datasets import load_dataset

dataset = load_dataset("clarin-pl/polemo2-official")
pprint(dataset['train'][0])

# {'target': 1,
#  'text': 'Na samym wejściu hotel śmierdzi . W pokojach jest pleśń na ścianach '
#          ', brudny dywan . W łazience śmierdzi chemią , hotel nie grzeje w '
#          'pokojach panuje chłód . Wyposażenie pokoju jest stare , kran się '
#          'rusza , drzwi na balkon nie domykają się . Jedzenie jest w małych '
#          'ilościach i nie smaczne . Nie polecam nikomu tego hotelu .'}
```

### Evaluation

```python
import random
from pprint import pprint

from datasets import load_dataset, load_metric

dataset = load_dataset("clarin-pl/polemo2-official")
references = dataset["test"]["target"]

# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]

acc = load_metric("accuracy")
f1 = load_metric("f1")

acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average='macro')

pprint(acc_score)
pprint(f1_score)

# {'accuracy': 0.2475609756097561}
# {'f1': 0.23747048177471738}
```