File size: 3,662 Bytes
6f50cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40731b
6f50cd5
 
 
 
 
 
 
a40731b
 
6f50cd5
 
 
 
a40731b
a9fd096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40731b
6f50cd5
 
 
d90b6bd
6f50cd5
 
 
 
 
 
a40731b
6f50cd5
a9fd096
 
 
 
 
6f50cd5
 
 
d90b6bd
6f50cd5
 
 
a9fd096
6f50cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40731b
 
 
 
 
 
 
 
 
 
 
6f50cd5
 
a9fd096
a40731b
a9fd096
a40731b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""NKJP-POS tagging dataset."""

import json
from typing import List, Tuple, Dict, Generator

import datasets

_DESCRIPTION = """NKJP-POS tagging dataset."""

_URLS = {
    "train": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/train.jsonl",
    "test": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/test.jsonl",
}

_HOMEPAGE = "http://clip.ipipan.waw.pl/NationalCorpusOfPolish"

_POS_TAGS = {
    "adj",
    "adja",
    "adjc",
    "adjp",
    "adv",
    "aglt",
    "bedzie",
    "brev",
    "burk",
    "comp",
    "conj",
    "depr",
    "fin",
    "ger",
    "imps",
    "impt",
    "inf",
    "interj",
    "interp",
    "num",
    "numcol",
    "pact",
    "pant",
    "pcon",
    "ppas",
    "ppron12",
    "ppron3",
    "praet",
    "pred",
    "prep",
    "qub",
    "siebie",
    "subst",
    "winien",
    "xxx",
}


class NKJPPOS(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")

    def _info(self) -> datasets.DatasetInfo:
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=list(_POS_TAGS), num_classes=len(_POS_TAGS)
                        )
                    ),
                }
            ),
            homepage=_HOMEPAGE,
            version=self.VERSION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"]},
            ),
        ]

    @staticmethod
    def _clean_line(data_line: Dict):
        new_tokens = []
        new_pos_tags = []
        for token, pos_tag in zip(data_line["tokens"], data_line["pos_tags"]):
            if pos_tag in _POS_TAGS:
                new_tokens.append(token)
                new_pos_tags.append(pos_tag)
        data_line["tokens"] = new_tokens
        data_line["pos_tags"] = new_pos_tags
        assert len(data_line["tokens"]) == len(data_line["pos_tags"])
        return data_line

    def _generate_examples(
        self, filepath: str
    ) -> Generator[Tuple[str, Dict[str, str]], None, None]:
        with open(filepath, "r", encoding="utf-8") as f:
            for line in f:
                data_line = self._clean_line(json.loads(line))
                yield data_line["id"], data_line