Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
File size: 5,952 Bytes
018aeee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
annotations_creators:
- expert-generated
language_creators:
- other
languages:
- pl
licenses:
- gpl-3.0
multilinguality:
- monolingual
pretty_name: 'nkjp-pos'
size_categories:
- unknown
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- part-of-speech-tagging
---
# nkjp-pos
## Description
NKJP-POS is a part the National Corpus of Polish (*Narodowy Korpus Języka Polskiego*). Its objective is part-of-speech tagging, e.g. nouns, verbs, adjectives, adverbs, etc. During the creation of corpus, texts of were annotated by humans from various sources, covering many domains and genres.
## Tasks (input, output and metrics)
Part-of-speech tagging (POS tagging) - tagging words in text with their corresponding part of speech.
**Input** ('*tokens'* column): sequence of tokens
**Output** ('*pos_tags'* column): sequence of predicted tokens’ classes (35 possible classes, described in detail in the annotation guidelines)
***example**:*
[*'Zarejestruj', 'się', 'jako', 'bezrobotny', '.'*] → [*'impt', 'qub', 'conj', 'subst', 'interp'*]
Measurements:
## Data splits
| Subset | Cardinality (sentences) |
| ----------- | ----------------------: |
| train | 68528 |
| val | 8566 |
| test | 8566 |
## Class distribution in train
| Class | Fraction of tokens |
|:--------|---------------------:|
| subst | 0.27295 |
| interp | 0.18381 |
| adj | 0.10607 |
| prep | 0.09533 |
| qub | 0.05633 |
| fin | 0.04895 |
| praet | 0.04385 |
| conj | 0.03685 |
| adv | 0.03498 |
| inf | 0.01586 |
| comp | 0.01465 |
| num | 0.01319 |
| ppron3 | 0.01090 |
| ppas | 0.01080 |
| ger | 0.00967 |
| brev | 0.00880 |
| ppron12 | 0.00668 |
| aglt | 0.00620 |
| pred | 0.00536 |
| pact | 0.00452 |
| bedzie | 0.00232 |
| pcon | 0.00216 |
| impt | 0.00201 |
| siebie | 0.00175 |
| imps | 0.00172 |
| interj | 0.00128 |
| xxx | 0.00067 |
| winien | 0.00066 |
| adjp | 0.00066 |
| adja | 0.00048 |
| pant | 0.00013 |
| depr | 0.00010 |
| burk | 0.00010 |
| numcol | 0.00010 |
| adjc | 0.00007 |
## Citation
```
@book{przepiorkowski_narodowy_2012,
title = {Narodowy korpus języka polskiego},
isbn = {978-83-01-16700-4},
language = {pl},
publisher = {Wydawnictwo Naukowe PWN},
editor = {Przepiórkowski, Adam and Bańko, Mirosław and Górski, Rafał L. and Lewandowska-Tomaszczyk, Barbara},
year = {2012}
}
```
## License
```
GNU GPL v.3
```
## Links
[HuggingFace](https://huggingface.co/datasets/clarin-pl/nkjp-pos)
[Source](http://clip.ipipan.waw.pl/NationalCorpusOfPolish)
[Paper](http://nkjp.pl/settings/papers/NKJP_ksiazka.pdf)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/nkjp-pos")
pprint(dataset['train'][5000])
# {'full_pos_tags': ['fin:sg:ter:imperf',
# 'subst:sg:nom:f',
# 'adj:sg:nom:f:pos',
# 'interp'],
# 'lemmas': ['trwać', 'akcja', 'poszukiwawczy', '.'],
# 'morph': ['trwać|fin:sg:ter:imperf',
# 'akcja|subst:sg:nom:f',
# 'poszukiwawczy|adj:sg:nom:f:pos poszukiwawczy|adj:sg:voc:f:pos',
# '.|interp'],
# 'nps': ['', '', 'nps', ''],
# 'pos_tags': [12, 32, 0, 18],
# 'tokens': ['Trwa', 'akcja', 'poszukiwawcza', '.']}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/nkjp-pos")
references = dataset["test"]["pos_tags"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["pos_tags"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in predictions
]
# transform to BILOU scheme
references_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in references_named
]
predictions_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in predictions_named
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named,
references=references_named,
scheme="BILOU",
mode="strict",
)
pprint(seqeval_score, depth=1)
# {'adj': {...},
# 'adja': {...},
# 'adjc': {...},
# 'adjp': {...},
# 'adv': {...},
# 'aglt': {...},
# 'bedzie': {...},
# 'brev': {...},
# 'burk': {...},
# 'comp': {...},
# 'conj': {...},
# 'depr': {...},
# 'fin': {...},
# 'ger': {...},
# 'imps': {...},
# 'impt': {...},
# 'inf': {...},
# 'interj': {...},
# 'interp': {...},
# 'num': {...},
# 'numcol': {...},
# 'overall_accuracy': 0.027855061488566583,
# 'overall_f1': 0.027855061488566583,
# 'overall_precision': 0.027855061488566583,
# 'overall_recall': 0.027855061488566583,
# 'pact': {...},
# 'pant': {...},
# 'pcon': {...},
# 'ppas': {...},
# 'ppron12': {...},
# 'ppron3': {...},
# 'praet': {...},
# 'pred': {...},
# 'prep': {...},
# 'qub': {...},
# 'siebie': {...},
# 'subst': {...},
# 'winien': {...},
# 'xxx': {...}}
``` |