Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
Update README.md (#4)
Browse files- Update README.md (1fde81ef9dc91fa2ade8ef91c5842700dc18b980)
Co-authored-by: Albert Sawczyn <[email protected]>
README.md
CHANGED
@@ -43,9 +43,15 @@ Aspect-based sentiment analysis (ABSA) is a text analysis method that categorize
|
|
43 |
|
44 |
**Domain**: school, medicine, hotels and products
|
45 |
|
46 |
-
**Measurements**:
|
47 |
|
48 |
-
**Example
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
## Data splits
|
51 |
|
|
|
43 |
|
44 |
**Domain**: school, medicine, hotels and products
|
45 |
|
46 |
+
**Measurements**: F1-score (seqeval)
|
47 |
|
48 |
+
**Example***:*
|
49 |
+
|
50 |
+
Input: `['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić', 'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.']`
|
51 |
+
|
52 |
+
Input (translated by DeepL): `'Demands a lot , but very honest and student friendly . Worth going to consultations . Appreciates progress and commitment . I recommend .'`
|
53 |
+
|
54 |
+
Output: `['O', 'a_plus_s', 'O', 'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O']`
|
55 |
|
56 |
## Data splits
|
57 |
|