Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
File size: 6,901 Bytes
9d9c13d a351d99 9d9c13d a351d99 9d9c13d 60c6f6f 9d9c13d 1fde81e 9d9c13d 1fde81e 9d9c13d 6aac80d 9d9c13d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- mit
multilinguality:
- monolingual
pretty_name: 'AspectEmo'
size_categories:
- 1K
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- sentiment-classification
---
# AspectEmo
## Description
AspectEmo Corpus is an extended version of a publicly available PolEmo 2.0 corpus of Polish customer reviews used in many projects on the use of different methods in sentiment analysis. The AspectEmo corpus consists of four subcorpora, each containing online customer reviews from the following domains: school, medicine, hotels, and products. All documents are annotated at the aspect level with six sentiment categories: strong negative (minus_m), weak negative (minus_s), neutral (zero), weak positive (plus_s), strong positive (plus_m).
## Versions
| version | config name | description | default | notes |
|---------|-------------|--------------------------------|---------|------------------|
| 1.0 | "1.0" | The version used in the paper. | YES | |
| 2.0 | - | Some bugs fixed. | NO | work in progress |
## Tasks (input, output and metrics)
Aspect-based sentiment analysis (ABSA) is a text analysis method that categorizes data by aspects and identifies the sentiment assigned to each aspect. It is the sequence tagging task.
**Input** ('*tokens'* column): sequence of tokens
**Output** ('*labels'* column): sequence of predicted tokens’ classes ("O" + 6 possible classes: strong negative (a_minus_m), weak negative (a_minus_s), neutral (a_zero), weak positive (a_plus_s), strong positive (a_plus_m), ambiguous (a_amb) )
**Domain**: school, medicine, hotels and products
**Measurements**: F1-score (seqeval)
**Example***:*
Input: `['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić', 'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.']`
Input (translated by DeepL): `'Demands a lot , but very honest and student friendly . Worth going to consultations . Appreciates progress and commitment . I recommend .'`
Output: `['O', 'a_plus_s', 'O', 'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O']`
## Data splits
| Subset | Cardinality (sentences) |
|:-------|------------------------:|
| train | 1173 |
| val | 0 |
| test | 292 |
## Class distribution(without "O")
| Class | train | validation | test |
|:----------|--------:|-------------:|-------:|
| a_plus_m | 0.359 | - | 0.369 |
| a_minus_m | 0.305 | - | 0.377 |
| a_zero | 0.234 | - | 0.182 |
| a_minus_s | 0.037 | - | 0.024 |
| a_plus_s | 0.037 | - | 0.015 |
| a_amb | 0.027 | - | 0.033 |
## Citation
```
@misc{11321/849,
title = {{AspectEmo} 1.0: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis},
author = {Koco{\'n}, Jan and Radom, Jarema and Kaczmarz-Wawryk, Ewa and Wabnic, Kamil and Zaj{\c a}czkowska, Ada and Za{\'s}ko-Zieli{\'n}ska, Monika},
url = {http://hdl.handle.net/11321/849},
note = {{CLARIN}-{PL} digital repository},
copyright = {The {MIT} License},
year = {2021}
}
```
## License
```
The MIT License
```
## Links
[HuggingFace](https://huggingface.co/datasets/clarin-pl/aspectemo)
[Source](https://clarin-pl.eu/dspace/handle/11321/849)
[Paper](https://sentic.net/sentire2021kocon.pdf)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/aspectemo")
pprint(dataset['train'][20])
# {'labels': [0, 4, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, 0, 0],
# 'tokens': ['Dużo',
# 'wymaga',
# ',',
# 'ale',
# 'bardzo',
# 'uczciwy',
# 'i',
# 'przyjazny',
# 'studentom',
# '.',
# 'Warto',
# 'chodzić',
# 'na',
# 'konsultacje',
# '.',
# 'Docenia',
# 'postępy',
# 'i',
# 'zaangażowanie',
# '.',
# 'Polecam',
# '.']}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/aspectemo")
references = dataset["test"]["labels"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["labels"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["labels"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["labels"].feature.names[label] for label in labels]
for labels in predictions
]
# transform to BILOU scheme
references_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in references_named
]
predictions_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in predictions_named
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named,
references=references_named,
scheme="BILOU",
mode="strict",
)
pprint(seqeval_score)
# {'a_amb': {'f1': 0.00597237775289287,
# 'number': 91,
# 'precision': 0.003037782418834251,
# 'recall': 0.17582417582417584},
# 'a_minus_m': {'f1': 0.048306148055207034,
# 'number': 1039,
# 'precision': 0.0288551620760727,
# 'recall': 0.1482194417709336},
# 'a_minus_s': {'f1': 0.004682997118155619,
# 'number': 67,
# 'precision': 0.0023701002734731083,
# 'recall': 0.19402985074626866},
# 'a_plus_m': {'f1': 0.045933014354066985,
# 'number': 1015,
# 'precision': 0.027402473834443386,
# 'recall': 0.14187192118226602},
# 'a_plus_s': {'f1': 0.0021750951604132683,
# 'number': 41,
# 'precision': 0.001095690284879474,
# 'recall': 0.14634146341463414},
# 'a_zero': {'f1': 0.025159400310184387,
# 'number': 501,
# 'precision': 0.013768389287061486,
# 'recall': 0.14570858283433133},
# 'overall_accuracy': 0.13970115681233933,
# 'overall_f1': 0.02328248652368391,
# 'overall_precision': 0.012639312620633834,
# 'overall_recall': 0.14742193173565724}
``` |