|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed to be used in training models |
|
that restore punctuation marks from the output of |
|
Automatic Speech Recognition system for Polish language. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/poleval/2021-punctuation-restoration" |
|
|
|
_URL = "https://huggingface.co/datasets/lruczu/2021-punctuation-restoration/resolve/main" |
|
|
|
_PATHS = { |
|
"train": os.path.join(_URL, "train"), |
|
"test-A": os.path.join(_URL, "test-A"), |
|
} |
|
|
|
|
|
class PunctuationDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AfrikaansNerCorpus""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PunctuationDataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PunctuationDatasetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PunctuationDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
PunctuationDatasetConfig( |
|
name="punctuation_dataset", |
|
version=datasets.Version("1.0.0"), |
|
description="PunctuationDataset dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text_in": datasets.Value("string"), |
|
"text_out": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'B-.', |
|
'B-,', |
|
'B--', |
|
'B-!', |
|
'B-?', |
|
'B-:', |
|
'B-;', |
|
'O', |
|
] |
|
) |
|
) |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": _PATHS["train"]} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": _PATHS["test-A"]} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
in_df = pd.read_csv(os.path.join(filepath, "in.tsv"), sep='\t', header=None) |
|
out_df = pd.read_csv(os.path.join(filepath, 'expected.tsv'), sep='\t', header=None) |
|
|
|
for key, ((_, row_in), (_, row_out)) in enumerate(zip(in_df.iterrows(), out_df.iterrows()), 1): |
|
|
|
text_in = PunctuationDataset._clean_text(row_in[1]) |
|
text_out = PunctuationDataset._clean_text(row_out[0]) |
|
|
|
tokens = [] |
|
tags = [] |
|
for token_in, token_out in zip(text_in.split(), text_out.split()): |
|
assert token_in.lower() in token_out.lower() |
|
|
|
tokens.append(token_in) |
|
if token_in.lower() == token_out.lower(): |
|
tags.append('O') |
|
else: |
|
tags.append(f'B-{token_out[-1]}') |
|
|
|
yield key, { |
|
"text_in": text_in, |
|
"text_out": text_out, |
|
"tokens": tokens, |
|
"tags": tags |
|
} |
|
|
|
@staticmethod |
|
def _clean_text(text: str, lower: bool = False) -> str: |
|
if lower: |
|
text = text.lower() |
|
text = text.replace(' -', '') |
|
text = text.replace(' .', '') |
|
text = text.replace(' ,', '') |
|
text = text.replace(' ', ' ') |
|
text = text.strip() |
|
return text |
|
|