Datasets:
Tasks:
Token Classification
Sub-tasks:
word-sense-disambiguation
Languages:
Polish
Size:
1M<n<10M
License:
File size: 7,950 Bytes
b805ec1 b5b66bb b805ec1 a535d7e b805ec1 540af0c b805ec1 3324655 b805ec1 540af0c b805ec1 31f0ac2 c742c76 e27722d b805ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
from typing import Sequence
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{10.1007/978-3-031-08754-7_70,
author="Janz, Arkadiusz
and Dziob, Agnieszka
and Oleksy, Marcin
and Baran, Joanna",
editor="Groen, Derek
and de Mulatier, Cl{\'e}lia
and Paszynski, Maciej
and Krzhizhanovskaya, Valeria V.
and Dongarra, Jack J.
and Sloot, Peter M. A.",
title="A Unified Sense Inventory for Word Sense Disambiguation in Polish",
booktitle="Computational Science -- ICCS 2022",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="682--689",
isbn="978-3-031-08754-7"
}
"""
_DESCRIPTION = """\
Polish WSD training data manually annotated by experts according to plWordNet-4.2.
"""
_LICENSE = "cc-by-4.0"
_BASE_URL = "https://huggingface.co/datasets/clarin-knext/wsd_polish_datasets/resolve/main/data/"
_CORPUS_NAMES = [
"sherlock",
"skladnica",
"wikiglex",
"emoglex",
"walenty",
"kpwr",
"kpwr-100",
]
_DATA_TYPES = [
"sentence",
"text",
]
_URLS = {
"text": {corpus: f"{_BASE_URL}{corpus}_text.jsonl" for corpus in _CORPUS_NAMES},
"sentence": {
corpus: f"{_BASE_URL}{corpus}_sentences.jsonl" for corpus in _CORPUS_NAMES
},
}
class WsdPolishBuilderConfig(datasets.BuilderConfig):
def __init__(
self,
data_urls: Sequence[str],
corpus: str,
data_type: str,
**kwargs,
):
super(WsdPolishBuilderConfig, self).__init__(
name=f"{corpus}_{data_type}",
version=datasets.Version("1.0.0"),
**kwargs,
)
self.data_type = data_type
self.corpus = corpus
self.data_urls = data_urls
if self.data_type not in _DATA_TYPES:
raise ValueError(
f"Corpus type {self.data_type} is not supported. Enter one of: {_DATA_TYPES}"
)
if self.corpus not in (*_CORPUS_NAMES, "all"):
raise ValueError(
f"Corpus name `{self.corpus}` is not available. Enter one of: {(*_CORPUS_NAMES, 'all')}"
)
class WsdPolishDataset(datasets.GeneratorBasedBuilder):
"""Polish WSD training data"""
BUILDER_CONFIGS = [
WsdPolishBuilderConfig(
corpus=corpus_name,
data_type=data_type,
data_urls=[_URLS[data_type][corpus_name]],
description=f"Data part covering `{corpus_name}` corpora in `{data_type}` segmentation.",
)
for corpus_name, data_type in itertools.product(_CORPUS_NAMES, _DATA_TYPES)
]
BUILDER_CONFIGS.extend(
[
WsdPolishBuilderConfig(
corpus="all",
data_type=data_type,
data_urls=list(_URLS[data_type].values()),
description=f"Data part covering `all` corpora in `{data_type}` segmentation.",
)
for data_type in _DATA_TYPES
]
)
DEFAULT_CONFIG_NAME = "all_text"
def _info(self) -> datasets.DatasetInfo:
text_features = {
"text": datasets.Value("string"),
"tokens": datasets.features.Sequence(
dict(
{
"position": datasets.features.Sequence(
length=2,
feature=datasets.Value("int32"),
),
"orth": datasets.Value("string"),
"lemma": datasets.Value("string"),
"pos": datasets.Value("string"),
}
),
),
"phrases": datasets.features.Sequence(
dict(
{
"indices": datasets.features.Sequence(
feature=datasets.Value("int32")
),
"head": datasets.Value("int32"),
"lemma": datasets.Value("string"),
}
),
),
"wsd": datasets.features.Sequence(
dict(
{
"index": datasets.Value("int32"),
"plWN_syn_id": datasets.Value("string"),
"plWN_lex_id": datasets.Value("string"),
"PWN_syn_id": datasets.Value("string"),
"bn_syn_id": datasets.Value("string"),
"mapping_relation": datasets.Value("string")
}
),
),
}
if self.config.data_type == "sentence":
features = datasets.Features(
{
"sentences": datasets.features.Sequence(text_features),
}
)
else:
features = datasets.Features(text_features)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
filepaths = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": filepaths,
},
),
]
def _generate_examples(self, filepaths: Sequence[str]):
key_iter = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for data in (json.loads(line) for line in f):
if self.config.data_type == "sentence":
yield key_iter, {
"sentences": [
self._process_example(sent)
for sent in data["sentences"]
]
}
else:
data.pop("context_file")
yield key_iter, self._process_example(data)
key_iter += 1
@staticmethod
def _process_example(data: dict) -> dict:
return {
"text": data["text"],
"tokens": [
{
"position": tok["position"],
"orth": tok["orth"],
"lemma": tok["lemma"],
"pos":tok["pos"],
}
for tok in data["tokens"]
],
"wsd": [
{
"index": tok["index"],
"plWN_syn_id": tok["plWN_syn_id"],
"plWN_lex_id": tok["plWN_lex_id"],
# "PWN_syn_id": tok["PWN_syn_id"],
# "bn_syn_id": tok["bn_syn_id"],
# "mapping_relation": tok["mapping_relation"],
}
for tok in data["wsd"]
],
"phrases": [
{
"indices": tok["indices"],
"head": tok["head"],
"lemma": tok["lemma"],
}
for tok in data["phrases"]
],
}
|