Datasets:
Tasks:
Token Classification
Sub-tasks:
word-sense-disambiguation
Languages:
Polish
Size:
1M<n<10M
License:
File size: 10,276 Bytes
b805ec1 24615aa b805ec1 6d99874 b805ec1 2345ec6 b805ec1 80d360a b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 24615aa b805ec1 ab1be7b b805ec1 d43f0f1 b805ec1 4e37db5 d43f0f1 b805ec1 83d52f6 b805ec1 83d52f6 b805ec1 83d52f6 b805ec1 95e8380 b805ec1 ab1be7b b805ec1 1734e70 b805ec1 2bf0f4a 1734e70 b805ec1 09a03c2 b805ec1 3cc5933 b805ec1 09a03c2 dd53135 09a03c2 dd53135 09a03c2 dd53135 09a03c2 dd53135 09a03c2 3cc5933 09a03c2 b805ec1 09a03c2 1734e70 9b91b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
---
annotations_creators:
- expert-generated
language:
- pl
language_creators:
- expert-generated
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: wsd-polish-datasets
size_categories:
- 1M<n<10M
source_datasets:
- original
tags: []
task_categories:
- token-classification
task_ids:
- word-sense-disambiguation
---
# Word Sense Disambiguation Corpora for Polish
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:** https://link.springer.com/chapter/10.1007/978-3-031-08754-7_70
- **Point of Contact:** [email protected]
### Dataset Summary
`WSD Polish Datasets` is a comprehensive benchmark for word sense disambiguation (WSD) classification task in Polish language.
It consists of 7 distinct datasets, manually annotated with senses from plWordNet-4.5 sense inventory. The following datasets
were annotated and included into our benchmark:
- KPWr
- KPWr-100
- Sherlock (SPEC)
- Skladnica
- WikiGlex (a subset of GLEX corpus)
- EmoGlex (a subset of GLEX corpus)
- Walenty
### Supported Tasks and Leaderboards
Word sense disambiguation task. We do not provide a leaderboard. However, we provide an example evaluation script for evaluating WSD models.
### Languages
Polish language, PL
## Dataset Structure
### Data Instances
Data are structured in JSONL format, each single text sample is divided by sentence.
```
{
"text": "Wpierw pani Hudson została zerwana z łóżka, po czym odegrała się na mnie, a ja - na tobie.",
"tokens": [
{
"index": 0,
"position": [ 0, 6 ],
"orth": "Wpierw",
"lemma": "wpierw",
"pos": "adv",
"ctag": "adv"
},
{
"index": 1,
"position": [ 7, 11 ],
"orth": "pani",
"lemma": "pani",
"pos": "noun",
"ctag": "subst:nom:f:sg"
},
{
"index": 2,
"position": [ 12, 18 ],
"orth": "Hudson",
"lemma": "Hudson",
"pos": "noun",
"ctag": "subst:nom:f:sg"
},
{
"index": 3,
"position": [ 19, 26 ],
"orth": "została",
"lemma": "zostać",
"pos": "verb",
"ctag": "praet:perf:f:sg"
},
{
"index": 4,
"position": [ 27, 34 ],
"orth": "zerwana",
"lemma": "zerwać",
"pos": "verb",
"ctag": "ppas:perf:nom:f:aff:sg"
},
<...>
],
"phrases": [
{
"indices": [ 10, 11 ],
"head": 10,
"lemma": "odegrać się"
}
],
"wsd": [
{
"index": 0,
"pl_sense": "wpierw.1.r",
"plWN_syn_id": "01a4a067-aac5-11ed-aae5-0242ac130002",
"plWN_lex_id": "f2757c30-aac4-11ed-aae5-0242ac130002",
"plWN_syn_legacy_id": "477654",
"plWN_lex_legacy_id": "718454",
"PWN_syn_id": "00102736-r",
"bn_syn_id": "bn:00115376r",
"mapping_relation": "synonymy"
},
{
"index": 1,
"pl_sense": "pani.2.n",
"plWN_syn_id": "f35fb1ed-aac4-11ed-aae5-0242ac130002",
"plWN_lex_id": "d5145565-aac4-11ed-aae5-0242ac130002",
"plWN_syn_legacy_id": "129",
"plWN_lex_legacy_id": "20695",
"PWN_syn_id": "10787470-n",
"bn_syn_id": "bn:00001530n",
"mapping_relation": "synonymy"
},
<...>
]
}
```
### Data Fields
Description of json keys:
- `text`: text of the sentence
- `tokens`: list of tokens made by tokenization process
- `index`: token order index in sentence
- `position`: token chars span indices <included, excluded>
- `orth`: word
- `lemma`: lemmatised word
- `pos`: part of speech
- `ctag`: morphosyntactic tag
- `phrases`: list of multi-word
- `wsd`: annotation labels for the WSD task
### Data Splits
We do not specify an exact data split for training and evaluation. However, we suggest to use GLEX and Składnica for training and other datasets for testing.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection, Normalization and Post-processing
Source corpora were initially pre-processed using morphosyntactic tagging and multi-word expression recognition tools.
To tokenize and tag the datasets we used [MorphoDiTa](https://clarin-pl.eu/dspace/handle/11321/425) adapted to Polish language. To recognize multi-word expressions
we applied pattern-based matching tool [Corpus2-MWE](https://clarin-pl.eu/dspace/handle/11321/533) - only MWEs from plWordNet were included. After manual annotation,
sense indices of plWordNet 4.5 were mapped automatically to Princeton WordNet 3.0 and BabelNet 4.0 indices using plWordNet's interlingual mapping.
### Annotations
#### Annotation process
* 2+1 annotation process with inter-annotator agreement score over 0.6 PSA
* annotated with [plWordNet 4.5](http://plwordnet.pwr.wroc.pl/wordnet/)
* software: [WordNet-Loom](https://clarin-pl.eu/dspace/handle/11321/275) and [Inforex](https://clarin-pl.eu/dspace/handle/11321/13)
* both single-word and multi-word expressions annotated
* full-text sense annotation (excluding KPWr)
#### Who are the annotators?
- professional linguists (mention all people involved)
### Personal and Sensitive Information
The datasets do not contain any personal or sensitive information.
## Considerations for Using the Data
### Discussion of Biases
Some datasets are biased towards most frequent senses. (Stats?)
### Other Known Limitations
* sense inventories are usually incomplete therefore some word senses might be missing in plWordNet
* single-word and multi-word terms expressing novel senses (missing in plWordNet) were not marked
## Additional Information
### Dataset Curators
Arkadiusz Janz ([email protected])
### Licensing Information
KPWR-100 [CC-BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)
KPWR [CC-BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)
Walenty [CC-BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)
Sherlock [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/)
Skladnica [GNU GPL 3](http://www.gnu.org/licenses/gpl-3.0.en.html)
GLEX [plWordNet License](http://plwordnet.pwr.wroc.pl/wordnet/licence)
### Citation Information
Main source (all corpora as a unified benchmark)
````
@InProceedings{10.1007/978-3-031-08754-7_70,
author="Janz, Arkadiusz
and Dziob, Agnieszka
and Oleksy, Marcin
and Baran, Joanna",
editor="Groen, Derek
and de Mulatier, Cl{\'e}llia
and Paszynski, Maciej
and Krzhizhanovskaya, Valeria V.
and Dongarra, Jack J.
and Sloot, Peter M. A.",
title="A Unified Sense Inventory for Word Sense Disambiguation in Polish",
booktitle="Computational Science -- ICCS 2022",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="682--689",
isbn="978-3-031-08754-7"
}
````
Related work
------------
KPWr-100, Składnica, SPEC
````
@article{janzresults,
title={Results of the PolEval 2020 Shared Task 3: Word Sense Disambiguation},
author={Janz, Arkadiusz and Chlebus, Joanna and Dziob, Agnieszka and Piasecki, Maciej},
journal={Proceedings of the PolEval 2020 Workshop},
pages={65--77},
year={2020}
}
````
GLEX (EmoGLEX)
````
@article{janz2017plwordnet,
title={{plWordNet} as a basis for large emotive lexicons of Polish},
author={Janz, Arkadiusz and Kocon, Jan and Piasecki, Maciej and Zasko-Zielinska, Monika},
journal={Proceedings of Human Language Technologies as a Challenge for Computer Science and Linguistics Poznan: Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu},
pages={189--193},
year={2017}
}
````
KPWr
````
@conference{broda2012,
address = {Istanbul, Turkey},
author = {Bartosz Broda and Micha{\l} Marci{\'n}czuk and Marek Maziarz and Adam Radziszewski and Adam Wardy{\'n}ski},
booktitle = {Proceedings of LREC'12},
owner = {Marlena},
publisher = {ELRA},
timestamp = {2014.06.20},
title = {KPWr: Towards a Free Corpus of Polish},
year = {2012}
}
````
Składnica
````
@inproceedings{hajnicz-2014-lexico,
title = "Lexico-Semantic Annotation of Sk{\l}adnica Treebank by means of {PLWN} Lexical Units",
author = "Hajnicz, El{\.z}bieta",
booktitle = "Proceedings of the Seventh Global {W}ordnet Conference",
month = jan,
year = "2014",
address = "Tartu, Estonia",
publisher = "University of Tartu Press",
url = "https://aclanthology.org/W14-0104",
pages = "23--31",
}
````
Walenty
````
@inproceedings{haj:and:bar:lrec16,
author = {Hajnicz, El{\.z}bieta and Andrzejczuk, Anna and Bartosiak, Tomasz},
crossref = {lrec:16},
pages = {2625--2632},
pdf = {http://www.lrec-conf.org/proceedings/lrec2016/pdf/382_Paper.pdf},
title = {Semantic Layer of the Valence Dictionary of {P}olish \emph{{W}alenty}}
}
````
Mapping plWordNet onto Princeton WordNet
````
@inproceedings{rudnicka-etal-2021-non,
title = "A (Non)-Perfect Match: Mapping pl{W}ord{N}et onto {P}rinceton{W}ord{N}et",
author = "Rudnicka, Ewa and
Witkowski, Wojciech and
Piasecki, Maciej",
booktitle = "Proceedings of the 11th Global Wordnet Conference",
month = jan,
year = "2021",
address = "University of South Africa (UNISA)",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2021.gwc-1.16",
pages = "137--146"
}
````
|