|
""" |
|
Generate resized ImageNet-100 dataset. |
|
""" |
|
|
|
from argparse import ArgumentParser |
|
from functools import partial |
|
from pathlib import Path |
|
|
|
from datasets import load_dataset |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import resize |
|
|
|
SCRIPT = str(Path(__file__).parent / "imagenet-100.py") |
|
|
|
|
|
def transforms(examples, size: int = 160): |
|
examples["image"] = [ |
|
resize(image, size, interpolation=InterpolationMode.BICUBIC) |
|
for image in examples["image"] |
|
] |
|
return examples |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--outdir", "-o", type=str, default="cache") |
|
parser.add_argument("--size", "-s", type=int, default=160) |
|
parser.add_argument("--num-proc", "-n", type=int, default=8) |
|
args = parser.parse_args() |
|
|
|
dataset = load_dataset(SCRIPT) |
|
dataset = dataset.map( |
|
partial(transforms, size=args.size), |
|
batched=True, |
|
batch_size=256, |
|
num_proc=args.num_proc, |
|
) |
|
print(dataset) |
|
print(dataset["validation"][0]) |
|
|
|
outdir = Path(args.outdir) / f"imagenet-100_{args.size}" |
|
dataset.save_to_disk(outdir, num_proc=args.num_proc) |
|
|