Datasets:
Matej Klemen
commited on
Commit
·
a522dc2
1
Parent(s):
43ed7c5
Fix issue with parsing inconsistently formatted normalized words
Browse files- README.md +2 -2
- janes_tag.py +21 -9
README.md
CHANGED
@@ -14,10 +14,10 @@ dataset_info:
|
|
14 |
sequence: string
|
15 |
splits:
|
16 |
- name: train
|
17 |
-
num_bytes:
|
18 |
num_examples: 2957
|
19 |
download_size: 2871765
|
20 |
-
dataset_size:
|
21 |
task_categories:
|
22 |
- token-classification
|
23 |
language:
|
|
|
14 |
sequence: string
|
15 |
splits:
|
16 |
- name: train
|
17 |
+
num_bytes: 2653609
|
18 |
num_examples: 2957
|
19 |
download_size: 2871765
|
20 |
+
dataset_size: 2653609
|
21 |
task_categories:
|
22 |
- token-classification
|
23 |
language:
|
janes_tag.py
CHANGED
@@ -46,18 +46,30 @@ def word_info(wordlike_tag, _namespace):
|
|
46 |
|
47 |
if wordlike_tag.tag in {f"{_namespace}w", f"{_namespace}pc"}:
|
48 |
nes = None
|
49 |
-
if "lemma" in wordlike_tag.attrib:
|
50 |
-
words = [wordlike_tag.text.strip()]
|
51 |
-
lemmas = [wordlike_tag.attrib["lemma"].strip()]
|
52 |
-
msds = [wordlike_tag.attrib["ana"].strip()]
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
words, lemmas, msds = [], [], []
|
57 |
for _child in wordlike_tag:
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
return words, lemmas, msds, nes
|
63 |
|
|
|
46 |
|
47 |
if wordlike_tag.tag in {f"{_namespace}w", f"{_namespace}pc"}:
|
48 |
nes = None
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
children = list(iter(wordlike_tag))
|
51 |
+
if len(children) > 0:
|
52 |
+
# If this happens, the word contains nested words indicating its normalized form
|
53 |
words, lemmas, msds = [], [], []
|
54 |
for _child in wordlike_tag:
|
55 |
+
assert _child.tag in {f"{_namespace}w", f"{_namespace}pc"}, _child.tag
|
56 |
+
|
57 |
+
# Arbitrary words in the text have a normalized form that is formatted inconsistently and so it is
|
58 |
+
# unclear how to parse it correctly -> convention: always use information of the normalized words
|
59 |
+
if "norm" in _child.attrib:
|
60 |
+
words.append(_child.attrib["norm"].strip())
|
61 |
+
lemmas.append(_child.attrib["lemma"].strip())
|
62 |
+
msds.append(_child.attrib["ana"].strip())
|
63 |
+
else:
|
64 |
+
# These don't have linguistic annotations ¯\_(ツ)_/¯
|
65 |
+
words.append(_child.text.strip())
|
66 |
+
lemmas.append(_child.text.strip())
|
67 |
+
msds.append("UNK")
|
68 |
+
|
69 |
+
else:
|
70 |
+
words = [wordlike_tag.text.strip()]
|
71 |
+
lemmas = [wordlike_tag.attrib["lemma"].strip()]
|
72 |
+
msds = [wordlike_tag.attrib["ana"].strip()]
|
73 |
|
74 |
return words, lemmas, msds, nes
|
75 |
|